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Invertibility of Matrix Wiener-Hopf plus

Hankel Operators with Symbols

Producing a Positive Numerical Range

L. P. Castro and A. S. Silva

Abstract. We characterize left, right and both-sided invertibility of matrix Wiener–
Hopf plus Hankel operators with possibly different Fourier symbols in the Wiener
subclass of the almost periodic algebra. This is done when a certain almost periodic
matrix-valued function (constructed from the initial Fourier symbols of the Hankel
and Wiener–Hopf operators) admits a numerical range bounded away from zero. The
invertibility characterization is based on the value of a certain mean motion. At the
end, an example of a concrete Wiener–Hopf plus Hankel operator is studied in view
of the illustration of the proposed theory.

Keywords. Wiener–Hopf operator, Hankel operator, almost periodic function, in-
vertibility

Mathematics Subject Classification (2000). Primary 47B35, secondary 47A05,
47A12, 47A20, 42A75

1. Introduction

Motivated by the needs of different kinds of applications, there is a growing in-
terest in the study of invertibility properties of the so-called Wiener–Hopf plus
Hankel operators (cf., e.g., [4,7–10,12,17,19,21,22,24,25]). In fact, these oper-
ators occur in a natural manner in many applications. E.g., in the analysis of
problems of wave diffraction by wedges (cf. [8,9,25]) this is particularly evident
due to the use of some symmetrization techniques which generate sums of Han-
kel and Wiener–Hopf operators. Therefore, an eventual additional knowledge
about the invertibility characteristics of these operators is welcome for both
theoretical and practical reasons.
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In the present paper, we will consider matrix Wiener–Hopf plus Hankel
operators of the form

WΦ1
+HΦ2

: [L2
+(R)]n → [L2(R+)]n , (1.1)

with WΦ1
and HΦ2

being matrix Wiener–Hopf and Hankel operators defined by

WΦ1
= r+F

−1Φ1 · F and HΦ2
= r+F

−1Φ2 · FJ ,

respectively. We use [L2
+(R)]n to denote the subspace of [L2(R)]n formed by

all the vector functions supported on the closure of R+ = (0,+∞), r+ repre-
sents the operator of restriction from [L2(R)]n onto [L2(R+)]n, F denotes the
Fourier transformation, J is the reflection operator given by the rule Jϕ(x) =
ϕ̃(x) = ϕ(−x), x ∈ R, and Φ1 and Φ2 are n × n matrix functions with ele-
ments belonging to the so-called APW algebra. For defining this algebra, let
us first consider the algebra of almost periodic functions, usually denoted by
AP , i.e., the smallest closed subalgebra of L∞(R) that contains all the functions
eλ (λ ∈ R), where

eλ(x) = eiλx, x ∈ R.

APW is the subclass of all functions ϕ ∈ AP which can be written in the form
of an absolutely convergent series, i.e.,

APW :=
{
ϕ =

∑

j

ϕjeλj
: ϕj ∈ C, λj ∈ R,

∑

j

|ϕj| <∞
}
. (1.2)

APW becomes a Banach algebra with respect to pointwise addition and mul-
tiplication when endowed with the norm ‖ϕ‖APW :=

∑
j |ϕj| (with ϕj in the

sense of (1.2)).

We will use the notation GB for the group of all invertible elements of
a Banach algebra B. Applying a similar result of Bohr’s Theorem for AP

functions, it holds that for each φ ∈ GAPW there exists a real number κ(φ)
and a function ψ ∈ APW such that

φ(x) = eiκ(φ)xeψ(x) , (1.3)

for all x ∈ R (cf. Theorem 8.11 in [3]). The number κ(φ) is uniquely determined,
and is called the mean motion of φ.

We would like to clarify that in opposition to the Wiener–Hopf plus Hankel
case, the properties of Wiener–Hopf operators with almost periodic symbols are
already well developed (cf., e.g., [3, 11]). In addition, here we are considering
the possibility of Φ1 6= Φ2 (see (1.1)) in contrast to some previous works that
study regularity properties of Wiener–Hopf plus Hankel operators only in the
case of Φ1 = Φ2; cf. [4, 5, 20–22].
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2. Operator relations for Wiener-Hopf plus Hankel
operators with essentially bounded Fourier symbols

The main purpose of this section is to present an explicit operator relation
between the above defined Wiener–Hopf plus Hankel operator WΦ1

+HΦ2
and

a new Wiener–Hopf operator. This will be done in the form of a so-called delta
relation after extension [6].

