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W 2,p and W 1,p-Estimates at the Boundary

for Solutions of Fully Nonlinear,

Uniformly Elliptic Equations
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Abstract. In this paper we extend Caffarelli’s result on interior W 2,p-estimates for
viscosity solutions of uniformly elliptic equations and prove W 2,p-estimates at a flat
boundary. Moreover we extend a result of A. Świech and prove W 1,p-estimates at
the boundary. Thereafter we combine these results and prove global W 2,p-estimates
for equations with dependence on Du and u. Finally, we show that the previous
estimates lead to an existence result for W 2,p-strong solutions.
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Introduction

We consider viscosity solutions u ∈ C0(Ω) of the Dirichlet problem

{

F (D2u,Du, u, x) = f in Ω
u = ϕ on ∂Ω

(1)

on a bounded domain Ω ⊂ R
n. Let F : S(n) × R

n × R × Ω → R where S(n)
is the set of symmetric n × n matrices, equipped with its usual order: For
M,N ∈ S(n) we write M ≤ N if and only if the matrix N −M is positive
semi-definite. Throughout this paper we deal with uniformly elliptic equations,
i.e., there exist constants 0 < λ < Λ <∞ such that

λ‖N‖ ≤ F (M +N, p, r, x) − F (M, p, r, x) ≤ Λ‖N‖

holds for M,N ∈ S(n), N ≥ 0, p ∈ R
n, r ∈ R and x ∈ Ω, where the matrix-

norm ‖ · ‖ is defined by ‖M‖ := sup|x|=1 |Mx|.
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many; winter@instmath.rwth-aachen.de
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L. Caffarelli proved in [1] that viscosity solutions of

F (D2u, x) = f(x) in B1 = B1(0) (2)

satisfy u ∈W 2,p(B1/2) and the interior estimate

‖u‖W 2,p(B1/2) ≤ C
(

‖u‖L∞(B1) + ‖f‖Lp(B1)

)

.

This result was proved under the following assumptions: F is continuous, f ∈
Lp(B1)∩C0(B1) for n < p <∞, F is uniformly elliptic and satisfies additional
assumptions on the oscillation in x and on the existence of C1,1-estimates for
solutions of the equation without dependence on x; see [1, Theorem 1] for the
precise statement.

In the present paper we are going to show that a similar result holds at a
flat boundary. More precisely, denoting Ω+ := Ω ∩ {xn > 0}, we prove that
viscosity solutions of

{

F (D2u, x) = f in B+
1

u = 0 on B1 ∩ {xn = 0} (3)

satisfy u ∈W 2,p(B1/2) and that the corresponding estimate holds; see Theo-

rem 2.2. The method of proof is similar to that of Caffarelli: First we show
how to obtain estimates for paraboloids (i.e., polynomials of degree 2) at the
boundary. Then we iterate these estimates to prove the theorem. Note that a
result of this type has already been stated by L. Wang in the parabolic case,
see [13, Theorem 5.8], but without a proof. It is possible to extend Theorem 2.2
with L. Escauriaza’s method [5] to the range p > n− ǫ0 where ǫ0 depends only
on Λ

λ
and n.

Thereafter we consider equations with measurable ingredients, allowing p >
n−ǫ0 and prove W 1,p-estimates at the boundary for uniformly elliptic equations
with dependence on Du and u, see Theorem 3.1. This result is a generalisation
of a theorem due to A. Świech, see [11] and also [1] and [2].

In the last section we extend the boundary estimates of Section 2 to equa-
tions without the continuity assumption on f and F in x. First we consider (2)
and (3) with F (D2u, x) replaced by F (D2u,Du, u, x) and prove W 2,p-estimates
similar to those above, see Theorems 4.2 and 4.3. Combining these estimates
we obtain global W 2,p-estimates for viscosity solutions of Dirchlet problem (1).
Finally we use the previous results to derive an existence result for W 2,p-strong
solutions of Dirichlet problem (1).

Recall that a strong solution of

F (D2u,Du, u, x) = f in Ω (4)
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is a function u ∈ W
2,p
loc (Ω) such that the equation is satisfied almost everywhere

in Ω after inserting the weak derivatives. The definition of subsolutions and
supersolutions is similar.

For the reader’s convenience we have collected preparatory material in the
first section: We recall the notion of viscosity solutions and some basic prop-
erties. We will introduce Pucci’s extremal operators to characterise viscosity
solutions of an important class of fully nonlinear equations. Moreover we re-
call the Alexandroff maximum principle, the Harnack inequality and prove the
weak Harnack inequality at the boundary. From these results one deduces global
Hölder regularity in the standard way.

Acknowledgement. I would like to thank Professor Reiner Schätzle for in-
troducing me to this problem, for many helpful discussions and valuable sug-
gestions. Moreover, I would like to express my gratitude to the referee for his
careful reading of the present paper and his sophisticated remarks. Especially,
Remark 2.3 is due to the referee.

1. Preliminaries

1.1. Definitions and basic properties. For the reader’s convenience we re-
call the definition of viscosity solutions of fully nonlinear equations and provide
a brief collection of basic results related to the notion of viscosity solution.

Definition 1.1. Let f, F be continuous in all variables. A upper (lower) semi-
continuous function u is a C2-viscosity subsolution (supersolution) of (4), if, for
all ϕ ∈ C2(Br(x0)) whenever Br(x0) ⊂ Ω, ǫ > 0 and

F (D2ϕ(x0), Dϕ(x0), u(x0), x0) ≤ f(x0) − ǫ

(F (D2ϕ(x0), Dϕ(x0), u(x0), x0) ≥ f(x0) + ǫ),

u−ϕ can not attain a local maximum (minimum) at x0. u is called a C2-viscosity

solution of (4), if u is both a subsolution and a supersolution.

Without the continuity assumption on f we consider

Definition 1.2. Let F be continuous in M, p, r, measurable in x and we assume
f ∈ L

p
loc(Ω) for p > n

2
. A continuous function u is a W 2,p-viscosity subsolution

(supersolution) of (4), if, for all ϕ ∈ W 2,p(Br(x0)) where Br(x0) ⊂ Ω, ǫ > 0 and

F (D2ϕ(x), Dϕ(x), u(x), x) ≤ f(x) − ǫ

(F (D2ϕ(x), Dϕ(x), u(x), x) ≥ f(x) + ǫ)

almost everywhere in Br(x0), then u−ϕ can not attain a local maximum (min-
imum) at x0. u is called a W 2,p-viscosity solution, if u is both a subsolution and
a supersolution.
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We say that F (D2u,Du, u, x) ≥ (≤,=)f in Ω in the C2 or W 2,p-viscosity
sense whenever u is a C2 orW 2,p-viscosity subsolution (-supersolution,-solution).
We refer to [2, Chapter 2] for basic properties of C2-viscosity solutions.

In order to define the set of viscosity solutions of a certain class of uniformly
elliptic equations we introduce Pucci’s operators: Let 0 < λ ≤ Λ be given
constants. For M ∈ S(n) we define:

M+(λ,Λ,M) := Λ
∑

ei>0

ei + λ
∑

ei<0

ei, M−(λ,Λ,M) := λ
∑

ei>0

ei + Λ
∑

ei<0

ei ,

where ei are the eigenvalues of M . We will write M±(M) = M±(λ,Λ,M) when
the choice of λ,Λ is clear. Again we refer to [2] for the properties of Pucci’s
operators. Consider

L±(λ,Λ, b, u) := M±(λ,Λ, D2u) ± b|Du|
to define the class S:

Definition 1.3. Let b ≥ 0, 0 < λ ≤ Λ be given constants. We define the
classes S(λ,Λ, b, f) and S(λ,Λ, b, f) to be the set of all continuous functions u
that satisfy L+u ≥ f , respectively L−u ≤ f in the C2 or W 2,p-viscosity sense
in Ω. We define

S(λ,Λ, b, f) := S(λ,Λ, b, f) ∩ S(λ,Λ, b, f)

S∗(λ,Λ, b, f) := S(λ,Λ, b, |f |) ∩ S(λ,Λ, b,−|f |).
The notation of the class S is independent of the type of viscosity solution.

To make the notation clear we emphasise that in the continuous case we always
deal with C2-viscosity solutions. In this case C2-viscosity solutions are W 2,p-
viscosity solutions, see [3] for further details.

Continuous functions u ∈ S, S and S are called supersolutions, subsolutions
and solutions, respectively. We write S, S, S(λ,Λ, b, f) = S, S, S(b, f) when the
choice of the ellipticity constants is understood. The following Proposition is a
direct consequence of the previous definitions.

Proposition 1.4. Let F (M, p, r, x) be uniformly elliptic with ellipticity con-

stants λ,Λ and let u be a C2 or W 2,p-viscosity subsolution (supersolution) of (4).
We assume that F satisfies the following structure conditions:

F (M, p, r, x) − F (N, q, s, x) ≤ M+(M −N) + b|p− q|
(

F (M, p, r, x) − F (N, q, s, x) ≥ M−(M −N) − b|p− q|
)

,

where b ≥ 0 is a constant. Then

M+(D2u) + b|Du| + F (0, 0, u, x) ≥ f
(

M−(D2u) − b|Du| + F (0, 0, u, x) ≤ f
)

in the C2 or W 2,p-viscosity sense.
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We introduce another structure condition that will be frequently used in
this paper:

M−(λ,Λ,M −N) − b|p− q| − c|r − s|
≤ F (M, p, r, x) − F (N, q, s, x)

≤ M+(λ,Λ,M −N) + b|p− q| + c|r − s|
(5)

for all M,N ∈ S(n), p, q ∈ R
n, r, s ∈ R, x ∈ Ω, and constants b, c ∈ R+.

Clearly, for p = q, r = s, condition (5) implies that F is uniformly elliptic. Note
that whenever F is assumed to be merely measurable in x we understand (5)
to hold for a.e. x ∈ Ω only.

We state a stability result for W 2,p-viscosity solutions. Except for some
straightforward modifications the proof of the following lemma is the same as
the proof of [3, Theorem 3.8].

Proposition 1.5. For k ∈ N let Ωk ⊂ Ωk+1 be an increasing sequence of

domains and Ω :=
⋃

k≥1 Ωk. Let p > n − ǫ0
(

Λ
λ
, n, b, diam(Ω)

)

and F, Fk be

measurable in x and satisfy structure condition (5). Assume f ∈ Lp(Ω), fk ∈
Lp(Ωk) and that uk ∈ C0(Ωk) are W 2,p-viscosity subsolutions (supersolutions)
of Fk(D

2uk, Duk, uk, x) = fk in Ωk. Suppose that uk → u locally uniformly in Ω
and that for Br(x0) ⊂ Ω and ϕ ∈ W 2,p(Br(x0)) we have

‖(g − gk)
+‖Lp(Br(x0)) → 0

(

‖(g − gk)
−‖Lp(Br(x0)) → 0

)

, (6)

where g(x) := F (D2ϕ,Dϕ, u, x)−f(x) and gk(x) := Fk(D
2ϕ,Dϕ, uk, x)−fk(x).

Then u is an W 2,p-viscosity subsolution (supersolution) of F (D2u,Du, u, x) = f

in Ω. Moreover, if F, f are continuous, then u is an C2-viscosity subsolution

(supersolution) provided that (6) holds for ϕ ∈ C2(Br(x0)).

We proceed with a first existence result for C2-viscosity solutions. A more
general version will be proven at the end of this section.

Proposition 1.6. Let Ω ⊂⊂ R
n be open and ∂Ω satisfy a uniform exterior

sphere condition, i.e., there exists a radius r0 > 0, such that for every x0 ∈ ∂Ω
there exists a ball Br0(z0) such that Ω∩Br0(z0) = {x0}. Suppose that f ∈ C0(Ω)
is bounded, ϕ ∈ C0(∂Ω) and that F = F (M, p, r, x) is Lipschitz continuous in x,

and satisfies F (0, 0, 0, x) = 0, (5), and

d(r − s) ≤ F (M, p, s, x) − F (M, p, r, x) (7)

for all x ∈ Ω, p,∈ R
n, r, s ∈ R, r ≥ s, M ∈ S(n), and a constant d ∈ R+.

