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Invertibility of Matrix Wiener-Hopf plus
Hankel Operators with Symbols
Producing a Positive Numerical Range

L. P. Castro and A. S. Silva

Abstract. We characterize left, right and both-sided invertibility of matrix Wiener—
Hopf plus Hankel operators with possibly different Fourier symbols in the Wiener
subclass of the almost periodic algebra. This is done when a certain almost periodic
matrix-valued function (constructed from the initial Fourier symbols of the Hankel
and Wiener—Hopf operators) admits a numerical range bounded away from zero. The
invertibility characterization is based on the value of a certain mean motion. At the
end, an example of a concrete Wiener—Hopf plus Hankel operator is studied in view
of the illustration of the proposed theory.
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1. Introduction

Motivated by the needs of different kinds of applications, there is a growing in-
terest in the study of invertibility properties of the so-called Wiener—Hopf plus
Hankel operators (cf., e.g., [4,7-10,12,17,19,21,22,24,25]). In fact, these oper-
ators occur in a natural manner in many applications. E.g.; in the analysis of
problems of wave diffraction by wedges (cf. [8,9,25]) this is particularly evident
due to the use of some symmetrization techniques which generate sums of Han-
kel and Wiener—Hopf operators. Therefore, an eventual additional knowledge
about the invertibility characteristics of these operators is welcome for both
theoretical and practical reasons.
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In the present paper, we will consider matrix Wiener-Hopf plus Hankel
operators of the form

Wa, + Ho, : [LL(R)]" — [L*(RL)]", (1.1)
with We, and Hg, being matrix Wiener-Hopf and Hankel operators defined by
We, =7, F '® -F and He, =7 F ‘& FJ,

respectively. We use [L% (R)]" to denote the subspace of [L*(R)]"™ formed by
all the vector functions supported on the closure of R, = (0,+00), r, repre-
sents the operator of restriction from [L*(R)]™ onto [L?*(R)]", F denotes the
Fourier transformation, J is the reflection operator given by the rule Jp(z) =
o(x) = ¢(—x), = € R, and ®; and ®y are n x n matrix functions with ele-
ments belonging to the so-called APW algebra. For defining this algebra, let
us first consider the algebra of almost periodic functions, usually denoted by
AP, i.e., the smallest closed subalgebra of L>(R) that contains all the functions
ex (A € R), where
ex(z) =™z eR.

APW is the subclass of all functions ¢ € AP which can be written in the form
of an absolutely convergent series, i.e.,

APW = {gp = Zgojekj s €C, A ER, Z ;| < oo}. (1.2)
J J

APW becomes a Banach algebra with respect to pointwise addition and mul-
tiplication when endowed with the norm |l¢|| ,py = >_; ;] (with ¢; in the
sense of (1.2)).

We will use the notation GB for the group of all invertible elements of
a Banach algebra B. Applying a similar result of Bohr’s Theorem for AP
functions, it holds that for each ¢ € GAPW there exists a real number k(¢)
and a function ¢ € APW such that

Blx) = D) (1.3)

for all x € R (cf. Theorem 8.11 in [3]). The number x(¢) is uniquely determined,
and is called the mean motion of ¢.

We would like to clarify that in opposition to the Wiener—Hopf plus Hankel
case, the properties of Wiener—Hopf operators with almost periodic symbols are
already well developed (cf., e.g., [3,11]). In addition, here we are considering
the possibility of ®; # ®, (see (1.1)) in contrast to some previous works that
study regularity properties of Wiener—Hopf plus Hankel operators only in the
case of &1 = ®y; cf. [4,5,20-22].
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2. Operator relations for Wiener-Hopf plus Hankel
operators with essentially bounded Fourier symbols

The main purpose of this section is to present an explicit operator relation
between the above defined Wiener-Hopf plus Hankel operator Wg, + Hg, and
a new Wiener—Hopf operator. This will be done in the form of a so-called delta
relation after extension [6].

For such a purpose, let us first recall some different types of relations
between bounded linear operators. Consider two bounded linear operators
T:X; — Xyand S : Y] — Y5, acting between Banach spaces. The operators
T and S are said to be equivalent, and we will denote this by T ~ S, if there
are two boundedly invertible linear operators, £ : Y5 — X5 and F' : X; — Y,
such that

T=FSF. (2.1)

It directly follows from (2.1) that if two operators are equivalent, then they be-
long to the same invertibility class [6,23]. More precisely, one of these operators
is invertible, left invertible, right invertible or only generalized invertible, if and
only if the other operator enjoys the same property.