For such a purpose, let us first recall some different types of relations
between bounded linear operators. Consider two bounded linear operators
T : X1 → X2 and S : Y1 → Y2, acting between Banach spaces. The operators
T and S are said to be equivalent, and we will denote this by T ∼ S, if there
are two boundedly invertible linear operators, E : Y2 → X2 and F : X1 → Y1,
such that

T = E S F. (2.1)

It directly follows from (2.1) that if two operators are equivalent, then they be-
long to the same invertibility class [6,23]. More precisely, one of these operators
is invertible, left invertible, right invertible or only generalized invertible, if and
only if the other operator enjoys the same property.

The so-called ∆–relation after extension was introduced in [6] for bounded
linear operators acting between Banach spaces, e.g. T : X1 → X2 and S :
Y1 → Y2. We say that T is ∆–related after extension to S if there is a bounded
linear operator acting between Banach spaces T∆ : X1∆ → X2∆ and invertible
bounded linear operators E and F such that

[
T 0
0 T∆

]
= E

[
S 0
0 IZ

]
F, (2.2)

where Z is an additional Banach space and IZ represents the identity operator
in Z. In the particular case when T∆ : X1∆ → X2∆ = X1∆ is the identity
operator, we say that the operators T and S are equivalent after extension. It
follows from (2.2) that if we have T being ∆–related after extension to S, then
the transfer of invertibility properties can only be guaranteed in one direction,
that is, from operator S to operator T .

We are now in conditions to present the above announced result which is
based on the famous Gohberg–Krupnik–Litvinchuk identity (see [13–16,18], for
instance).

Theorem 2.1. Let Φ1,Φ2 ∈ G[L∞(R)]n×n. Then the matrix Wiener–Hopf plus
Hankel operator WΦ1

+HΦ2
: [L2

+(R)]n → [L2(R+)]n is ∆–related after extension
to the Wiener–Hopf operator WΨ : [L2

+(R)]2n → [L2(R+)]2n with Fourier symbol

Ψ =


Φ1 − Φ2Φ̃

−1
1 Φ̃2 −Φ2Φ̃

−1
1

Φ̃−1
1 Φ̃2 Φ̃−1

1


 . (2.3)
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Proof. Let us start by extending WΦ1
+ HΦ2

on the left by the zero extension
operator ℓ0 : [L2(R+)]n → [L2

+(R)]n, which leads to

WΦ1
+HΦ2

∼ ℓ0(WΦ1
+HΦ2

) : [L2
+(R)]n → [L2

+(R)]n.

Using the notation P+ = ℓ0r+ and P− = I[L2(R)]n − P+, we will now extend

ℓ0(WΦ1
+HΦ2

) = P+F
−1(Φ1 · +Φ2 · J)F|P+[L2(R)]n

to the full [L2(R)]n space by using the identity in [L2
−(R)]n. Next we will extend

the obtained operator to [L2(R)]2n with the help of the auxiliary paired operator

T = F−1(Φ1 · −Φ2 · J)FP+ + P− : [L2(R)]n → [L2(R)]n .

Altogether, we have


ℓ0(WΦ1

+HΦ2
) 0 0

0 IP
−

[L2(R)]n 0

0 0 T


 = E1W1F1

with

E1 =
1

2

[
I[L2(R)]n J

I[L2(R)]n −J

]

F1 =

[
I[L2(R)]n I[L2(R)]n

J −J

][
I[L2(R)]n − P−F

−1(Φ1 · +Φ2 · J)FP+ 0

0 I[L2(R)]n

]

W1 =

[
F−1Φ1 · F 0

F−1Φ̃2 · F 1

]
P+ +

[
1 F−1Φ2 · F

0 F−1Φ̃1 · F

]
P−

=

[
1 F−1Φ2 · F

0 F−1Φ̃1 · F

]
(F−1Ψ · FP+ + P−)

=

[
1 F−1Φ2 · F

0 F−1Φ̃1 · F

]
(P+F

−1Ψ · FP+ + P−)(I[L2(R)]2n + P−F
−1Ψ · FP+),

where in the last definition of operator W1 we are using P± defined in [L2(R)]2n

and Ψ is the same as defined in (2.3). Note that the paired operator

I[L2(R)]2n + P−F
−1Ψ · FP+ : [L2(R)]2n → [L2(R)]2n

used above is an invertible operator with inverse given by

I[L2(R)]2n − P−F
−1Ψ · FP+ : [L2(R)]2n → [L2(R)]2n.
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Therefore, we have just explicitly demonstrated that WΦ1
+HΦ2

is ∆–related
after extension to the Wiener–Hopf operator

WΨ = r+F
−1Ψ · F : [L2

+(R)]2n → [L2(R+)]2n ,

and this concludes the proof.