Then there exists a C2-viscosity solution u of Dirichlet problem (1).
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Proof. In order to apply Perron’s method we need a comparison result and the
existence of subsolutions and supersolutions of (1). We show how to construct
supersolutions first. Consider functions

vx0,ǫ(x) := ϕ(x0) + ǫ+ Cǫw(|x− z0|)

for any x0 ∈ ∂Ω, ǫ > 0 and w(r) := τ
(

r−σ
0 − r−σ

)

, where σ, τ are positive
constants and r0 is the radius of the exterior sphere condition. A straightforward
computation yields F (D2vx0,ǫ, Dvx0,ǫ, vx0,ǫ, x) ≤ −τθ < 0 in Ω for a constant

θ > 0, provided that σ is chosen large enough. Set τ = supΩ
f−

θ
to obtain

F (D2vx0,ǫ, Dvx0,ǫ, vx0,ǫ, x) ≤ f . We extend ϕ such that ϕ ∈ C0(Ω), choose the
constant Cǫ such that ϕ(x0) + ǫ+ Cǫw(|x− z0|) ≥ ϕ(x) for x ∈ Ω and set

v(x) :=
(

inf
x0∈∂Ω, ǫ>0

vx0,ǫ(x)
)

∗

for x ∈ Ω, i.e., v is the lower semicontinuous envelope of the function in brack-
ets. From [4, Lemma 4.2] we infer that v is a supersolution. Moreover we
get v(x) − ϕ(x0) ≤ ǫ + Cǫw(|x − z0|), where x0 ∈ ∂Ω, x ∈ Ω, ǫ > 0 and
hence v∗(x0) = ϕ(x0) on ∂Ω. The construction of subsolutions is similar. Since
F is Lipschitz continuous in x the hypotheses of the comparison result given
by [4, Theorem 3.3] are satisfied. Therefore Perron’s method [4, Theorem 4.1]
is applicable.

1.2. Maximum principle, Harnack inequality and Hölder regularity.

We state the Alexandroff-Bakelman-Pucci maximum principle for C2-viscosity
solutions; see [3, Appendix A] for a proof of the following Theorem.

Theorem 1.7 (Alexandroff-Bakelman-Pucci). Assume that Ω ⊂⊂ R
n is open

and diam(Ω) ≤ d, u ∈ C0(Ω) and f ∈ Ln(Ω) ∩ C0(Ω). Then there exists a

constant C(n, λ,Λ, b, d) such that for all C2-viscosity subsolutions u ∈ S(b, f)

sup
Ω
u ≤ sup

∂Ω
u+ + C(n, λ,Λ, b, d)‖f‖Ln(Γ+

u ∩{u>0})

and for all C2-viscosity supersolutions u ∈ S(b, f)

sup
Ω
u− ≤ sup

∂Ω
u− + C(n, λ,Λ, b, d)‖f‖Ln(Γ−

u ∩{u<0})

holds. The set Γ+
u = Γ+(u,Ω) is the upper contact set of u, defined as

Γ+(u,Ω) := {x ∈ Ω;∃ p ∈ R
n : u(y) ≤ u(x) + p(y − x) for all y ∈ Ω}

and Γ−
u = Γ−(u,Ω) is the lower contact set of u,

Γ−(u,Ω) := {x ∈ Ω;∃ p ∈ R
n : u(y) ≥ u(x) + p(x− y) for all y ∈ Ω}.
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The Harnack inequality for C2-viscosity solutions in S∗(λ,Λ, 0,f) was proven
by L. Caffarelli in [1], see also [2, Theorems 4.3 and 4.8]. In [7, Chapter 5]
P. Fok proved the Harnack inequality and interior Hölder continuity forW 2,n−ǫ0-
viscosity solutions in S∗(λ,Λ, b, f), see [7, Theorem 5.20, Theorem 5.21].

The weak Harnack inequality, however, is proven only for the case p > n

and W 2,p-viscosity solutions in S(λ,Λ, b, f). Therefore we show how to prove
the weak Harnack inequality for p > n− ǫ0.

Proposition 1.8 (Weak Harnack inequality). Let p > n− ǫ0
(

n, Λ
λ
, b

)

. Suppose

u ∈ S(λ,Λ, b, f) in Bρ = Bρ(0) in the W 2,p-viscosity sense satisfies u ≥ 0 in Bρ

where f ∈ Lp(Bρ). Then

ρ
− n

p0 ‖u‖Lp0 (Bρ/2) ≤ C
(

inf
Bρ/2

u + ρ‖f‖Lp(Bρ)

)

,

where p0 > 0, C depend only on n, λ, Λ, and b.

Proof. We prove the claim for ρ = 1. According to [3, Proposition 3.1], there
exists a strong solution v ∈ W

2,p
loc (B1) of −M+(D2v) − b|Dv| ≥ |f | in B1 such

that v = 0 on ∂Bρ, v ≥ 0 in B1(0), and ‖v‖L∞(B1) ≤ C‖f‖Lp(B1) where C =
C(n, λ,Λ, p, b). Consequently u+ v ∈ S̄(λ,Λ, b, 0) and [7, Corollary 5.9] yields

‖u+ v‖Lp0 (B1/2(0)) ≤ C(n, λ,Λ, b) inf
B1/2(0)

(u+ v).

Combining these estimates we derive the assertion for ρ = 1. A scaling argument
completes the proof.

Proposition 1.9 (Weak Harnack inequality at the boundary). Assume p >

n − ǫ0
(

n, Λ
λ
, b

)

. Let u ∈ S(λ,Λ, b, f) in Ω in the W 2,p-viscosity sense satisfy

u ∈ C0(Ω), and u ≥ 0. Suppose that f ∈ Lp(Ω) and define

m := inf
∂Ω∩Qρ(0)

u and um
− :=

{

min(u,m) in Qρ(0) ∩ Ω

m in Qρ(0) \ Ω .

Then

ρ
− n

p0 ‖um
−‖Lp0 (Qρ/4(0)) ≤ C

(

inf
Qρ/2(0)

um
− + ρ‖f‖Ln(Qρ(0)∩Ω)

)

,

where p0 > 0, C are universal constants.

Proof. The assertion follows from Proposition 1.8, provided that we prove um
− ∈

S(λ,Λ, b, f+) in Qρ(0), where f+ := max(f, 0). First of all we observe that
um
− ∈ C0(Qρ(0)). We extend f by 0 outside Ω and continue to denote the

extension by f . Since f+ ≥ f we get u ∈ S(λ,Λ, b, f+) in Ω. Moreover, f+ ≥ 0
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yields v ∈ S(λ,Λ, b, f+) in Qρ for any constant function v. Consider x0 ∈ Qρ(0)
and ϕ ∈ W 2,p(Br(x0)) such that

M−(D2ϕ(x)) − b|Dϕ(x)| ≥ f+(x) + ǫ

holds for a.e. x ∈ Br(x0). If um
− (x0) = u(x0) < m, we have x0 ∈ Ω and um

− = u

near x0. Consequently, um
− − ϕ cannot attain a local minimum at x0.

If um
− (x0) = m we assume that um

− − ϕ attains a local minimum at x0 and
deduce m−ϕ(x0) = um

− (x0)−ϕ(x0) ≤ um
− −ϕ ≤ m−ϕ. This is a contradiction

as we have already seen that constant functions are supersolutions.

Combining the weak Harnack inequality at the boundary with the interior
Hölder estimate, [7, Theorem 5.21], we obtain global Hölder continuity in the
standard way.

Theorem 1.10. Assume p > n − ǫ0 and that u ∈ S∗(λ,Λ, b, f) in Ω in the

W 2,p-viscosity sense satisfies u = ϕ on an open boundary portion T ⊂ ∂Ω
where f ∈ Lp(Ω), and ϕ ∈ C0,β(T ). Assume that T satisfies a uniform exterior

cone condition, i.e., for all x0 ∈ T there exists a cone Vx0 congruent to some

fixed cone V , such that V x0∩Ω = {x0}. Then u ∈ C0,α(Ω′) for any Ω′ ⊂⊂ Ω∪T
where α = α(n, λ,Λ, b, p, V, β) and

‖u‖C0,α(Ω′) ≤ C
(

‖u‖L∞(Ω) + ‖ϕ‖C0,β(T ) + ‖f‖Lp(Ω)

)

for some constant C = C(n, λ,Λ, b, p, V, d) where d := dist(Ω′, ∂Ω \ T ). If

Ω′ = Ω, d is to be replaced by diam(Ω).

We complete this subsection with a further existence result for C2-viscosity
solutions which is needed in the following sections.

Proposition 1.11. Let Ω ⊂⊂ R
n and ∂Ω satisfy a uniform exterior sphere

condition. Assume that F (M, p, r, x) is continuous on S(n) × R × R × Ω, non-

increasing in r, and satisfies structure condition (5) and F (0, 0, 0, x) ≡ 0. Then

for f ∈ C0(Ω), bounded, and ϕ ∈ C0(∂Ω) there exists at least one C2-viscosity

solution u of Dirichlet problem (1).

Proof. We set Fδ(M, p, r, x) := F (M, p, r, x)− δr for δ > 0 and observe that Fδ

satisfies (7). We have |Fδ(M, p, r, x)| ≤ Λ‖M‖ + b |p| + 2 c |r| if δ is chosen
sufficiently small and consider, for ǫ > 0, the sup-convolutions

F ǫ
δ (M, p, r, x) := sup

y∈Ω

(

Fδ(M, p, r, y) − 1

2ǫ
|x− y|2

)

.

Sub-convolutions were introduced by R. Jensen in [9], see also Chapter 5 in [2].
Similar to the proof of [2, Lemma 5.2] we obtain that F ǫ

δ is Lipschitz continuous



W 2,p and W 1,p-Estimates at the Boundary 137

in x with Lipschitz constant 3
ǫ
diam(Ω). It is easy to check that F ǫ

δ satisfies (5),
(7), and that F ǫ

δ (0, 0, 0, x) ≡ 0 holds. The assumptions of Proposition 1.6 are
satisfied, and hence there exists a C2-viscosity solution uǫ

δ of
{

F ǫ
δ (D2uǫ

δ, Du
ǫ
δ, u

ǫ
δ, x) = f in Ω
uǫ

δ = ϕ on ∂Ω.

Next we prove that uǫ
δ converges to a C2-viscosity solution u of the original

Dirichlet problem. Therefore we check that F ǫ
δ (M, p, r, x) → F (M, p, r, x) uni-

formly on compact subsets of S(n) × R
n × R × Ω and, uǫ

δ → u uniformly
on compact subsets of Ω. From [2, Lemma 5.2] we infer Fδ(M, p, r, x0) ≤
F ǫ

δ (M, p, r, x0) ≤ Fδ(M, p, r, x∗0) and

|x0 − x∗0|2 = 2ǫ (Fδ(M, p, r, x∗0) − F ǫ
δ (M, p, r, x0)) ≤ ǫ C (‖M‖ + |p| + |r|) ,

where C = C(Λ, b, c), x0 ∈ Ω′ ⊂⊂ Ω, x∗0 ∈ Ω′, M ∈ S(n), p ∈ R
n, and r ∈ R. If

M , p, r are bounded we conclude x∗0 → x0 as ǫ → 0. Note that F is uniformly
continuous on compact subsets of S(n)×R

n×R×Ω and hence F ǫ
δ (M, p, r, x0) →

Fδ(M, p, r, x0) uniformly on compact subsets of S(n) × R
n × R × Ω. Clearly,

we also have Fδ(M, p, r, x0) → F (M, p, r, x0) uniformly on compact subsets of
S(n) × R

n × R × Ω.

Since F ǫ
δ is non-increasing in r we may apply the Alexandroff maximum

principle, Theorem 1.7 and obtain

‖uǫ
δ‖L∞(Ω) ≤ ‖ϕ‖L∞(∂Ω) + C(n, λ,Λ, b, diam(Ω))‖f‖Ln(Ω) =: K.

We deduce uǫ
δ ∈ S∗(λ,Λ, b, f + 2cK) and thus Theorem 1.10 yields that uǫ

δ is
uniformly bounded in C0,α(Ω′) for Ω′ ⊂⊂ Ω.

It remains to show that uǫ
δ achieves the boundary value in an equicontinuous

manner. Fix ̺ > 0 and let x0 ∈ ∂Ω be arbitrary. For ū := vx0,̺ from the
proof of Proposition 1.6 we have that M+(D2ū) + b|Dū| + ū− ≤ f . Moreover
we may assume ϕ ≤ ū on ∂Ω. Consequently, v := uǫ

δ − ū is a C2-viscosity
subsolution of F ǫ

δ (D2v,Dv, v, x) = 0 in Ω. From the maximum principle we
infer supΩ v ≤ sup∂Ω(ϕ − ū) ≤ 0 and hence uǫ

δ ≤ ū. Similarly we obtain
uǫ

δ ≥ u := ϕ(x0)− ̺−C̺w(| · −z0|) where w, z0, C̺ are the same as in the proof
of Proposition 1.6. Therefore we have |uǫ

δ(x)−ϕ(x0)| ≤ ̺+C̺w(|x− z0|) ≤ 2̺,
provided that |x− x0| is sufficiently small.

Finally, by Arzela–Ascoli’s theorem we obtain the existence of u ∈ C0(Ω)
and a subsequence such that uǫ

δ → u in C0(Ω).

2. W 2,p-estimates at the boundary

The aim of this section is to prove W 2,p-boundary estimates for C2-viscosity
solutions. Before we state the theorem, we introduce the function β in order to
measure the oscillation of F in x:
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Definition 2.1. Let F : S(n) × Ω → R
n be continuous in x. We define

βF (x, y) = β(x, y) = sup
M∈S(n)\{0}

|F (M,x) − F (M, y)|
‖M‖ .

