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W?? and W!P-Estimates at the Boundary
for Solutions of Fully Nonlinear,
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Abstract. In this paper we extend Caffarelli’s result on interior W?2P-estimates for
viscosity solutions of uniformly elliptic equations and prove W?2P-estimates at a flat
boundary. Moreover we extend a result of A. Swiech and prove WlP-estimates at
the boundary. Thereafter we combine these results and prove global W2P-estimates
for equations with dependence on Du and w. Finally, we show that the previous
estimates lead to an existence result for W2P-strong solutions.
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Introduction

We consider viscosity solutions u € C°(Q2) of the Dirichlet problem

in

F(D?u, Du,u,x) (1)
U= on 0f)

on a bounded domain Q C R™. Let F': S(n) x R" x R x Q@ — R where S(n)
is the set of symmetric n x n matrices, equipped with its usual order: For
M,N € S(n) we write M < N if and only if the matrix N — M is positive
semi-definite. Throughout this paper we deal with uniformly elliptic equations,
i.e., there exist constants 0 < A < A < oo such that

MNI < F(M+ N,p,r,z) = F(M,p,r,x) < A N||

holds for M, N € S(n), N >0, p € R", r € R and = € 2, where the matrix-
norm || - || is defined by [[M|| := sup,—; [Mz|.
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L. Caffarelli proved in [1] that viscosity solutions of
F(D*u,x) = f(z) in By = By(0) (2)
satisfy u € W*P(By2) and the interior estimate

[ullwzes, ) < C (el ooy + 1 fll o)) -

This result was proved under the following assumptions: F' is continuous, f €
L*(B;) N C°(By) for n < p < oo, F is uniformly elliptic and satisfies additional
assumptions on the oscillation in z and on the existence of C'l-estimates for
solutions of the equation without dependence on x; see [1, Theorem 1] for the
precise statement.

In the present paper we are going to show that a similar result holds at a
flat boundary. More precisely, denoting QF := QN {z,, > 0}, we prove that
viscosity solutions of

on By N{zx, =0} (3)

u =

{ F(D?*u,x) = f in By
0

satisfy u € WQM"’(Bl /2) and that the corresponding estimate holds; see Theo-
rem 2.2. The method of proof is similar to that of Caffarelli: First we show
how to obtain estimates for paraboloids (i.e., polynomials of degree 2) at the
boundary. Then we iterate these estimates to prove the theorem. Note that a
result of this type has already been stated by L. Wang in the parabolic case,
see [13, Theorem 5.8], but without a proof. It is possible to extend Theorem 2.2
with L. Escauriaza’s method [5] to the range p > n — ¢y where ¢y depends only
A

on 3 and n.

Thereafter we consider equations with measurable ingredients, allowing p >
n—¢p and prove W1P-estimates at the boundary for uniformly elliptic equations
with dependence on Du and u, see Theorem 3.1. This result is a generalisation
of a theorem due to A. Swiech, see [11] and also [1] and [2].

In the last section we extend the boundary estimates of Section 2 to equa-
tions without the continuity assumption on f and F in z. First we consider (2)
and (3) with F(D?u, x) replaced by F(D?u, Du,u,z) and prove W*P-estimates
similar to those above, see Theorems 4.2 and 4.3. Combining these estimates
we obtain global W?P-estimates for viscosity solutions of Dirchlet problem (1).
Finally we use the previous results to derive an existence result for W?%P-strong
solutions of Dirichlet problem (1).

Recall that a strong solution of

F(D*u, Du,u,z) = f in Q (4)
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is a function u € W2 () such that the equation is satisfied almost everywhere
in ) after inserting the weak derivatives. The definition of subsolutions and
supersolutions is similar.

For the reader’s convenience we have collected preparatory material in the
first section: We recall the notion of viscosity solutions and some basic prop-
erties. We will introduce Pucci’s extremal operators to characterise viscosity
solutions of an important class of fully nonlinear equations. Moreover we re-
call the Alexandroff maximum principle, the Harnack inequality and prove the
weak Harnack inequality at the boundary. From these results one deduces global
Holder regularity in the standard way.

Acknowledgement. I would like to thank Professor Reiner Schatzle for in-
troducing me to this problem, for many helpful discussions and valuable sug-
gestions. Moreover, I would like to express my gratitude to the referee for his
careful reading of the present paper and his sophisticated remarks. Especially,
Remark 2.3 is due to the referee.

1. Preliminaries

1.1. Definitions and basic properties. For the reader’s convenience we re-
call the definition of viscosity solutions of fully nonlinear equations and provide
a brief collection of basic results related to the notion of viscosity solution.