The so-called A-relation after extension was introduced in [6] for bounded
linear operators acting between Banach spaces, eg. T : X; — X, and 5 :
Y] — Y5, We say that T' is A-related after extension to S if there is a bounded
linear operator acting between Banach spaces Th : X;ao — Xoa and invertible
bounded linear operators £ and F' such that

K jE)J :Elg ;)Z} F (2.2)

where Z is an additional Banach space and I, represents the identity operator
in Z. In the particular case when Th : Xijao — Xoa = Xja is the identity
operator, we say that the operators T' and S are equivalent after extension. It
follows from (2.2) that if we have T" being A-related after extension to S, then
the transfer of invertibility properties can only be guaranteed in one direction,
that is, from operator S to operator 7T'.

We are now in conditions to present the above announced result which is
based on the famous Gohberg-Krupnik-Litvinchuk identity (see [13-16,18], for
instance).

Theorem 2.1. Let &1, Py € G[L®(R)]"*". Then the matriz Wiener—Hopf plus
Hankel operator We, + Heg, : [L2(R)]" — [L*(Ry)]"™ is A-related after extension
to the Wiener—Hopf operator Wy : [L3 (R)]** — [L*(R4.)]*" with Fourier symbol
By — y0; 1By Dy
A e (23)
oD, Pt
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Proof. Let us start by extending Wg, + Hg, on the left by the zero extension
operator (o : [L*(R})]" — [L%(R)]™, which leads to

We, + He, ~ lo(Wa, + He,) : [L3(R)]" — [LL(R)]".
Using the notation P, = fyry and P_ = Ijz2@ry» — Py, we will now extend
lo(Ws, + Hp,) = PLF (D1 - +Py - J)Fpy L2 ®y

to the full [L?(R)]|™ space by using the identity in [L? (R)]". Next we will extend
the obtained operator to [L?(IR)]*" with the help of the auxiliary paired operator

T=F 0 -—®y- J)FP, + P_: [L*(R)]" — [L*(R)]".

Altogether, we have

to(Wa, + Hag,) 0 0
0 Ip 2wy | 0 | = EoWF
0 0 T

with

17 noJ
B == [L2(R)]
2 ][L2 (R)]™ —J

2 _I[Lz( R)|™ ][L2(R)]n] [[[[)( e — P_f_l((l)l - +P,y - J)fp_;_ 0
=
Flo, - F 0 Fld, . F
W = —~ P
Fl,-F 1 Fd, - F
1 Fle, F|
= (F'W.FP, +P.)
_0 :/1:71(1)1 F
1 77 (PyFW - FPy + P)(I P_Fw. FP,)
= B . + F_ 2py2n + F_F . ,
0 F1g, . 7| + + [L2(R)] +

where in the last definition of operator W; we are using Py defined in [L*(R)]*"
and ¥ is the same as defined in (2.3). Note that the paired operator

Lpp@pn + P-F 10 - FP o [LP(R) — [L2(R)]"
used above is an invertible operator with inverse given by

T2y — P-F 10 - FPL: [LA(R)P — [LA(R)]™
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Therefore, we have just explicitly demonstrated that Wg, + Hg, is A-related
after extension to the Wiener—Hopf operator

Wo = ry P00 F 2 [ R)P — (2R,
and this concludes the proof. ]

Corollary 2.2. Let &1, Dy € G[L>®(R)]"*™. If the Wiener—Hopf operator Wy :
[L2(R)]*™ — [L*(R4)]*™ is Fredholm or (left/right/both-sided) invertible, then
the Wiener—Hopf plus Hankel operator We, + Hg, : [L7(R)]" — [L*(R4)]™ has
the same corresponding property.

Proof. Due to the A-relation after extension between the two operators pre-
sented in Theorem 2.1, we derive that:

(i) im {W(bl - Ha, 0} is closed if and only if im Wy is closed;

0 T
) (2] (L2 Vi Mo 5 D g v
(iii) ker {qul 3H¢2 79] ~ ker Wy .

Then, these properties (i)—(iii) are enough to conclude the desired statement,
taking into consideration the definitions of Fredholm property and (lateral/-
both-sided) invertibility. O

3. An invertibility characterization based on a mean
motion and a numerical range

We recall that the numerical range of a complex matrix © € C™*™ is defined
by

H(©) ={(©n,n) :n e C™ [In| =1}.
If & € [APW]™ ™ then (due to the definition of APW) we also have that
H(P(z)) is well-defined for all z € R. In this way, the numerical range of ® is said

to be bounded away from zero if inf,cg dist (H (®(z)), 0) > 0 or, equivalently,
if there is an € > 0 such that

|(®(z)n,n)| > €lln]|> forallz € R and allp € C™.

Consider ® € [APW]™™ and n € C™\{0}. If the numerical range of ® is
bounded away from zero, then the function (®n,n) given by

(@n,n)(x) = (®(x)n,n), z€R
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is invertible in APW. Thus, the mean motion of (7, 7), denoted by x((®n,7)),
is well-defined for all n € C™\{0}. Moreover, due to a theorem by Babadzhan-
yan and Rabinovich (see Theorem 9.9 in [3], and cf. also [1], [2]), we have that
k((®n,n)) is independent of n € C™\{0}.