An important hypothesis on F will be

Assumption A: We assume that the function F satisfies interior and boundary
C1,1-estimates, i.e. for x0 ∈ B1 and w0 ∈ C0(∂B1) there exists a solution
w ∈ C2(B1) ∩ C0(B1) of

{

F (D2w, x0) = 0 in B1

w = w0 on ∂B1

such that ‖w‖C1,1(B1/2) ≤ ce‖w0‖L∞(∂B1). Additionally, we assume that for x0 ∈
B1 ∩ {xn = 0} and w0 ∈ C0(∂B+

1 ), w0 = 0 on B1 ∩ {xn = 0}, there exists a

solution w ∈ C2(B+
1 ) ∩ C0(B

+

1 ) of

{

F (D2w, x0) = 0 in B+
1

w = w0 on ∂B+
1

such that ‖w‖C1,1(B+
1/2) ≤ ce‖w0‖L∞(∂B+

1 ). Taking w0 = 0 we observe that As-

sumption A implies F (0, ·) = 0. Now, the main result of this section is

Theorem 2.2. Let u be a bounded C2-viscosity solution of

{

F (D2u, x) = f in B+
1

u = 0 on B1 ∩ {xn = 0}.

Assume that F is uniformly elliptic with ellipticity constants λ,Λ, continuous

in x, and that Assumption A is satisfied. Let f ∈ Lp(B+
1 ) ∩ C0(B+

1 ) for n <

p < ∞. Then there exist constants β0 and C depending on n, λ, Λ, ce, p such

that
(

1

|Br(x0) ∩B+
1 |

∫

Br(x0)∩B+
1

β(x0, x)
ndx

)
1
n

≤ β0

for all x0 ∈ B+
1 and all r > 0 implies u ∈ W 2,p(B+

1/2) and

‖u‖W 2,p(B+
1/2

) ≤ C
(

‖u‖L∞(B+
1 ) + ‖f‖Lp(B+

1 )

)

.

Remark 2.3. One can show that the oscillation condition in Theorem 2.2
implies that the oscillation measured in the L∞-norm is also small. In order to
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show this we consider x, y ∈ B+
1 , z := x+y

2
and r := |x−y

2
| and compute

β(x, y)n =
1

|Br(z) ∩B+
1 |

∫

Br(z)∩B+
1

β(x, y)ndw

≤ 2n−1

|Br(z) ∩B+
1 |

(
∫

Br(z)∩B+
1

β(x,w)ndw +

∫

Br(z)∩B+
1

β(w, y)ndw

)

≤ 2n−1

|B2r(x) ∩B+
1 |

∫

B2r(x)∩B+
1

β(x,w)ndw

+
2n−1

|B2r(y) ∩B+
1 |

∫

B2r(y)∩B+
1

β(w, y)ndw

≤ 4n βn
0 .

Particularly with regard to the linear case we observe that the assumption on a
small oscillation, measured in the Ln-norm, is not weaker than the correspond-
ing assumption in the Calderon–Zygmund estimates.
However, in the present paper we continue using the Ln-condition.

Before we start to prove Theorem 2.2 we introduce some terminology. A
function P (x) = p0 + p1x± M

2
|x|2 is called a paraboloid with opening M . The

paraboloid is convex in the case + and concave in the case −. For u ∈ C0(Ω),
Ω′ ⊂ Ω and M > 0 we define

GM(u,Ω′) :=

{

x0 ∈ Ω′;
there is a concave paraboloid P of opening M ,

such that P (x0) = u(x0), P (x) ≤ u(x) ∀ x ∈ Ω′

}

and AM(u,Ω′) := Ω′\ GM(u,Ω′). Using convex paraboloids we similarly define
GM(u,Ω′) and AM(u,Ω′) and set

GM(u,Ω′) := GM(u,Ω′) ∩GM(u,Ω′)

AM(u,Ω′) := AM(u,Ω′) ∩ AM(u,Ω′).

Moreover, we define Θ(u,Ω′, x) := inf{M > 0;x ∈ GM(u,Ω′)} and again we
similarly define Θ(u,Ω′, x) and Θ(u,Ω′, x).

We will need the following technical proposition whose proof is based on [8,
Lemma 9.7], the details are left to the reader.

Proposition 2.4. Let f ≥ 0 be a measurable function, µf (t) := |{f ≥ t}| be

the distribution function and η > 0,M > 1 constants. Then we have

f ∈ Lp(Ω) ⇐⇒
∑

j∈N

Mpjµf (ηM
j) =: Sf <∞

for every p ∈ (0,∞). In particular there exists a constant C = C(n, η,M), such

that

C−1Sf ≤ ‖f‖p
Lp(Ω) ≤ C (|Ω| + Sf ) .
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Note that, once we have estimates for paraboloids at the boundary, the
arguments are similar to those of Caffarelli’s proof of the interior estimates. We
recall Cafarelli’s idea: Consider the distribution function of Θ

µΘ,Ω′(t) := |{x ∈ Ω′; Θ(x) > t}|.
It is clear that µΘ,Ω′(t) = |At(u,Ω

′)| and an application of Proposition 2.4 yields

Θ(u,Ω′, ·) ∈ Lp(Ω′) ⇐⇒
(

∑

j≥1

Mpj|AηMj(u,Ω′)|
)

=: SΘ <∞.

From Proposition 1.1 in [2] we infer ‖D2u‖Lp(Ω′) ≤ C(η,M, p) (|Ω| + SΘ) . There-
fore it suffices to prove estimates for

∑

j≥1M
pj|AηMj(u,Ω′)| in order to derive

W 2,p-estimates in Ω′.

2.1. Estimates for paraboloids at the boundary. The first step towards
W 2,p-estimates at the boundary are estimates for paraboloids at the boundary.
The goal of this subsection is the proof of a power decay at the boundary for
|At(u,Ω)|. We restrict ourselves to a flat boundary, more precisely we look at
B+

r . In this chapter we only consider equations without dependence on Du

and u. Therefore we set S, S, S(λ,Λ, 0, f) = S, S, S(λ,Λ, f) as an abbreviation.
Let Qd

r(x0) := (x0 − r
2
, x0 + r

2
)d be the cube of dimension d, side-length r and

center x0. In case x0 = 0 we write Qd
r instead of Qd

r(0) and if d = n we write
Qr(x0) instead of Qn

r (x0). Throughout the paper, a constant is called universal

if it depends only on the dimension n and the ellipticity constants λ,Λ. In
the course of the proof we will need the Maximal function and the Calderon–
Zygmund cube decomposition:

Proposition 2.5. For f ∈ L1
loc(R

n) the Maximal function M(f) of f is defined

by

M(f)(x) = sup
ρ>0

1

|Bρ(x)|

∫

Bρ(x)

|f |dx.

The Maximal operator M is of weak type (1, 1) and of strong type (p, p) for

1 < p ≤ ∞. More precisely we have

|{(M(f) > t)}| ≤ C(n)t−1‖f‖L1(Rn) for f ∈ L1(Rn), t > 0

and

‖M(f)‖Lp(Rn) ≤ C(n, p)‖f‖Lp(Rn) for f ∈ Lp(Rn), 1 < p ≤ ∞.

Moreover, if f ∈ Lp(R), 1 ≤ p ≤ ∞ then M(f) is finite almost everywhere.

See [10, Theorem 1] for a proof of Proposition 2.5. We turn to the Calderon–
Zygmund cube decomposition. By (k-times) repeated bisection of the edges we
split the unit cube Q1 into 2kn sub cubes of side-length 2−k. The cubes obtained
in this way are called dyadic cubes. By Q̃ we denote the unique predecessor of
a dyadic cube Q; see [2, Lemma 4.2] for the proof of the following Lemma.
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Lemma 2.6 (Calderon–Zygmund decomposition). Suppose A ⊂ B ⊂ Q1, |A| ≤
δ < 1 and |A ∩Q| > δ|Q| =⇒ Q̃ ⊂ B hold whenever Q is a dyadic qube. Then

|A| ≤ δ|B|.

Now, all necessary preparations are completed and we start with a rescaled
version of the interior power decay result for |At(u,Ω)| from [2]:

Lemma 2.7. Let B6r
√

n(x0) ⊂ Ω and u ∈ C0(Ω) satisfy ‖u‖L∞(Ω) ≤ 1 and

u ∈ S(f) in B6r
√

n(x0). Then there are universal constants µ, δ0 > 0 and C,

such that ‖f‖Ln(B6r
√

n(x0)) ≤ r−1δ0 implies

|At(u,Ω) ∩Qr(x0)| ≤ Ct−µr−2µ|Qr(x0)|. (8)

Moreover, if u ∈ S∗(f) in B6r
√

n(x0), then (8) holds for At(u,Ω).

Lemma 2.8. Let u ∈ S(f) in Ω satisfy u ∈ C0(Ω) and ‖u‖L∞(Ω) ≤ 1. Then

for any Ω′ ⊂⊂ Ω we have

|At(u,Ω) ∩ Ω′| ≤ C(n, λ,Λ,Ω, dist(Ω′, ∂Ω))
(

1 + ‖f‖Ln(Ω)

)µ
t−µ.

Proof. Fix ǫ > 0 such that 6ǫ
√
n < dist(Ω′, ∂Ω) and choose a finite cover of

Ω′ with axially parallel cubes having side-length ǫ and disjoint interior. The
choice of ǫ implies B6ǫ

√
n(xi) ⊂⊂ Ω for all centers xi of cubes Qǫ(xi). Without

loss of generality we may assume ǫ < 1. By N = N(Ω′, ǫ) we denote the total
number of cubes. Set ũ := δ0u

δ0+‖f‖Ln(Ω)
and f̃ := δ0f

δ0+‖f‖Ln(Ω)
, where δ0 is as in

Lemma 2.7. Then ũ and f̃ satisfy the hyotheses of Lemma 2.7 in B6ǫ
√

n(xi) and
we get |At(ũ,Ω) ∩Qǫ(xi)| ≤ Cǫnt−µǫ−2µ. Now

|At(ũ,Ω) ∩ Ω′| ≤
N

∑

i=1

|At(ũ,Ω) ∩Qǫ(xi)| ≤ Ct−µǫ−2µ,

where we have used Nǫn ≤ C(n)|Ω| for the last estimate. Finally, by definition
At(Ku,Ω) = A t

K
(u,Ω) for any constant K.

Our first estimate for |Gt(u,Ω)| at the boundary is a direct consequence of
the preceeding Lemma.

Lemma 2.9. Assume that u ∈ S(f) in B+
12

√
n

⊂ Ω, u ∈ C0(Ω) and that

‖u‖L∞(Ω) ≤ 1. Then there exist universal constants M > 1 and 0 < σ < 1,
such that ‖ f ‖Ln(B+

12
√

n
) ≤ 1 implies

∣

∣GM(u,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

)∣

∣ ≥ 1 − σ

for any x0 ∈ B9
√

n ∩ {xn ≥ 0}.
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Proof. Fix 0 < σ < 1 and set x0 = (x′0, x0,n). In case x0,n ≥ σ
2

the assertion
follows from Lemma 2.8. Otherwise we apply Lemma 2.8 in the following way:

∣

∣At(u,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

) ∣

∣

≤
∣

∣

∣
At(u,Ω) ∩

((

Qn−1
1 ×

(σ

2
, x0,n+ 1

))

+ (x′0, 0)
)
∣

∣

∣
+

∣

∣

∣

(

Qn−1
1 ×

(

x0,n,
σ

2

))

+ (x′0, 0)
∣

∣

∣

≤ C(n, λ,Λ, σ)t−µ +
σ

2
.

This estimate holds for t > 1. Therefore the lemma is proven if we choose
t = t(n, λ,Λ, σ) large enough.

Lemma 2.10. Assume that u ∈ S∗(f) in B+
12

√
n
⊂ Ω ⊂ R

n
+, u ∈ C0(Ω) and let

G1(u,Ω) ∩
((

Qn−1
2 × (0, 2)

)

+ x̃0

)

6= ∅ for some x̃0 ∈ B9
√

n ∩ {xn ≥ 0}. Then

there exist universal constants M > 1 and 0 < σ < 1, such that ‖f‖Ln(B+
12

√
n
) ≤ 1

implies
∣

∣GM(u,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

)∣

∣ ≥ 1 − σ

for any x0 ∈ B9
√

n ∩ {xn ≥ 0}.