Definition 1.1. Let f, F' be continuous in all variables. A upper (lower) semi-
continuous function w is a C*-viscosity subsolution (supersolution) of (4), if, for

all o € C?(B,(zo)) whenever B,.(zy) C 2, € > 0 and
F(D*p(w0), Dp(0), u(z0), %) < f(w0) — €
(F(D*¢(x0), Dp(o), u(wo), w0) > f(z0) +€),

u— can not attain a local maximum (minimum) at zo. uis called a C*-viscosity
solution of (4), if u is both a subsolution and a supersolution.

Without the continuity assumption on f we consider

Definition 1.2. Let F' be continuous in M, p, r, measurable in x and we assume
fe L] () for p > §. A continuous function u is a W?2P_viscosity subsolution

(supersolution) of (4), if, for all p € W?P(B,(z,)) where B,(z¢) C 2, € > 0 and

F(D*p(x), Dp(z), u(x),z) < f(z) — €
(F(D*p(x), Dop(x),u(w),z) = f(z) + )
almost everywhere in B, (), then u — ¢ can not attain a local maximum (min-

imum) at xo. u is called a W?2P-viscosity solution, if u is both a subsolution and
a supersolution.
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We say that F(D?*u, Du,u,z) > (<,=)f in Q in the C? or W?Eviscosity
sense whenever u is a C? or W?P-viscosity subsolution (-supersolution,-solution).
We refer to [2, Chapter 2] for basic properties of C?-viscosity solutions.

In order to define the set of viscosity solutions of a certain class of uniformly
elliptic equations we introduce Pucci’s operators: Let 0 < A < A be given
constants. For M € S(n) we define:

MENA M) =A> e+ A e, MT(ALAM):=X) e+A) e,
e; >0 e; <0 e; >0 e; <0

where e; are the eigenvalues of M. We will write M*(M) = M*()\, A, M) when
the choice of A\, A is clear. Again we refer to [2] for the properties of Pucci’s
operators. Consider

LEON A byu) = ME(A\ A, D*u) + b Dyl
to define the class S:
Definition 1.3. Let b > 0, 0 < A < A be given constants. We define the
classes S(A\, A, b, f) and S(\, A, b, f) to be the set of all continuous functions u

that satisfy LTu > f, respectively L~ u < f in the C? or W?P-viscosity sense
in 2. We define

SAAD, f) = SN AL f)NSA AL, f)
S* (AN AL f) = E(A,A,b, ) NS A b, —|f]).
The notation of the class S is independent of the type of viscosity solution.
To make the notation clear we emphasise that in the continuous case we always

deal with C2-viscosity solutions. In this case C*-viscosity solutions are TW?2P-
viscosity solutions, see [3] for further details.

Continuous functions u € S, S and S are called supersolutions, subsolutions
and solutions, respectively. We write S, S, S(\, A, b, f) = S, S, S(b, f) when the
choice of the ellipticity constants is understood. The following Proposition is a
direct consequence of the previous definitions.

Proposition 1.4. Let F(M,p,r,x) be uniformly elliptic with ellipticity con-
stants X\, A and let u be a C* or WP -viscosity subsolution (supersolution) of (4).
We assume that F' satisfies the following structure conditions:

F(M,p,r,z) — F(N,q,s,0) < MT(M — N) +blp — ¢
(F(M,p,r,x) — F(N,q,s,2) > M~ (M — N) = blp — q|),
where b > 0 s a constant. Then
MF(D*u) 4 b|Du| + F(0,0,u,z) > f
(M~ (D*u) — b|Du| + F(0,0,u,z) < f)

in the C? or W*P-viscosity sense.
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We introduce another structure condition that will be frequently used in
this paper:

MT(MAM —N) —blp—q| —clr — s
< F(M,p,r,x) — F(N,q,s,z) (5)
< MF(NA, M —N)+blp — q| + c|r — 5]

for all M;N € S(n), p,g € R", r,s € R, x € Q, and constants b,c € R,.
Clearly, for p = ¢, = s, condition (5) implies that F' is uniformly elliptic. Note
that whenever I is assumed to be merely measurable in x we understand (5)
to hold for a.e. x € Q) only.

We state a stability result for W?2P-viscosity solutions. Except for some
straightforward modifications the proof of the following lemma is the same as
the proof of [3, Theorem 3.8].