Corollary 2.2. Let Φ1,Φ2 ∈ G[L∞(R)]n×n. If the Wiener–Hopf operator WΨ :
[L2

+(R)]2n → [L2(R+)]2n is Fredholm or (left/right/both-sided) invertible, then
the Wiener–Hopf plus Hankel operator WΦ1

+HΦ2
: [L2

+(R)]n → [L2(R+)]n has
the same corresponding property.

Proof. Due to the ∆-relation after extension between the two operators pre-
sented in Theorem 2.1, we derive that:

(i) im

[
WΦ1

+HΦ2
0

0 T

]
is closed if and only if im WΨ is closed;

(ii)
(
[L2(R+)]n × [L2(R)]n

)
\ im

[
WΦ1

+HΦ2
0

0 T

]
≃ [L2(R+)]2n \ imWΨ ;

(iii) ker

[
WΦ1

+HΦ2
0

0 T

]
≃ kerWΨ .

Then, these properties (i)–(iii) are enough to conclude the desired statement,
taking into consideration the definitions of Fredholm property and (lateral/-
both-sided) invertibility.

3. An invertibility characterization based on a mean
motion and a numerical range

We recall that the numerical range of a complex matrix Θ ∈ C
m×m is defined

by

H(Θ) = {(Θη, η) : η ∈ C
m, ‖η‖ = 1}.

If Φ ∈ [APW ]m×m, then (due to the definition of APW ) we also have that
H(Φ(x)) is well-defined for all x ∈ R. In this way, the numerical range of Φ is said
to be bounded away from zero if infx∈R dist (H (Φ(x)) , 0) > 0 or, equivalently,
if there is an ε > 0 such that

∣∣(Φ(x)η, η
)∣∣ ≥ ε‖η‖2 for all x ∈ R and all η ∈ C

m.

Consider Φ ∈ [APW ]m×m and η ∈ C
m\{0}. If the numerical range of Φ is

bounded away from zero, then the function (Φη, η) given by

(Φη, η)(x) = (Φ(x)η, η) , x ∈ R
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is invertible in APW. Thus, the mean motion of (Φη, η), denoted by κ
(
(Φη, η)

)
,

is well-defined for all η ∈ C
m\{0}. Moreover, due to a theorem by Babadzhan-

yan and Rabinovich (see Theorem 9.9 in [3], and cf. also [1], [2]), we have that
κ
(
(Φη, η)

)
is independent of η ∈ C

m\{0}.

Theorem 3.1. Let us consider Φ1,Φ2 ∈ G[APW ]n×n such that the numerical
range of Ψ (defined in (2.3)) is bounded away from zero. We have the following
characterization of the invertibility properties of the operator WΦ1

+HΦ2
:

(a) If κ
(
(Ψ η, η)

)
= 0, then WΦ1

+HΦ2
is invertible.

(b) If κ
(
(Ψ η, η)

)
> 0, then WΦ1

+HΦ2
is left invertible.

(c) If κ
(
(Ψ η, η)

)
< 0, then WΦ1

+HΦ2
is right invertible.

Proof. The assertion is now a consequence of the ∆–relation after extension
presented in the last section, and of the corresponding result for Wiener–Hopf
operators (cf. Corollary 9.10 in [3]). Indeed, first, the hypotheses in (a), (b), and
(c) give us (from [3, Corollary 9.10]) the invertibility, left invertibility, and right
invertibility of WΨ, respectively. Then, by using Corollary 2.2, these three cases
lead us to the final conclusion about the Wiener–Hopf plus Hankel operator.

It is clear that the condition on the numerical range of Ψ – to be bounded
away from zero – is fundamental in the last result. In view of this, it is also
clear that not all Fourier symbol matrix functions Φ1 and Φ2 in G[APW ]n×n

yield such a property for the corresponding Ψ matrix function. For instance,

Φ1(x) = Φ2(x) =

[
2e e

ix

e e
ix

e−e
ix

e−e
ix

]
, x ∈ R (3.1)

is invertible in [APW ]2×2 but produces a matrix function Ψ which does not have
a numerical range bounded away from zero. In fact, for Φ1 and Φ2 in (3.1), if we
take any η = (η1, η2, 0, 0)⊤ ∈ C

4 such that ‖η‖ = 1 then a direct computation
yields ([Ψ(x)]η, η) = 0 for all x ∈ R. Note that in such computation the identity
Φ1 = Φ2 plays an important role. Anyway, we would like to point out that such
a particular case of equal Fourier symbols Φ1 = Φ2 is also possible to consider
by using matrices bounded away from zero, and even in a simpler way than in
the present more complex case (cf. [20, Chapter 6]).