Proof. Let x1 ∈ G1(u,Ω) ∩
((

Qn−1
2 × (0, 2)

)

+ x̃0

)

. Then there are paraboloids
with opening 1 touching u in x1 from above and below, i.e., we have L(x)− 1

2
|x−

x1|2 ≤ u(x) ≤ L(x)+ 1
2
|x−x1|2 for x ∈ Ω and an affine function L. Set v := u−L

C(n)
,

where the constant C(n) is chosen large enough, such that ‖v‖L∞(B+
12

√
n
) ≤ 1,

and −|x|2 ≤ v(x) ≤ |x|2 in Ω \ B+
12

√
n
. Applying Lemma 2.9 to v ∈ S( f

C(n)
)

in B+
12

√
n

we obtain |GM(v,B+
12

√
n
) ∩

((

Qn−1
1 × (0, 1)

)

+ x0

)

| ≥ 1 − σ. From the
preceeding estimates we infer

∣

∣GN(v,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

)∣

∣ ≥ 1 − σ

for N ≥ M large enough. Finally, we have GM(v,Ω) = GMC(n)(u,Ω) which
finishes the proof.

We proceed with an iteration Lemma to improve the estimate given by
Lemma 2.9.

Lemma 2.11. Let u ∈ S∗(f) in B+
12

√
n
⊂ Ω ⊂ R

n
+, u ∈ C0(Ω), ‖u‖L∞(Ω) ≤ 1

and ‖f‖Ln(B+
12

√
n
) ≤ 1. Extend f by zero outside B+

12
√

n
and define

A := AMk+1(u,Ω) ∩
(

Qn−1
1 × (0, 1)

)

B :=
(

AMk(u,Ω) ∩
(

Qn−1
1 × (0, 1)

))

∪ {x ∈ Qn−1
1 × (0, 1);M(fn) ≥ (C0M

k)n}

for k ∈ N0. Then |A| ≤ σ|B|, where C0 = C0(n) and 0 < σ < 1, M > 1 are

universal constants.
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Proof. The proof is based on the Calderon–Zygmund cube decomposition, given
by Lemma 2.6. We have A ⊂ B ⊂

(

Qn−1
1 × (0, 1)

)

by AMk+1(u,Ω) ⊂ AMk(u,Ω)
and by Lemma 2.9 we get |A| ≤ σ < 1. It remains to show that for any
dyadic cube Q with |A ∩ Q| > σ|Q| we obtain Q̃ ⊂ B. Assume that for
some i ≥ 1, Q =

(

Qn−1
1/2i × (0, 1

2i )
)

+ x0 is a dyadic cube with predecessor

Q̃ =
(

Qn−1
1/2i−1 × (0, 1

2i−1 )
)

+ x̃0. Assume further that Q satisfies

|A ∩Q| = |AMk+1(u,Ω) ∩Q| > σ|Q| (9)

but Q̃ 6⊂ B. Then there exists x1 ∈ Q̃ \B, i.e.,

x1 ∈ Q̃ ∩GMk(u,Ω), M(fn)(x1) < (C0M
k)n. (10)

Consider the transformation T (y) := x̃0+
y
2i and set ũ(y) := 22i

Mku(T (y)), f̃(y) :=
1

Mk f(T (y)) and Ω̃ = T−1(Ω). Since i ≥ 1 and Q̃ ⊂
(

Qn−1
1 × (0, 1)

)

, we obtain

B+
12

√
n/2i(x̃0) ⊂ B+

12
√

n
which implies ũ ∈ S∗(f̃) in B+

12
√

n
. Note that |x̃0−x1|∞ <

1
2i−1 , implies B+

12
√

n/2i(x̃0) ⊂ Q28
√

n/2i(x1). Therefore, we obtain from (10)

‖f̃‖Ln(B+
12

√
n
) ≤ 2i

Mk

(
∫

Q28
√

n/2i (x1)

f(x)ndx

)
1
n

≤ C(n)C0 ≤ 1

provided C0 is sufficiently small. Moreover, from (10) we infer G1(ũ, Ω̃) ∩
(

Qn−1
2 × (0, 2)

)

6= ∅ and hence we have shown that the hypotheses of Lemma 2.10

are satisfied in Ω̃. Since x0,n ≥ x̃0,n and |x0 − x̃0| ≤ 1
2i

√
n we have 2i(x0 − x̃0) ∈

B9
√

n ∩ {xn ≥ 0}. Applying Lemma 2.10 we obtain

∣

∣GM(ũ, Ω̃) ∩
((

Qn−1
1 × (0, 1)

)

+ 2i(x0 − x̃0)
)∣

∣ ≥ 1 − σ

and hence |GMk+1(u,Ω) ∩Q| ≥ (1 − σ) |Q| which is a contradiction to (9).

From Lemma 2.11 we derive the power decay for |At(u,Ω)| at the boundary.

Proposition 2.12. Let u ∈ S(f) in B+
12

√
n
⊂ Ω ⊂ R

n
+, u ∈ C0(Ω) and let

‖u‖L∞(Ω)≤1.Then there exist universal constants C, µ such that ‖f‖Ln(B+
12

√
n
)≤1

implies

|At(u,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

)

| ≤ Ct−µ

for any x0 ∈ B9
√

n ∩ {xn ≥ 0} and t > 1.

Proof. If x0 = 0, we define

αk := |AMk(u,Ω) ∩
(

Qn−1
1 × (0, 1)

)

|
βk := |{x ∈ Qn−1

1 × (0, 1); M(fn)(x) ≥ (C0M
k)n}|,



144 N. Winter

and apply Lemma 2.11 to obtain αk+1 ≤ σ (αk + βk). Hence αk ≤ σk +
∑k−1

j=0 σ
k−jβj. In order to estimate the second part we use the properties of

the maximal function M , see Proposition 2.5:

βj ≤ C(n)(c0M
j)−n‖fn‖L1(B+

12
√

n
) ≤ CM−nj.

Hence αk ≤ σk +C
∑k−1

j=0 σ
k−jM−nj ≤ (1+Ck) max(σ,M−n)k ≤ CM−µk. Now,

choose µ suffiently small to finish the first part of the proof.

If x0 6= 0 choose a finite covering of
(

Qn−1
1 × (0, 1)

)

+x0 with suitable cubes.
From the first part of the proof and Lemma 2.7 we deduce the claim.

2.2. Proof of Theorem 2.2. We proceed in a way similar to [2] und prove
an approximation lemma at the boundary first. Using this result we iterate
the estimates of the previous subsection to obatin W 2,p-estimates. Recall that
Assumption A implies F (0, ·) = 0.

Proposition 2.13 (Approximation lemma). Let 0 < ǫ < 1, and let u be a

C2-viscosity solution of

{

F (D2u, x) = f in B+
14

√
n

u = 0 on B14
√

n ∩ {xn = 0}

such that ‖u‖L∞(B+
14

√
n
) ≤ 1. Assume ‖β(., 0)‖Ln(B+

13
√

n
) ≤ ǫ and that Assump-

tion A is satisfied. Then there exists a function h ∈ C2(B+
12

√
n) such that for

ϕ = f − F (D2h, .) ∈ C0(B+
12

√
n
) we have u− h ∈ S(ϕ) and

‖h‖C1,1(B+
12

√
n) ≤ C(n, λ,Λ, ce)

‖u− h‖L∞(B+
12

√
n
) + ‖ϕ‖Ln(B+

12
√

n
) ≤ C

(

ǫγ + ‖f‖Ln(B+
14

√
n
)

)

,

where γ ∈ (0, 1) is universal and C = C(n, λ,Λ, ce).

Proof. Let h ∈ C2(B+
13

√
n
) be the solution of

{

F (D2h, 0) = 0 in B+
13

√
n

h = u on ∂B+
13

√
n
.

Assumption A implies ‖h‖C1,1(B+
12

√
n) ≤ C‖u‖L∞(B+

13
√

n
) ≤ C(n, ce). Moreover,

from the Hölder estimate, Theorem 1.10, we infer u ∈ C0,β(B+
13

√
n
) where 0 <

β < 1 is universal. Using Theorem 1.10 we get

‖h‖C0,α(B+
13

√
n) ≤ C

(

1 + ‖u‖
C0,β(B

+
13

√
n)

)

≤ C
(

1 + ‖f‖Ln(B+
14

√
n
)

)

,
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where 0 < α < β is a universal constant. Since u − h = 0 on ∂B+
13

√
n

we have

(u− h)(x) ≤ δα hölα,B+
13

√
n
(u− h) where 0 < δ < 1 and x ∈ ∂B+

13
√

n−δ
. Hence

‖u− h‖L∞(∂B+
13

√
n−δ

) ≤ Cδα
(

1 + ‖f‖Ln(B+
14

√
n
)

)

. (11)

Let x0 ∈ B+
13

√
n−δ

. If Bδ/2(x0) ⊂ B+
13

√
n

we apply rescaled interior C1,1-

estimates in Bδ/2(x0) to h− h(x0) and get

δ2

16
‖D2h(x0)‖ ≤ C‖h− h(x0)‖L∞(∂Bδ/2(x0)) ≤ Cδα

(

1 + ‖f‖Ln(B+
14

√
n
)

)

.

If not, there exists z0 ∈ B13
√

n−δ ∩ {xn = 0} such that x0 ∈ B+
δ/2(z0). We

apply rescaled C1,1-estimates in B+
δ (z0) to h−h(x0) and obtain δ2

16
‖D2h(x0)‖ ≤

Cδα(1 + ‖f‖Ln(B+
14

√
n
)). From the definition of β we infer

|F (D2h(x0), x0)| ≤ Cδα−2β(x0, 0)
(

1 + ‖f‖Ln(B+
14

√
n
)

)

, (12)

where x0 ∈ B+
13

√
n−δ

. Proposition 1.4 yields u−h ∈ S
(

λ
n
,Λ, f(x)−F (D2h(x), x)

)

in B+
13

√
n
. By the maximum principle, (11), (12) we obtain

‖u− h‖L∞(B+
13

√
n−δ

) + ‖f(x) − F (D2h(x), x)‖Ln(B+
13

√
n−δ

)

≤ C
(

δα + δα−2‖β‖Ln(B+
13

√
n
)

)(

1 + ‖f‖Ln(B+
14

√
n
)

)

+ C‖f‖Ln(B+
14

√
n
).

Choose δ = ǫ
1
2 to finish the proof.

In the next step we use the approximation lemma to improve Lemma 2.10,
more precisely we prove |GM(u,Ω) ∩Q| ≥ 1 − ǫ0 for arbitrary ǫ0 > 0.

Lemma 2.14. Let ǫ0 ∈ (0, 1), B+
14

√
n
⊂ Ω ⊂ R

n
+ and u ∈ C0(Ω) be a C2-

viscosity solution of
{

F (D2u, x) = f in B+
14

√
n

u = 0 on B14
√

n ∩ {xn = 0}.

Assume that Assumption A holds and that F (0, ·) ≡ 0,

‖f‖Ln(B+
14

√
n
) , ‖β(·, 0)‖Ln(B+

13
√

n
) ≤ ǫ,

where ǫ = ǫ(n, λ,Λ, ǫ0, ce). Then G1(u,Ω)∩
((

Qn−1
2 × (0, 2)

)

+ x̃0

)

6= ∅ for some

x̃0 ∈ B9
√

n ∩ {xn ≥ 0} implies
∣

∣GM(u,Ω) ∩
((

Qn−1 × (0, 1)
)

+ x0

)
∣

∣ ≥ 1 − ǫ0,

where x0 ∈ B9
√

n ∩ {xn ≥ 0} and M = M(n, ce).
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Proof. Similar to the proof of Lemma 2.10 we set ũ := u−L
C

where L is affine
and C = C(n) is chosen sufficiently large such that ũ has the same properties
as v in Lemma 2.10. We know that ũ is a solution of

F̃ (D2ũ, x) :=
1

C
F (CD2ũ, x) =

1

C
f(x) =: f̃(x)

and that the ellipticity constants of F and F̃ agree. As in Proposition 2.13, let
h ∈ C2(B+

13
√

n
) ∩ C0(B+

13
√

n) be the solution of

{

F̃ (D2h, 0) = 0 in B+
13

√
n

h = ũ on ∂B+
13

√
n
.

From the maximum principle we infer ‖h‖L∞(B+
13

√
n
) ≤ ‖ũ‖L∞(∂B+

13
√

n
) ≤ 1. Also

‖h‖C1,1(B+
12

√
n) ≤ C(n, ce) implies AN(h,B+

12
√

n
) ∩ ((Qn−1

1 × (0, 1)) + x0) = ∅
for some N = N(n, ce) > 1. We extend h|B+

12
√

n
continuously outside B+

12
√

n

such that h = ũ outside B+
13

√
n

and ‖ũ − h‖L∞(Ω) = ‖ũ − h‖L∞(B+
12

√
n
). Hence

‖ũ−h‖L∞(Ω) ≤ 2 and −2−|x|2 ≤ h(x) ≤ 2+ |x|2 in Ω\B+
12

√
n
. These estimates

imply
AM0(h,Ω) ∩

((

Qn−1
1 × (0, 1)

)

+ x0

)

= ∅ (13)

for some M0 = M0(n, ce) ≥ N . For w := ũ− h Proposition 2.13 yields

‖w‖L∞(B+
12

√
n
) + ‖f̃ − F̃ (D2h, ·)‖Ln(B12

√
n) ≤ C

(

ǫγ + ‖f̃‖Ln(B+
14

√
n
)

)

≤ Cǫγ

and w ∈ S
(

λ
n
,Λ, f̃ − F̃ (D2h, ·)

)

in B+
12

√
n
. Hence ‖w‖L∞(Ω) = ‖w‖L∞(B+

12
√

n
) ≤

Cǫγ . Therefore w̃ = (Cǫγ)−1w satisfies the hypotheses of Proposition 2.12 and
we obtain for t > 1:

|At(w̃,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

)

| ≤ C(n, λ,Λ, ce)t
−µ.