Proposition 1.5. For k € N let Q) C ki1 be an increasing sequence of
domains and Q = J,o Q. Let p > n — eo(%,n, b, diam(Q)) and F, F}, be
measurable in x and satisfy structure condition (5). Assume f € LP(Q), fir €
LP () and that u, € C°(Q) are WP-viscosity subsolutions (supersolutions)
of F(D?uy, Dug, ug, ) = fi in Qx. Suppose that ux — u locally uniformly in

and that for B.(z¢) C Q and ¢ € W?P(B,(xq)) we have

(g = g6) " | Lo (B (zo)) — O (I(g = g&) "l r(B (o)) — O) (6)

where g(x) := F(D*p, Do, u, x) = f(z) and gi(x) := Fi(D*¢, D, up, x) = fi(x).
Then u is an W>P-viscosity subsolution (supersolution) of F(D*u, Du,u,z) = f
in Q. Moreover, if F, f are continuous, then wu is an C*-viscosity subsolution
(supersolution) provided that (6) holds for ¢ € C?*(B,(xg)).

We proceed with a first existence result for C2-viscosity solutions. A more
general version will be proven at the end of this section.

Proposition 1.6. Let Q CC R" be open and OS2 satisfy a uniform exterior
sphere condition, i.e., there exists a radius ro > 0, such that for every xy € 052
there exists a ball B,,(z) such that QN B, (20) = {x0}. Suppose that f € C°(Q)
is bounded, o € C°(9Q) and that F = F(M,p,r,x) is Lipschitz continuous in x,
and satisfies F'(0,0,0,2) =0, (5), and

dir—s) < F(M,p,s,x) — F(M,p,r,z) (7)

forallz € Q, p,e R", r,s e R, r > s, M € S(n), and a constant d € R,..
Then there exists a C*-viscosity solution u of Dirichlet problem (1).
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Proof. In order to apply Perron’s method we need a comparison result and the
existence of subsolutions and supersolutions of (1). We show how to construct
supersolutions first. Consider functions

Vzo.e(T) = p(x0) + € + Caw(|z — 20])

for any zo € 99, € > 0 and w(r) := 7 (ry” —r~7), where 0,7 are positive
constants and rq is the radius of the exterior sphere condition. A straightforward
computation yields F(D?vy, ¢, Dvzy ¢, Vage, ) < —76 < 0 in Q for a constant
6 > 0, provided that o is chosen large enough. Set 7 = sup fT_ to obtain
F(D*0y ¢, DUy Uage, ¥) < f. We extend ¢ such that ¢ € C°(€), choose the
constant C, such that ¢(xg) + € + Cow(|z — 20]) > () for z € Q and set

v(x) = ( inf vmo,e(x))

20€0N, €>0 *

for z € Q, i.e., v is the lower semicontinuous envelope of the function in brack-
ets. From [4, Lemma 4.2] we infer that v is a supersolution. Moreover we
get v(x) — p(xg) < €+ Cav(|lz — 2|), where g € 9Q, z € Q, ¢ > 0 and
hence v*(xg) = ¢(xy) on I2. The construction of subsolutions is similar. Since
F' is Lipschitz continuous in x the hypotheses of the comparison result given
by [4, Theorem 3.3] are satisfied. Therefore Perron’s method [4, Theorem 4.1]
is applicable. [l

1.2. Maximum principle, Harnack inequality and Holder regularity.
We state the Alexandroff-Bakelman-Pucci maximum principle for C2-viscosity
solutions; see [3, Appendix A] for a proof of the following Theorem.

Theorem 1.7 (Alexandroff-Bakelman-Pucci). Assume that Q@ CC R" is open
and diam(S d, u € C°Q) and f € L"(Q) N CQ). Then there exists a

<
constant C(n, X\, A, b,d) such that for all C*-viscosity subsolutions u € S(b, f)

Slépu < S;Qp u’ + C(n, A, A, b, d)HfHL"(I‘ZIﬂ{u>O})

and for all C?-viscosity supersolutions u € S(b, f)
Slglzp U< Sgl)lg%) u” +C(n, A\ AL b, d)||f”Ln(F;m{u<o})
holds. The set TV =T (u, Q) is the upper contact set of u, defined as
I (u, Q) :={xeQ;IpeR":uly) <u(x)+ply—x) for ally € Q}
and I';, =T (u,Q) is the lower contact set of u,

I (4, Q) :={xeQIpeR":uly) > ulx)+ plx —vy) for aly € Q}.
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The Harnack inequality for C%viscosity solutions in S*(\, A, 0, f) was proven
by L. Caffarelli in [1], see also [2, Theorems 4.3 and 4.8]. In [7, Chapter 5]
P. Fok proved the Harnack inequality and interior Holder continuity for 1/ 2n—<o-
viscosity solutions in S*(\, A, b, f), see [7, Theorem 5.20, Theorem 5.21].

The weak Harnack inequality, however, is proven only for the case p > n
and W%P-viscosity solutions in S(\, A, b, f). Therefore we show how to prove
the weak Harnack inequality for p > n — €.

Proposition 1.8 (Weak Harnack inequality). Let p > n — ¢ (n, %, b). Suppose
u € S\ AD, f) in B, = B,(0) in the W*P-viscosity sense satisfies u > 0 in B,
where f € LP(B,). Then

o [l < O inf w + ol fllzocs,):
p/2

where pg > 0, C' depend only on n, X\, A, and b.