Theorem 3.1. Let us consider ®1, Py € GIAPW|™ " such that the numerical
range of ¥ (defined in (2.3)) is bounded away from zero. We have the following
characterization of the invertibility properties of the operator We, + Hg,:

(a) If k((¥n,n)) =0, then We, + Hg, is invertible.
(b) If k(¥ n,n)) >0, then Wa, + He, is left invertible.
(c) If K,((\If 77,77)) < 0, then We, + Hg, is right invertible.

Proof. The assertion is now a consequence of the A-relation after extension
presented in the last section, and of the corresponding result for Wiener—Hopf
operators (cf. Corollary 9.10 in [3]). Indeed, first, the hypotheses in (a), (b), and
(c) give us (from [3, Corollary 9.10]) the invertibility, left invertibility, and right
invertibility of Wy, respectively. Then, by using Corollary 2.2, these three cases
lead us to the final conclusion about the Wiener—Hopf plus Hankel operator. [

It is clear that the condition on the numerical range of ¥ — to be bounded
away from zero — is fundamental in the last result. In view of this, it is also
clear that not all Fourier symbol matrix functions ®; and ®5 in G[APW|"*"
yield such a property for the corresponding ¥ matrix function. For instance,

9 eia: eia:
D1 (2) = P2(z) = [ e zm] , z€R (3.1)

e € e €

is invertible in [APW]**2 but produces a matrix function ¥ which does not have
a numerical range bounded away from zero. In fact, for ®; and ®, in (3.1), if we
take any n = (n1,72,0,0)" € C* such that ||n|| = 1 then a direct computation
yields ([¥(z)]n,n) = 0 for all x € R. Note that in such computation the identity
®, = &, plays an important role. Anyway, we would like to point out that such
a particular case of equal Fourier symbols ®; = ®, is also possible to consider
by using matrices bounded away from zero, and even in a simpler way than in
the present more complex case (cf. [20, Chapter 6]).

4. Example

To illustrate the previous theorem, we will present in this last section a concrete
case of an invertible Wiener-Hopf plus Hankel operator Wy, + H,, with different
APW Fourier symbols ¢; and ¢s:

¢1(z) = 2e*

and ¢o(z) =T, zeR.
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Note that ¢; and ¢, are invertible and ¢!, ¢;2 € APW. This yields that ¢,
0o € GAPW . In this case, for the element W from the last section, we have the
particular form
626—1:0 —%e e _ ol
U(x) = , » . , x€eR
le_ezx L
2

N

Let us now analyze that the numerical range of ¥ is bounded away from
zero. Considering n = (n1,1m2)" € C?, such that ||n|| = 1, it follows that

3 Qe—ix 1 e—ix _ eix
5Me — 3M2e

W@nm = |7 o N g {Zj
sme” ¢ €+ gme ¢

for all x € R. Therefore,
H(¥(z)) =

3 —iz ] _o T . _9ising (41)
{§I771|2626 + 5lmle 2671 Sm (i) ie mz[ZjGC?JI??II:l}

for x € R. Then, we have that

S

3 —iw 1 _9eir|? .
dist (H(¥(x)), 0) = H§|771|2€2€ + §|772|2€ 2¢ —l—‘%m(m%)e‘msmﬂz}

with n = (n1,12)" € C? such that ||n|| = 1.

Let ||| = 1. It being clear that Sm(m7p)e > = 0 if and only if
Sm(mmz) = 0, we will now verify that ‘%\771|26267”+ %|T}2]26_26” £ 0 for
all x € R. We have

3 —ix 1 _9pix 3 - 1 .
§|,'71|26 2e + §|,'72|2€ 2e — ‘§|n1|26—21sma:+2cos;v + §|772|2€—2zsm:c—2cos:c
. 3 1
_ —2isinz| [ £ 2 2cosx - 2 _—2cosx
- ‘6 ‘ 2|771| € + 2|772| €
3 2 .2 1 2 _—2
S cos T - cosT| - ().
SimPeee S
Altogether, this leads to
inf dist (H(¥(z)), 0) >0, (4.2)

zeR

i.e., the numerical range of ¥ is bounded away from zero.
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Now, to compute the corresponding mean motion, we start by considering
n = (1,0)". From (4.1), it follows that (¥(z)n,n) = 3¢* ", 2 € R. Due to
the fact that e2¢ ™ ¢ GAPW , from the analogue of Bohr’s Theorem for AP
functions (cf. (1.3)), we have that

k((Wn,m)) =0 (4.3)

for n = (1,0)". From (4.2) and (4.3), and according to the Babadzhanyan and
Rabinovich Theorem (mentioned above), it follows that k((¥n,n)) = 0 for all
n € C*\{0}. Therefore, applying Theorem 3.1, we conclude that Wy, + Hy, is
an invertible operator.
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