Using A2M0(ũ) ⊂ AM0(w) ∪ AM0(h) and (13) we conclude

|A2M0(ũ,Ω) ∩
((

Qn−1
1 × (0, 1)

)

+ x0

)

| ≤ C(n, λ,Λ, ce)ǫ
γµM

µ
0 .

Finally, since A2M0(ũ,Ω) = A2CM0(u,Ω) we set M = 2CM0 and choose ǫ =
ǫ(λ,Λ, n, ce, ǫ0) sufficiently small to finish the proof.

Lemma 2.15. Let 0 < ǫ0 < 1 and u be a C2-viscosity solution of

{

F (D2u, x) = f in B+
14

√
n

u = 0 on B14
√

n ∩ {xn = 0}.

Assume that Assumption A holds and that ‖u‖L∞(B+
14

√
n
) ≤ 1, ‖f‖Ln(B+

14
√

n
) ≤ ǫ.
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Extend f by zero outside B+
14

√
n
. Let

(

1

|Br(x0) ∩B+
14

√
n
|

∫

Br(x0)∩B+
14

√
n

β(x0, x)
ndx

)
1
n

≤ ǫ.

for x0 ∈ B+
14

√
n

and r > 0. For k ∈ N0 we set

A := AMk+1(u,B+
14

√
n
) ∩Qn−1

1 ×(0, 1)

B :=
(

AMk(u,B+
14

√
n
) ∩Qn−1

1 ×(0, 1)
)

∪ {x ∈ Qn−1
1 ×(0, 1);M(fn) ≥ (C0M

k)n}.

Then |A| ≤ ǫ0|B|, where M = M(n, ce) > 1, ǫ = ǫ(n, λ,Λ, ce, ǫ0).

Proof. Like the proof of Lemma 2.11, this proof is also based upon the Calderon–
Zygmund decomposition. We have A⊂B ⊂(Qn−1

1 ×(0, 1)) and from Lemma 2.14
we infer |A| ≤ δ < 1 for δ = ǫ0. Therefore it remains to show that for dyadic
cubes Q with |A ∩ Q| > ǫ0|Q| we have Q̃ ⊂ B. Let Q, Q̃ be the same as in
Lemma 2.11. We assume that Q satisfies

|A ∩Q| = |AMk+1(u,B+
14

√
n
) ∩Q| > ǫ0|Q| (14)

but Q̃ 6⊂ B. Therefore there exists x1 ∈ Q̃ \B, i.e.,

x1 ∈ Q̃ ∩GMk(u,B+
14

√
n
), M(fn)(x1) < (C0M

k)n. (15)

In case |x0 − (x′0, 0)| < 8
2i

√
n we consider T (y) := (x′0, 0) + 2−iy and define

ũ(y) := 22i

Mku(T (y)), F̃ (X, y) := 1
MkF (MkX,T (y)) and f̃(y) := 1

Mk f(T (y)).
Now Q ⊂ (Qn−1

1 × (0, 1)) implies B+
14

√
n/2i(x

′
0, 0) ⊂ B+

14
√

n
and we have that ũ is

a C2-viscosity solution of
{

F̃ (D2ũ, y) = f̃ in B+
14

√
n

ũ = 0 on B14
√

n ∩ {xn = 0}.

The ellipticity constants of F̃ and F agree and F̃ satisfies the C1,1-estimates
with the same constant as F . Moreover, βF̃ (y, 0) = βF (x, (x′0, 0)) and hence
‖βF̃‖Ln(B+

13
√

n
)≤ C(n)ǫ. Similar to the proof of Lemma 2.11 we get ‖f̃‖Ln(B+

14
√

n
)≤

ǫ from (15) for C0 sufficiently small. Again by (15) we obtain

G1

(

ũ, T−1
(

B+
14

√
n

))

∩
((

Qn−1
2 × (0, 2)

)

+ 2i(x̃0 − (x′0, 0))
)

6= ∅.

From |x0− x̃0| ≤ 1
2i

√
n we get |2i(x̃0− (x′0, 0))| < 9

√
n such that the hypotheses

of Lemma 2.14 are satisfied. It follows

∣

∣GM(ũ, T−1(B+
14

√
n
)) ∩

((

Qn−1
1 × (0, 1)

)

+ 2i(x0 − (x′0, 0)
)∣

∣ ≥ 1 − ǫ0
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and hence |GMk+1(u,B+
14

√
n
)∩Q| ≥ (1− ǫ0)|Q| which is a contradiction to (14).

If |x0 − (x′0, 0)| ≥ 8
2i

√
n, we conclude B8

√
n/2i(x0 + 1

2i+1 en) ⊂ B+
8
√

n
, where en

is the n-th unit vector. Using the transformation T (y) := (x0 + 1
2i+1 en)+ 1

2iy we
proceed in a way similar to the first part of the proof. Now we apply [2, Lemma
7.11] instead of Lemma 2.14 in order to obtain a contradiction to (14).

Proof of Theorem 2.2. Fix x0 ∈ B1/2 ∩ {xn = 0}, 0 < r <
1−|x0|
14

√
n

and define

K :=
ǫr

ǫr−1‖u‖L∞(B+
14r

√
n
(x0)) + ‖f‖Ln(B+

14r
√

n
(x0))

,

where ǫ = ǫ(n, λ,Λ, p, ce, ǫ0) is the same as in Lemma 2.14 and 0 < ǫ0 < 1 will
be chosen later in the proof. We set ũ(y) := Kr−2u(ry+ x0), f̃ := Kf(ry+ x0)
and F̃ (M, y) := KF (K−1M, ry + x0). Then ũ is a C2-viscosity solution of

{

F̃ (D2ũ, x) = f̃ in B+
14

√
n

ũ = 0 on B14
√

n ∩ {xn = 0} .

The ellipticity constants of F̃ and F agree. We have βF̃ (y, 0) = βF (ry+ x0, x0)
and ‖βF̃‖Ln(B+

14
√

n
) ≤ C(n)β0 ≤ ǫ, provided β0 is chosen sufficiently small. More-

over ‖ũ‖L∞(B+
14

√
n
) ≤ 1 and

‖f̃‖Ln(B+
14

√
n
) =

K

r
‖f‖Ln(B+

14r
√

n
(x0)) ≤ ǫ, (16)

such that the hypotheses of Lemma 2.15 are satisfied. Let M = M(n, ce) and
C0 = C0(n, λ,Λ, p, ce, ǫ0) be the same as in Lemma 2.15 and choose ǫ0 = 1

2Mp .
We define

αk :=
∣

∣AMk

(

ũ, B+
14

√
n

)

∩
(

Qn−1
1 × (0, 1)

)∣

∣

βk :=
∣

∣{x ∈
(

Qn−1
1 × (0, 1)

)

;M(f̃n)(x) ≥ (C0M
k)n}

∣

∣.

and apply Lemma 2.15 to obtain αk+1 ≤ ǫ0 (αk + βk) and hence

αk ≤ ǫk0 +
k−1
∑

i=0

ǫk−i
0 βi. (17)

From Propositon 2.5 and (16) we infer

‖M(f̃n)‖
L

p
n
≤ C(n, p)‖f̃n‖

L
p
n

= C(n, p)‖f̃‖n
Lp ≤ C(n, p).

Since βk is the distribution function of M(f̃n) we infer from Proposition 2.4
∑

k∈N

Mpkβk ≤ C(n, p). (18)
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By the choice of ǫ0, (17) and (18)

∑

k∈N

Mpkαk ≤
∑

k∈N

2−k +

(

∑

k≥0

Mpkβk

)(

∑

k∈N

Mpkǫk0

)

≤ C(n, p).

Consequently ‖D2ũ‖Lp(B+
1/2

) ≤ C(n, p,M) and hence

‖D2u‖Lp(B+
r/2

(x0)) ≤ C(n, λ,Λ, p, ce, r)
(

‖u‖L∞(B+
1 ) + ‖f‖Lp(B+

1 )

)

. (19)

Finally choose a suitable covering of B+
1/2 with B+

r (x0) for x0 ∈ B1/2 ∩{xn = 0}
and Br(x0) for x0 ∈ B+

1/2 respectively where r is chosen to be suffiently small.

The desired assertion is a consequence of (19) and [2, Theorem 7.1].

Caffarelli’s interior W 2,p-estimates were generalised by L. Escauriaza to the
range of n − ǫ0 < p < ∞ where ǫ0 = ǫ0(

Λ
λ
, n). The boundary estimate, Theo-

rem 2.2, can be generalised similarly. Using results from [5] we obtain the weak
Harnack inequality (at the boundary) and global Hölder continuity for W 2,n−ǫ0-
viscosity solutions. In the related estimates ‖f‖Ln is replaced by ‖f‖Ln−ǫ0 .
Therefore, by repeating the arguments of Subsections 2.1 and 2.2 we obtain

Theorem 2.16. Let u be a bounded C2-viscosity solution of
{

F (D2u, x) = f in B+
1

u = 0 on B1 ∩ {xn = 0}.

Assume that F is uniformly elliptic with ellipticity constants λ,Λ, continuous

in x, F (0, .) ≡ 0 and that Assumption A holds. Then there exist constants ǫ0 =
ǫ0(

Λ
λ
, n), C = C(n, λ,Λ, ce, p) and β0 = β0(n, λ,Λ, ce, p), where n− ǫ0 < p <∞

such that the following holds: If

(

1

|Br(x0) ∩B+
1 |

∫

Br(x0)∩B+
1

β(x0, x)
ndx

)
1
n

≤ β0,

for x0 ∈ B+
1 , r > 0 and f ∈ Lp(B+

1 ), then u ∈ W 2,p(B+
1/2) and

‖u‖W 2,p(B+
1/2

) ≤ C
(

‖u‖L∞(B+
1 ) + ‖f‖Lp(B+

1 )

)

.

3. W 1,p-estimates at the boundary

The objective of this section is the proof of W 1,p-estimates at the boundary
for equations with dependence on Du, u. Interior estimates of this type were
proven by A. Świech in [11], see also [1] and [2]. Our proof is similar to the
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proof in [11]. Before we state the main theorem of this section we need some
preparations.

Henceforth we assume that F (M, p, r, ·) is measurable in x. Similar to
Section 2 we define the function β to measure the oscillation of F in x:

β(x, x0) := sup
M∈S(n)\{0}

|F (M, 0, 0, x) − F (M, 0, 0, x0)|
‖M‖ .

Instead of Assumption A we will make use of

Assumption A∗: We assume that F satisfies C1,ᾱ interior and boundary
estimates, i.e., there exist constants 0 < ᾱ < 1 and ce such that for any
w0 ∈ C0(∂B1) there exists a C2-viscosity solution w ∈ C

1,α
loc (B1) ∩ C0(B1) of

{

F (D2w, 0, 0, 0) = 0 in B1

w = w0 on ∂B1

such that
‖w‖C1,ᾱ(B̄1/2) ≤ ce‖w‖L∞(B1).

Additionally, we assume that for any w0 ∈ C0(∂B+
1 ) ∩ C1,γ(B1 ∩ {xn = 0})

there exist a constant 0 < ᾱ < 1, depending on γ, and a C2-viscosity solution

w ∈ C
1,α
loc (B+

1 ∪ {xn = 0}) ∩ C0(B+
1 ) of

{

F (D2w, 0, 0, 0) = 0 inB+
1

w = w0 onB1 ∩ {xn = 0}

such that

‖w‖C1,ᾱ(B̄+
1/2

) ≤ ce
(

‖w‖L∞(B+
1 ) + ‖w0‖C1,γ(B1∩{xn=0})

)

.