4. Example

To illustrate the previous theorem, we will present in this last section a concrete
case of an invertible Wiener–Hopf plus Hankel operator Wφ1

+Hφ2
with different

APW Fourier symbols φ1 and φ2:

φ1(x) = 2e2e
−ix

and φ2(x) = ee
ix+e−ix

, x ∈ R.
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Note that φ1 and φ2 are invertible and φ−1
1 , φ−2

2 ∈ APW . This yields that φ1,
φ2 ∈ GAPW . In this case, for the element Ψ from the last section, we have the
particular form

Ψ(x) =




3
2
e 2e−ix −1

2
e e

−ix − eix

1
2
e−e

ix + e−ix 1
2
e−2eix


 , x ∈ R.

Let us now analyze that the numerical range of Ψ is bounded away from
zero. Considering η = (η1, η2)

⊤ ∈ C
2, such that ‖η‖ = 1, it follows that

(Ψ(x)η, η) =







3
2
η1e

2e−ix − 1
2
η2e

e−ix − eix

1
2
η1e

−eix + e−ix + 1
2
η2e

−2eix


 ,

[
η1

η2

]


=
3

2
|η1|

2e 2e−ix +
1

2
|η2|

2e−2eix + ℑm(η1η2)ie
−2i sinx,

for all x ∈ R. Therefore,

H
(
Ψ(x)

)
=

{
3

2
|η1|

2e 2e−ix+
1

2
|η2|

2e−2eix+ ℑm(η1η2) i e
−2i sinx, η=

[
η1

η2

]
∈C

2, ‖η‖=1

}
(4.1)

for x ∈ R. Then, we have that

dist
(
H

(
Ψ(x)

)
, 0

)
=

[ ∣∣∣∣
3

2
|η1|

2e 2e−ix +
1

2
|η2|

2e−2eix
∣∣∣∣
2

+
∣∣ℑm(η1η2)e

−2i sinx
∣∣2

] 1

2

with η = (η1, η2)
⊤ ∈ C

2 such that ‖η‖ = 1.

Let ‖η‖ = 1. It being clear that ℑm(η1η2)e
−2i sinx = 0 if and only if

ℑm(η1η2) = 0, we will now verify that
∣∣3
2
|η1|

2e 2e−ix

+ 1
2
|η2|

2e−2eix
∣∣ 6= 0 for

all x ∈ R. We have
∣∣∣∣
3

2
|η1|

2e 2e−ix +
1

2
|η2|

2e−2eix
∣∣∣∣ =

∣∣∣∣
3

2
|η1|

2e−2i sinx+2 cos x +
1

2
|η2|

2e−2i sinx−2 cosx

∣∣∣∣

=
∣∣e−2i sinx

∣∣
∣∣∣∣
3

2
|η1|

2e2 cosx +
1

2
|η2|

2e−2 cosx

∣∣∣∣

=

∣∣∣∣
3

2
|η1|

2e2 cosx +
1

2
|η2|

2e−2 cosx

∣∣∣∣ > 0 .

Altogether, this leads to

inf
x∈R

dist
(
H

(
Ψ(x)

)
, 0

)
> 0, (4.2)

i.e., the numerical range of Ψ is bounded away from zero.
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Now, to compute the corresponding mean motion, we start by considering
η = (1, 0)⊤. From (4.1), it follows that (Ψ(x)η, η) = 3

2
e2e

−ix

, x ∈ R. Due to

the fact that e2e
−ix

∈ GAPW , from the analogue of Bohr’s Theorem for AP
functions (cf. (1.3)), we have that

k
(
(Ψη, η)

)
= 0 (4.3)

for η = (1, 0)⊤. From (4.2) and (4.3), and according to the Babadzhanyan and
Rabinovich Theorem (mentioned above), it follows that k

((
Ψη, η

))
= 0 for all

η ∈ C
2\{0}. Therefore, applying Theorem 3.1, we conclude that Wφ1

+Hφ2
is

an invertible operator.
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