The main result of this section is

Theorem 3.1. Let p > n− ǫ0(
Λ
λ
, n, b) and u be a W 2,p-viscosity solution of

{

F (D2u,Du, u, x) = f in B+
1

u = ϕ on ∂B1 ∩ {xn = 0},

where f ∈ Lp(B+
1 ), ϕ ∈ C1,γ(B1 ∩ {xn = 0}). Assume that F satisfies Assump-

tion A∗, F (0, 0, 0, x) = 0, and structure condition (5).
If p > n let α < min(1 − n

p
, ᾱ(1 − γ)). There exists β0 = β0(n, λ,Λ, p, α, ᾱ)

such that the existence of r0 > 0 with

(

1

|Br(x0) ∩B+
1 |

∫

Br(x0)∩B+
1

β(x, x0)
pdx

)
1
p

≤ β0
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for all x0 ∈ B+
1 and r ≤ r0 implies: u ∈ C1,α(B1/2 ∩ {xn ≥ 0}) and

‖u‖C1,α(B1/2∩{xn≥0}) ≤ C
(

‖u‖L∞(B+
1 ) + ‖ϕ‖C1,γ(B1∩{xn=0}) + ‖f‖Lp(B+

1 )

)

,

where C = C(n, λ,Λ, b, c, p, q, r0).
If p ≤ n there exists β0 = β0(n, λ,Λ, p) such that the existence of r0 > 0

with
(

1

|Br(x0) ∩B+
1 |

∫

Br(x0)∩B+
1

β(x, x0)
pdx

)
1
p

≤ β0

for all x0 ∈ B+
1 and r ≤ r0 implies: u ∈ W 1,q

(

B+
1/2

)

for every q < p∗ := np
n−p

and

‖u‖W 1,q(B+
1/2

) ≤ C
(

‖u‖L∞(B+
1 ) + ‖ϕ‖C1,γ(B1∩{xn=0}) + ‖f‖Lp(B+

1 )

)

,

where C = C(n, λ,Λ, b, c, p, q, r0).

For later application we remark that in case ϕ = 0 Theorem 3.1 requires
the second part of Assumption A∗ to hold for w0 = 0 only.

3.1. Proof of Theorem 3.1. In the proof of Theorem 3.1, we will make use
of the sets Bν

r (x0) := Br(x0) ∩ {xn > −ν} for ν > 0. We commence with an
approximation result.

Proposition 3.2. Let p > n − ǫ0(
Λ
λ
, n, b). Assume that F satisfies (5) and

F (0, 0, 0, x) = 0 in Bν
1 (0) for some 0 ≤ ν ≤ 1. Let ϕ ∈ C0,γ(∂Bν

1 ) satisfy

‖ ϕ‖C0,γ(∂Bν
1 ) ≤ C0. Then for all ̺ > 0 there exists δ = δ(̺, n, λ,Λ, p, γ, C0) < 1

such that

‖β(0, ·)‖Lp(Bν
1 ), ‖f‖Lp(Bν

1 ), b, c ≤ δ

implies the following: Any two W 2,p-viscosity solutions u and v of

{

F (D2u,Du, u, x) = f in Bν
1

u = ϕ on ∂Bν
1

and

{

F (D2v, 0, 0, 0) = 0 in Bν
1

v = ϕ on ∂Bν
1

satisfy ‖u− v‖L∞(Bν
1 ) ≤ ̺.

Proof. We argue by contradiction and assume that the claim is not satisfied.
Then there exist ̺0 > 0, a sequence 0 ≤ νk ≤ 1, and sequences of functions Fk

satisfying (5) with b replaced by bFk
and c replaced by cFk

, ϕk ∈ C0,γ(∂Bνk
1 )

with ‖ϕk‖C0,γ(∂B
νk
1 ) ≤ C0 and fk, for which there exist viscosity solutions uk, vk

of
{

Fk(D
2uk, Duk, uk, x) = fk in Bνk

1

uk = ϕk on ∂Bνk
1
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and
{

Fk(D
2vk, 0, 0, 0) = 0 in Bνk

1

vk = ϕk on ∂Bνk
1

such that ‖βFk
(0, ·)‖Lp(B

νk
1 ), ‖fk‖Lp(B

νk
1 ), bFk

, cFk
≤ δk → 0 as k → ∞, and

‖uk − vk‖L∞(B
νk
1 ) > ̺0. (20)

Since the functions Fk are Lipschitz continuous in M, p, r we infer from (5) and
Arzela–Ascoli’s theorem that there exists a function F∞ and a subsequence such
that Fk(·, ·, ·, 0) → F∞(·) uniformly on compact subsets of S(n)×R

n ×R. The
maximum principle yields ‖uk‖L∞(B

νk
1 ) ≤ C0 + C(n, λ,Λ)(δk + cFk

‖uk‖L∞(B
νk
1 ))

and consequently ‖uk‖L∞(B
νk
1 ), ‖vk‖L∞(B

νk
1 ) ≤ C(C0) if k is sufficiently large.

Moreover, from Theorem 1.10 we get

‖uk‖C0,α(B
νk
1 )
, ‖vk‖C0,α(B

νk
1 )

≤ C(n, λ,Λ, b, C0). (21)

We may assume that there exist 0 ≤ ν∞ ≤ 1 and a subsequence such that
νk → ν∞ as k → ∞. Choosing another subsequence, if necessary, we may also
assume that νk is monotonous. Thus we have either Bν∞

1 ⊂ Bνk
1 or Bνk

1 ⊂ B
νk+1

1 .
In the first case we apply Arzela–Ascoli’s theorem in Bν∞

1 directly. In the second
case, there is an elementary extension of ϕk to B1 ∩ {−ν∞ ≤ xn ≤ −νk} such
that ‖ ϕk ‖C0,γ(B1∩{ν∞≤xk≤−νk}) ≤ C0 and hence we may suppose that (21) holds

in Bν∞
1 for the extended uk, vk.

Therefore, in both cases, we apply Arzela–Ascoli’s theorem in Bν∞
1 and

obtain the existence of functions u∞, v∞ ∈ C0(Bν∞
1 ), ϕ∞ ∈ C0(∂Bν∞

1 ) and
subsequences such that uk → u∞, vk → v∞ uniformly on Bν∞

1 and u∞ = v∞ =
ϕ∞ on ∂Bν∞

1 . Clearly, v∞ is a C2-viscosity solution of

{

F∞(D2v∞, 0, 0, 0) = 0 in Bν∞
1

v∞ = ϕ∞ on ∂Bν∞
1 .

(22)

Finally, we use Proposition 1.5 to prove that u∞ is also a viscosity solution
of (22). In order to check the hypothesis of that lemma we take φ ∈ C2(Ω) and
apply (5) to obtain

|Fk(D
2φ,Dφ, uk, x) − fk(x) − F∞(D2φ, 0, 0, 0)|

≤ cFk
C(C0) + bFk

|Dφ| + βk(0, x)|D2φ| + |fk|.

The Lp-Norm of this term goes to 0 as k → ∞. Hence, Proposition 1.5 is
applicable. Since (22) is uniquely solvable we get u∞ = v∞ which contra-
dicts (20).
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Remark 3.3. Consider a C2-viscosity solution w of
{

F (D2w, 0, 0, 0) = 0 in Bν
1

w = w0 on ∂Bν
1 ,

where w0 ∈ C0(∂Bν
1 )∩C1,γ(B1 ∩{xn = −ν}). By rescaling Assumption A∗ and

using a covering argument if necessary we obtain

‖w‖C1,ᾱ(Bν
1/2

) ≤ K2

(

‖w‖L∞(Bν
1 ) + ‖w0‖C1,γ(B1∩{xn=−ν})

)

for a constant K2 = K2(n, ce).

Proof of Theorem 3.1. Let p > p′ > n−ǫ0. Fix y = (y′, yn) ∈ B1/2∩{ xn ≥ 0 }
and set d := min(1

2
, r0). Initially we rescale the equation such that the assump-

tions of Proposition 3.2 are satisfied. Therefore we choose a constant σ such
that

σ ≤ d

2
, σb ≤ δ

32M
, σ2c ≤ δ

32(M + 1)
, (23)

where δ is the constant from Proposition 3.2 and M will be chosen later. If
yn <

σ
2

we define

K = K(y) := ‖u‖L∞(Bd(y)∩{xn≥0}) + ‖ϕ‖C1,γ(Bd(y)∩{xn=0})

+
1

β 0

sup
r≤d

(

r1−α

(

r−n

∫

Br(y)∩{xn≥0}
|f(x)|p′dx

)
1
p′

)

.

Since K(y) ≤ ‖u‖L∞(B+
1 ) + ‖ϕ‖C1,γ(B1∩{xn=0}) + C(n, β0) (M(fp)(y))

1
p we ob-

serve that K(y) is finite almost everywhere. We proceed under the assumption
that K(y) < ∞ and consider ũ(x) := 1

K
u(σx + y). Set f̃(x) := σ2

K
f(σx + y),

F̃ (M, p, r, x) := σ2

K
F

(

K
σ2M, K

σ
p,Kr, σx+ y

)

, and ϕ̃(x) := 1
K
ϕ(σx+ y). It is easy

to check, using (23), that ũ is a W 2,p-viscosity solution of
{

F̃ (D2ũ, Dũ, ũ, x) = f̃ in Bν
2

ũ = ϕ̃ on B2 ∩ {xn = −ν} ,

where ν := yn

σ
. We have that F̃ satisfies (5) with b replaced by bF̃ := σb and c

replaced by cF̃ := σ2c. Moreover, we obtain for all 0 < r < 2

r1−α

(

1

rn

∫

Bν
r (0)

|f̃(x)|p′dx
)

1
p′

≤ σ1+αβ0.

Since βF̃ (0, x) = β(y, σx+ y) we estimate

‖βF̃ (0, ·)‖Lp′ (Bν
1 (0)) =

(

1

σn

∫

Bσ(y)∩{xn>0}
|β(y, x)|p′dx

)
1
p′

≤ C(n)β0 ≤ δ
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provided β0 is chosen sufficiently small.

We proceed similar to [11], [1] and [2] and show that there exist positive
constants µ, K1, K2, C(K2), 0 < α, β < 1, and a sequence of affine functions
lk(x) := ak + bkx for k ∈ N ∪ {−1, 0} such that

(i) ‖ũ− lk‖L∞(B
µk∩{xn≥−ν}) ≤ µk(1+α)

(ii) |ak−1 − ak| + µk−1|bk−1 − bk| ≤ 2K2µ
(k−1)(1+α)

(iii) |(ũ− lk)(µ
kx) − (ũ− lk)(µ

kz)| ≤ C(K2)K1µ
k(1+α)|x− z|β

for all x, z ∈ B1 ∩ {xn ≥ −ν}, and k ≥ 0. Set l−1 = 0 and l0 = 0.

To prove the claim let K1 := C(n, λ,Λ, p), β := α(n, λ,Λ, p) where C,α
are the constants from Theorem 1.10 when it is applied to a function ũ ∈
S∗(λ,Λ, 1, f̃) in Bν

2 . Furthermore, let K2 and ᾱ be the constants from Remark
3.3. We take α < ᾱ(1 − γ), choose µ ≤ 1

4
such that

2 K2(2 µ)1+ᾱ ≤ µ1+α, (24)

and set

M = 4K2

∞
∑

i=0

(

1

4

)iα

≥ 4K2

∞
∑

i=0

µiα. (25)

By definition, (i) and (ii) are satisfied for k = 0. Since ũ ∈ S∗(λ,Λ, 1, f̃ + δ
32

) we
can apply Theorem 1.10 and obtain ‖ũ‖C0,β(Bν

1 ) ≤ 4K1 which is (iii) for k = 0.
Assume now, that (i)–(iii) hold for some k ≥ 0. We will prove that they hold
for k + 1. Define

v(x) :=
ũ(µkx) − lk(µ

kx)

µk(1+α)
.

We have that v is a viscosity solution of










Fk(D
2v,Dv, v, x) = fk + gk in B

ν

µk

2

v = ϕk on B2 ∩
{

xn = − ν

µk

}

,

where

Fk(M, p, r, x) :=µk(1−α)F̃ (µk(α−1)M,µkαp, µk(α+1)r, µkx)

gk(x) :=Fk(D
2v,Dv, v, x)−Fk(D

2v,Dv +µ−kαbk, v+µ
−k(1+α)lk(µ

kx), x)

fk(x) :=µk(1−α)f̃(µkx)

ϕk :=µ−k(1+α)
(

ϕ̃(µkx) − lk(µ
kx)

)

.

Using (i) and ‖ϕ̃‖C1,γ(B1∩{xn=−ν}) ≤ 1 one can check that ‖ϕk‖C1,γ(B1∩{xn=−νµ−k})
≤ 4. We have that βFk

(0, x) = βF̃ (0, µkx) and also Fk satisfies (5) with bFk
=

µkbF̃ and cFk
= µ2kcF̃ . For x ∈ B

ν/µk

1 we infer from (5)

|gk(x)| ≤ bFk
µ−kα|bk| + cFk

µ−k(1+α)|lk(µkx)|.
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From (ii) and (25) we derive ‖lk‖L∞(Bν
1 ), |bk| ≤M and hence |gk(x)| ≤ δ

16
µk(1−α)

where we made use of (23). Therefore

‖fk‖
Lp′ (B

ν/µk

1 )
+ ‖gk‖

Lp′ (B
ν/µk

1 )
≤ δ

2
+ µk(1−α) δ

2
< δ.

We get ‖v‖C0,α(B1∩{xn≥ ν

µk }) ≤ 1 + C(K2)K1 =: C0 from (i) and (iii). Let h ∈
C0(B

ν/µk

1/2 ) be a C2-viscosity solution of

{

Fk(D
2h, 0, 0, 0) = 0 in B

ν/µk

1

h = v on ∂B
ν/µk

1 .

The maximum principle yields ‖h‖
L∞(B

ν/µk

1 )
≤ 1 and we can apply Proposi-

tion 3.2 with ̺ = K2(2µ)1+ᾱ to obtain

‖v − h‖
L∞(B

ν/µk

1 )
≤ K2(2µ)1+ᾱ (26)

provided δ is chosen sufficiently small. From Assumption A∗ (see Remark 3.3)
we derive

‖h‖
C1,ᾱ(B

ν/µk

1/2
)
≤ K2. (27)

Setting l̄(x) = h(0) +Dh(0)x we derive from (24), (26) and (27)

‖v − l̄‖
L∞(B

ν/µk

2µ )
≤ µ1+α.

Set lk+1(x) := lk(x) + µk(1+α)l̄(µ−kx). Since (ũ − lk+1)(µ
1+kx) = µk(1+α)(v −

l̄)(µx) we have that (i) ist satisfied for k + 1. By definition we have ak+1 =
ak + µk(1+α)h(0) and bk+1 = bk + µkαDh(0). Therefore (ii) is an immediate
consequence of (27). It remains to check (iii) for k + 1. Therefore we utilise

(v− l̄) ∈ S∗(λ,Λ, bk, fk +gk + δ
8
) in B

ν/µk

2 . Theorem 1.10, properly scaled, yields
v − l̄ ∈ C0,β(Bµ ∩ {xn ≥ − ν

µk }) and

‖v − l̄‖
C0,β(B

ν/µk
µ )

≤ K1µ
−β

(

µ1+α + µγ‖ϕk − l̄‖C0,γ(Bµ∩{xn=− ν

µk }) + 2µ
2− n

p′ δ
)

.

By choosing δ smaller, if necessary, we have 2 δ ≤ µ
α+ n

p′
−1

. In order to get an
appropriate estimate for the C0,γ norm of ϕk− l̄ on the flat part of the boundary
we recall that h = v = ϕk on B1 ∩ {xn = − ν

µk }. Hence

∣

∣

∣
ϕk

(

x′,
ν

µk

)

− l̄
(

x′,
ν

µk

)∣

∣

∣
≤ K2

∣

∣

∣

(

x′,− ν

µk

)∣

∣

∣

1+ᾱ

.

Clearly, Bµ ∩ {xn = − ν
µk } is empty if ν

µk > µ. Therefore, we have

‖ ϕk − l̄ ‖L∞(Bµ∩{xn=− ν

µk }) ≤ 2 K2µ
1+ᾱ.
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Moreover, we compute

|(ϕk − l̄)(x) − (ϕk − l̄)(z)|
= |(ϕk − l̄)(x) − (ϕk − l̄)(z)|γ|(ϕk − l̄)(x) − (ϕk − l̄)(z)|1−γ

≤ (4 +K2)
γ(4 K2)

1−γ|x− z|γµ(1+ᾱ)(1−γ)

for x, z ∈ Bµ ∩ {xn = − ν
µi}. From the last estimate we derive (iii).

From (i)–(iii) we obtain the existence of an affine function l such that

|l(0)|, |Dl(0)| ≤ CK(y),

‖u− l‖L∞(Br(y)∩{xn≥0}) ≤ Cr1+αK(y).
(28)

If yn ≥ σ
2

we obtain (28) from the proof of [11, Theorem 2.1]. Thus, (28) holds
for every y ∈ B+

1/2 with K(y) < ∞. Choosing p′ = n we may deduce the first

assertion of the theorem from (28), provided K(·) is finite. Applying Hölder’s
inequality to K we get

K(y) ≤ ‖u‖L∞(B+
1 ) + ‖ϕ‖C1,γ(B1∩{xn=0}) +

1

β0

sup
r≤d

(

r
1−α−n

p ‖f‖Lp(B+
1 )

)

.

Thus, in this case K(y) <∞ since α is assumed to satisfy α ≤ 1 − n
p
.

In order to prove the second assertion, we remark that (28) implies

|u(y + x) − u(y)|
|x| ≤ CK(y)

for a.e. y ∈ B+
1/2. Therefore

(
∫

B+
1/2

|u(y + x) − u(y)|q
|x|q dy

)
1
q

≤ C
(

‖u‖L∞(B+
1 ) + ‖ϕ‖C1,γ(B1∩{xn=0}) + I

)

,

where

Iq :=

∫

B+
1/2

sup
r≤d

(

rq(1−α)

(

r−n

∫

Br(y)∩{xn≥0}
|f(x)|p′dx

)
q
p′

)

dy

=

∫

B+
1/2

sup
r≤d

(

r
q(1−α)− qn

p′
+n

(

r−n

∫

Br(y)∩{xn≥0}
|f(x)|p′dx

)

‖f‖q−p′

Lp′ (B+
1 )

)

dy

≤ C sup
r≤d

(

r
q(1−α)− qn

p′
+n

)

(
∫

B+
1

M(fp′)(y)dy

)

‖f‖q−p′

Lp′ (B+
1 )

≤ C sup
r≤d

(

r
(1−α)− n

p′
+n

q

)q

‖f‖p′

Lp(B+
1 )
‖f‖q−p′

Lp(B+
1 )

≤ C‖f‖q

Lp(B+
1 )
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provided p′ ≤ q ≤ np′

n−p′(1−α)
. By choosing α, p− p′ sufficiently small we observe

that the last estimate holds for every p′ ≤ q < p∗ = np
n−p

. We have shown that

sup
|x|<d

(
∫

B+
1/2

|u(y + x) − u(y)|q
|x|q dy

)
1
q

≤ C
(

‖u‖L∞(B+
1 ) + ‖ϕ‖C1,γ(B1∩{xn=0}) + ‖f‖Lp(B+

1 )

)

from which we deduce the second assertion of the theorem.

4. W 2,p-estimates in the measurable ingredients context

In this last section we will relax the continuity assumptions on f and show that
the W 2,p-estimates of Section 2 still hold for equations with a merely measurable
right hand side f . Moreover we extend the results to equations with dependence
onDu and u. These results lead to globalW 2,p-estimates and an existence result
for W 2,p-viscosity solutions of the Dirichlet problem

{

F (D2u,Du, u, x) = f in Ω

u = ϕ on ∂Ω.

The standard reference for W 2,p-viscosity solutions is [3] and we frequently refer
to this work. Note that our definition of uniformly elliptic functions differs in
the sign from that in [3]. Since we will frequently apply [3, Lemma 2.6] we want
to emphasise that this result is also valid under structure condition (5), which
can be observed after an examination of the proof.

We intend to apply Theorem 3.1 in the next subsection to obatin W 2,p-
estimates for equations with dependence onDu and u and boundary data ϕ = 0.
Therefore we have to ensure that Assumption A∗ is satisfied. For the interior
C1,ᾱ estimates we refer to [2, Corollary 5.7] or [12, Theorem 2.1] whereas for
the estimates at the boundary we have the following proposition.

Proposition 4.1. Let u ∈ C0(B+
1 ) be a bounded C2-viscosity solution of

{

F (D2u) = 0 in B+
1

u = 0 on B1 ∩ {xn = 0}.

Assume that F is uniformly elliptic with ellipticity constants λ, Λ. Then there

exists α = α(n, λ,Λ) such that u ∈ C1,α(B+
1/2) and

‖u‖C1,α(B+
1/2

) ≤ C
(

‖u‖L∞(B+
1 ) + |F (0)|

)

for some positive constant C = C(n, λ,Λ).
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Proof. Like in the proof of [2, Corollary 5.7] we use an iteration argument.
Consider vk,γ(x) := 1

hγ (u(x+ hek) − u(x)) for 0 < γ ≤ 1, 0 < h < 1
8

and
1 ≤ k ≤ n, where ek is the k-th unit vector. Note that [2, Proposition 5.5] yields
vk,γ ∈ S(0) in B+

7/8. From [12, Lemma 2.2] we derive vn,γ ∈ C0,β(Br ∩{xn = 0})
and

‖vn,γ‖C0,β(Br∩{xn=0}) ≤ h1−γ C(n, λ,Λ, r)
(

‖u‖L∞(B+
1 ) + |F (0)|

)

,

where 0 < r < 1 and β = β(n, λ,Λ) > 0. For 1 ≤ k ≤ n − 1 we have vk,γ = 0
on B1 ∩ {xn = 0}. From Theorem 1.10 we obtain

‖u‖C0,α(B+
r ) ≤ C(n, λ,Λ, r)

(

‖u‖L∞(B+
1 ) + |F (0)|

)

=: C(n, λ,Λ, r)K ,

where α = α(n, λ,Λ) and 0 < r < 1. By making α smaller if necessary, we may
assume that there exists N = N(n, λ,Λ) ∈ N such that Nα < 1 < (N + 1)α.
We fix constants 3

4
< rN+1 < rN < · · · < r1 = 7

8
and choose h sufficiently small

such that 1
2
(ri+1 + ri) <

1
2
(ri+1 + ri) + h < ri for 1 ≤ i ≤ N .

We start with the iteration process. Theorem 1.10 yields

‖vn,γ‖C0,α(B+
r2

) ≤ C
(

‖vn,γ‖L∞(B+
1/2(r2+r1)

) + ‖u‖L∞(B+
1 ) + |F (0)|

)

≤ C
(

‖u‖C0,γ(B+
r1

) + ‖u‖L∞(B+
1 ) + |F (0)|

)

,

where C = C(n, λ,Λ, r1, r2). Choosing γ = α we obtain ‖vn,α‖C0,α(B+
r2

) ≤ CK.

After repeating the preceeding argument for v1,γ , . . . , vn−1,γ we infer from [2,
Lemma 5.6] ‖u‖C0,2α(B+

r1
) ≤ CK. In the next step we choose γ = 2α in order to

get u ∈ C0,3α(B+
r3

) and the corresponding estimate.

We repeat this process until we can choose γ = Nα. In this case [2,
Lemma 5.6] yields u ∈ C0,1(B+

3/4) and ‖u‖C0,1(B3/4) ≤ C(n, λ,Λ)K. Finally,
we carry out the iteration argument for γ = 1 to derive the claim.

4.1. W 2,p-estimates for viscosity solutions.

Theorem 4.2. Let u be a bounded W 2,p-viscosity solution of

F (D2u,Du, u, x) = f(x) in B1.

Assume that f ∈ Lp(B1) and that F is convex in M , and satisfies F (0, 0, 0, ·) ≡
0 and structure condition (5) for a.e. x in B1. Then there exist constants ǫ0 =
ǫ0(

Λ
λ
, n, b), β0 = β0(n, λ,Λ, p) and C = C(n, λ,Λ, b, c, p, r0) for n− ǫ0 < p < ∞

such that the following holds: If

(

1

|Br(x0)|

∫

Br(x0)

β(x, x0)
ndx

)
1
n

≤ β0

for all x0 ∈ B1 and 0 < r < r0, then u ∈ W 2,p(B1/2) and

‖u‖W 2,p(B1/2) ≤ C
(

‖u‖L∞(B1) + ‖f‖Lp(B1)

)

.
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Theorem 4.3. Let u be a bounded W 2,p-viscosity solution of

{

F (D2u,Du, u, x) = f in B+
1

u = 0 on B1 ∩ {xn = 0}. (29)

Assume that f ∈ Lp(B+
1 ) and that F is convex in M , and satisfies F (0, 0, 0, ·) ≡

0 and structure condition (5) for a.e. x in B+
1 . Then there exist constants

ǫ0 = ǫ0(
Λ
λ
, n, b), β0 = β0(n, λ,Λ, p) and C = C(n, λ,Λ, b, c, p, r0) where n− ǫ0 <

p <∞, such that the following holds: If

(

1

|Br(x0) ∩B+
1 |

∫

Br(x0)∩B+
1

β(x0, x)
ndx

)
1
n

≤ β0

for any x0 ∈ B+
1 and 0 < r < r0, then u ∈ W 2,p(B+

1/2) and

‖u‖W 2,p(B+
1/2

) ≤ C
(

‖u‖L∞(B+
1 ) + ‖f‖Lp(B+

1 )

)

. (30)

Remark 4.4. Unlike [5, Theorem 1] and Theorem 2.16 we have replaced the
hypotheses on C1,1-estimates by convexity of F in M . This is because we prove
Theorems 4.2 and 4.3 by approximating F by functions Fj that satisfy the
assumptions of [5, Theorem 1] and Theorem 2.16. Therefore it is required that
the Fj satisfy the hypothesis on C1,1-estimates uniformly in j. Convexity in M
guarantees this.

Since the proofs of both theorems are very similar we restrict ourselves to
the proof of Theorem 4.3.

Proof of Theorem 4.3. Initially we show that it suffices to prove the assertion
for equations without dependence on Du and u. We infer from [3, Theorem 3.6]
that u is pointwise twice differentiable a.e. and satisfies F (D2u,Du, u, x) =
f pointwise a.e. Let f̃(x) := F (D2u, 0, 0, x). From (5) we derive |f̃(x)| ≤
b|Du(x)| + c|u(x)| + |f(x)| for a.e. x ∈ B+

1 , and hence by Theorem 3.1 f̃ ∈
Lp(B+

1 ) provided β0 is chosen small enough. Thus [11, Corollary 1.6] yields
that F (D2u, 0, 0, x) = f̃ in B+

1 in the W 2,p-viscosity sense. Assuming that the
theorem is already proven for equations without dependence on Du and u we
get

‖u‖W 2,p(B+
1/2

) ≤ C
(

‖u‖L∞(B+
1 ) + ‖f̃‖Lp(B+

1 )

)

from which we derive (30). Henceforth we assume u to be a W 2,p-viscosity
solution of

{

F (D2u, x) = f in B+
1

u = 0 on B1 ∩ {xn = 0} ,
where F (M,x) := F (M, 0, 0, x).
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Let φ ∈ C∞
0 (Rn) with supp φ ⊂ R

n
−, φ ≥ 0,

∫

φ = 1 and set φj := jnφ(jx)
for j ∈ N. For x ∈ B+

1 we consider the convolution with F

Fj(M,x) :=

∫

φj(x− y)F (M, y)dy,

where F is extended by 0 outside B+
1 . Note that Fj is convex in M , Lipschitz

continuous, Fj(0, ·) = 0, and uniformly elliptic with the same ellipticity con-

stants as F . We approximate f in Lp by functions fj ∈ C∞(B+
1 ) ∩ Lp(B+

1 ).
From Proposition 1.11 we derive the existence of C2-viscosity solutions uj of

{

Fj(D
2uj, x) = fj in B+

1

uj = 0 on ∂B+
1 ,

where ∂B+
1 = (B1 ∩ {xn = 0})∪(∂B1 ∩ {xn > 0}). Convexity of F in M implies

the hypothesis on C1,1-estimates in Theorem 2.16. So it remains to check that
βFj

satisfies the assumptions of Theorem 2.16. For x0 ∈ B+
1−δ and 0 < δ < 1 we

obtain βFj
(x, x0)

n ≤
∫

B1/j(0)
φj(y)βF (x− y, x0 − y)ndy. And hence for 0 < r < δ

(

1

|Br(x0) ∩B+
1 |

∫

Br(x0)∩B+
1

βFj
(x, x0)

ndx

)
1
n

≤
(

∫

B1/j(0)

φj(y)
1

|Br(x0) ∩B+
1 |

∫

Br(x0−y)∩B+
1

βF (x, x0 − y)ndxdy

)
1
n

≤ β0.

Therefore the hypotheses of Theorem 2.16 are satisfied and hence

‖uj‖
W 2,p

(

B+
1/2

) ≤ C
(

‖uj‖L∞(B+
1 ) + ‖fj‖Lp(B+

1 )

)

.

A standard covering argument yields uj ∈ W
2,p
loc (B+

1 ). From the generalised max-
imum principle, [6, Theorem 1.2], we infer that {uj}j∈N is uniformly bounded in
W 2,p(B+

ρ ) for 0 < ρ < 1. Since M−(D2uj−D2uk) ≤ fj−fk ≤ M+(D2uj−D2uk)
we apply [6, Theorem 1.2] again and obtain

‖uj − uk‖L∞(B+
1 ) ≤ C(n, λ,Λ, b)‖fj − fk‖Lp(B+

1 ).

We have shown that {uj} is a Cauchy-sequence in C0(B+
1 ) which implies uj −→

v in C0(B+
1 ) for some v ∈ C0(B+

1 ). Since uj is bounded in W 2,p
(

B+
1/2

)

we have

uj −→ v weakly in W 2,p
(

B+
1/2

)

and hence by the lower semicontinuity of the
norm

‖v‖W 2,p(B+
1/2

) ≤ C
(

‖v‖L∞(B+
1 ) + ‖f‖Lp(B+

1 )

)

.
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Next, we prove that v is a W 2,p-viscosity solution of the original Dirichlet-
problem. We consider test functions ψ ∈ W 2,p(Br(x0)) for Br(x0) ⊂ B+

1 and
get Fj(M,x) → F (M,x) whenever x is a Lebesgue point of F (M, .). Since F is
uniformly elliptic and F (0, x) = 0 we get

|F (M,x)| ≤ Λ‖M‖ (31)

which implies that, for fixed M , a.e. x ∈ B+
1 is a Lebesgue point of F . Let S̃(n)

be a countable, dense subset of S(n), and L(M) be the set of Lebesgue points
of F (M, ·). Then |⋂M∈S̃(n) L(M)| = |B+

1 |, as a countable union of Nullsets
is a Nullset. Since F is uniformly continuous in M , almost every x ∈ Ω is a
Lebesgue point of F (D2ψ, .) and hence

Fj(D
2ψ(x), x) → F (D2ψ(x), x)

for a.e. x ∈ B+
1 . From (31) it follows that Fj(D

2ψ, ·) is dominated in Lp.
Lebesgue’s Theorem implies that the hypotheses of Proposition 1.5 are satisfied
and hence v is a W 2,p-viscosity solution of (29).

It remains to show that we have u = v. Since v ∈ W
2,p
loc (B+

1 ) ∩ C0(B+
1 ) we

get that w := u−v is a W 2,p-viscosity solution in S(0). The maximum principle
and w = 0 on ∂B+

1 yield ‖w‖L∞(B+
1 ) ≤ 0.

Theorem 4.5. Let n − ǫ0 < p < ∞, Ω ⊂⊂ R
n, ∂Ω ∈ C1,1 and u be a W 2,p-

visocsity solution of
{

F (D2u,Du, u, x) = f in Ω

u = ϕ on ∂Ω ,

where f ∈ Lp(Ω), ϕ ∈ W 2,p(Ω). Assume that F satisfies (5) for a.e. x,

F (0, 0, 0, ·) ≡ 0 in Ω and that F is convex in M . Then there exists a con-

stant β0 such that the following holds: If

(

1

|Br(x0) ∩ Ω|

∫

Br(x0)∩Ω

β(x, x0)
ndx

)
1
n

≤ β0

for x0 ∈ Ω, 0 < r < r0 and β0 = β0(n, λ,Λ, p, r0), then u ∈ W 2,p(Ω) and

‖u‖W 2,p(Ω) ≤ C
(

‖u‖L∞(Ω) + ‖ϕ‖W 2,p(Ω) + ‖f‖Lp(Ω)

)

, (32)

where C = C(n, λ,Λ, b, c, p, r0,Ω).

Proof. At first we show that it suffices to prove the claim for ϕ = 0. For
u = u− ϕ+ ϕ =: w + ϕ we have that w is a W 2,p-viscosity solution of

{

G(D2w,Dw,w, x) = g in Ω

w = 0 on ∂Ω ,
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where G(M, p, r, x) := F (M + D2ϕ, p + Dϕ, r + ϕ, x) − F (D2ϕ,Dϕ, ϕ, x) and
g(x) := f(x) − F (D2ϕ,Dϕ, ϕ, x). We infer from (5)

|g(·)| ≤ |f(·)| + C(λ,Λ, b, c)
(

‖D2ϕ(·)‖ + |Dϕ(·)| + |ϕ(·)|
)

and hence g ∈ Lp(Ω). Assuming that the theorem is already proven for ϕ = 0
we obtain ‖w‖W 2,p(Ω) ≤ C(‖w‖L∞(Ω) + ‖g‖Lp(Ω)) which implies (32). From now
on we assume ϕ = 0.

Now the claim follows from a standard covering argument and Theorems 4.2
and 4.3. In order to apply Theorem 4.3 we have to flatten the boundary first.
Since ∂Ω ∈ C1,1, for any x0 ∈ ∂Ω there exists a neighborhood U(x0) and a
C1,1-diffeomorphism

Ψ : U(x0)
∼=−→ B1(0)

such that Ψ(x0) = 0, Ψ(U(x0)∩Ω) = B+
1 . For ϕ̃ ∈W 2,p(B+

1 ) we set ϕ = ϕ̃◦Ψ ∈
W 2,p(U(x0)) and obtain Dϕ = (Dϕ̃ ◦ Ψ)DΨ, and

D2ϕ = DΨT
(

D2ϕ̃ ◦ Ψ
)

DΨ + ((Dϕ̃ ◦ Ψ) ∂i,jΨ)1≤i,j≤n .

Therefore we have for ũ = u ◦ Ψ−1 ∈ C0(B+
1 )

F (D2ϕ,Dϕ, u, x) ◦ Ψ−1 = F (DΨT ◦ Ψ−1D2ϕ̃ DΨ ◦ Ψ−1

+
(

Dϕ̃ ∂i,jΨ ◦ Ψ−1
)

1≤i,j≤n
,

Dϕ̃ DΨ ◦ Ψ−1, ũ,Ψ−1(x)) =: F̃ (D2ϕ̃,Dϕ̃, ũ, x).

Consequently ũ is a W 2,p-viscosity solution of F̃ (Dũ,Dũ, ũ, x) = f̃(x) in B+
1

where f̃ := f ◦Ψ−1. Note that the function F̃ ist convex in M , F̃ (0, 0, 0, x) = 0,
and F̃ (M, 0, 0, x) = F (DΨT ◦Ψ−1M DΨ◦Ψ−1, 0, 0,Ψ−1(x)) from which we con-
clude βF̃ (x, x0) ≤ C(Ψ)βF (Ψ−1(x),Ψ−1(x0)). Moreover, F̃ is uniformly elliptic
with ellipticity constants λC(Ψ),ΛC(Ψ). Therefore F̃ satisfies the assumptions
of Theorem 4.3.

Finally, we use the previous estimates to derive an existence result for W 2,p-
viscosity solutions.

Theorem 4.6. Assume that the hypotheses of Theorem 4.5 hold. Additionally

we assume that F is non-increasing in r. Then there exists a unique W 2,p-

viscosity solution u of
{

F (D2u,Du, u, x) = f in Ω

u = ϕ on ∂Ω.
(33)

Moreover u ∈ W 2,p(Ω) and

‖u‖W 2,p(Ω) ≤ C
(

‖u‖L∞(Ω) + ‖ϕ‖W 2,p(Ω) + ‖f‖Lp(Ω)

)

.



W 2,p and W 1,p-Estimates at the Boundary 163

Proof. We proceed similar to the proof of Theorem 4.3 and consider a standard
mollifier φ ∈ C∞

0 (Rn) with supp φ ⊂ R
n
−, φ ≥ 0,

∫

φ = 1 and set φj := jnφ(jx)
for j ∈ N. For x ∈ B+

1 we consider the convolution with F

Fj(M, p, r, x) :=

∫

φj(x− y)F (M, p, r, y)dy,

where F is extended by 0 outside Ω. Note that Fj is convex inM , non-increasing
in r, and satisfies (5), and Fj(0, 0, 0, x) = 0. We approximate f in Lp by

functions fj ∈ C∞(B+
1 )∩Lp(B+

1 ). From Proposition 1.11 we derive the existence
of C2-viscosity solutions uj of

{

Fj(D
2uj, Duj, uj, x) = fj in Ω

uj = ϕ on ∂Ω.

Similar to the proof of Theorem 4.3 we obtain that βF̃j
satisfies the hy-

potheses of Theorem 4.5 and hence

‖uj‖W 2,p(Ω) ≤ C
(

‖uj‖L∞(Ω) + ‖ϕ‖W 2,p(Ω) + ‖fj‖Lp(Ω)

)

. (34)

From the last inequality and the generalised maximum principle we infer that
uj is uniformly bounded in W 2,p(Ω). Since W 2,p(Ω) is reflexive there exists
u ∈ W 2,p(Ω) and a subsequence such that uj → u weakly in W 2,p(Ω). We have
p > n

2
and hence there exists another subsequence such that uj → u in C0(Ω).

From the weak convergence we infer that (34) holds for u, and similarly to the
proof of Theorem 4.3 we obtain

‖Fj(D
2φ,Dφ, uj, ·) − F (D2φ,Dφ, u, ·)‖Lp(Br(x0)) → 0 ,

where φ ∈ W 2,p(Br(x0)), Br(x0) ⊂ Ω. By Proposition 1.5, u is a viscosity
solution of (33) and hence it is also a strong solution. Uniqueness follows
from [3, Theorem 2.10].
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