Proof. We prove the claim for p = 1. According to [3, Proposition 3.1], there
exists a strong solution v € W2(B,) of —M*(D?v) — b|Dv| > |f| in B, such
that v = 0 on 0B, v > 0 in B,(0), and |[v||z=(5,) < C|f||r(,) Where C' =
C(n, A\, A, p,b). Consequently u+v € S(\,A,b,0) and [7, Corollary 5.9] yields

Hu_'_UHLpO(Bl/Q(O)) < C(n, A A D) inf (u+w).
B1/2(0)

Combining these estimates we derive the assertion for p = 1. A scaling argument
completes the proof. O

Proposition 1.9 (Weak ‘Harnack inequality at the boundary). Assume p >
n — eo(n, %,b). Let u € S(\, A, b, f) in Q in the W?P-viscosity sense satisfy
u € C%Q), and u > 0. Suppose that f € LP(Q) and define

min(u,m) in Q,(0)NQ

m in Q,(0)\ Q.

m:= inf wu and u™ = {
20NQ,(0)

Then

P l[ulllzro@, a0 < C(Qinf(o) u” -+ pll flln@uorm )

p/2

where pg > 0, C' are universal constants.

Proof. The assertion follows from Proposition 1.8, provided that we prove u™ €
S\ AD, f1) in Q,(0), where f* := max(f,0). First of all we observe that
u™ € C°Q,(0)). We extend f by 0 outside 2 and continue to denote the
extension by f. Since f* > f we get u € S(\, A, b, fF) in Q. Moreover, f* >0
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yields v € S(\, A, b, f1) in Q, for any constant function v. Consider x5 € Q,(0)
and ¢ € W*P(B,(xy)) such that

M (D*p(x)) = b|Dyp(x)| > f*(x) + ¢

holds for a.e. x € B,(xg). If u™(xg) = u(zy) < m, we have xy € Q and u™ = u
near xo. Consequently, ™ — ¢ cannot attain a local minimum at z.

If u™(x¢) = m we assume that u™ — ¢ attains a local minimum at x, and
deduce m — p(zg) = u™(z0) — p(xo) < u™ —p < m— . This is a contradiction
as we have already seen that constant functions are supersolutions. O]

Combining the weak Harnack inequality at the boundary with the interior
Holder estimate, [7, Theorem 5.21], we obtain global Hélder continuity in the
standard way.

Theorem 1.10. Assume p > n — €y and that uw € S*(\, A, b, f) in Q in the
W?2P_viscosity sense satisfies u = @ on an open boundary portion T C O
where f € LP(Q), and ¢ € C%5(T). Assume that T satisfies a uniform exterior
cone condition, i.e., for all xy € T there exists a cone V,, congruent to some
fized cone V, such that V ,,NQ = {xo}. Thenu € CO(Y) for any Q' cC QUT
where a = a(n, A\, A, b,p,V, 3) and

lullcos@y < C (lullze@) + lellcosy + 1fllzre)

for some constant C' = C(n,\,\,b,p,V,d) where d = dist(Q,0Q \ T). If
' =Q, d is to be replaced by diam(€).

We complete this subsection with a further existence result for C?-viscosity
solutions which is needed in the following sections.

Proposition 1.11. Let Q@ CC R"™ and 0S) satisfy a uniform exterior sphere
condition. Assume that F'(M,p,r,x) is continuous on S(n) x R x R x €, non-
increasing in r, and satisfies structure condition (5) and F(0,0,0,2) = 0. Then
for f € C%Q), bounded, and o € C°(ORQ) there exists at least one C*-viscosity
solution u of Dirichlet problem (1).

Proof. We set Fs(M,p,r,x) := F(M,p,r,z) — or for 6 > 0 and observe that Fj
satisfies (7). We have |F5(M,p,r,x)] < A||M| +0b |p| + 2 ¢ |r| if ¢ is chosen
sufficiently small and consider, for € > 0, the sup-convolutions

1
FE(M7P7T7 l’) ‘= sup <F5<M7pa T?Z/) - —‘513' - y|2>
yEQ 26

Sub-convolutions were introduced by R. Jensen in [9], see also Chapter 5 in [2].
Similar to the proof of [2, Lemma 5.2] we obtain that F§ is Lipschitz continuous
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in 2 with Lipschitz constant 2diam(€2). It is easy to check that Fj satisfies (5),
(7), and that F$(0,0,0,2) = 0 holds. The assumptions of Proposition 1.6 are
satisfied, and hence there exists a C*-viscosity solution u§ of

F§(D?u§, Du§, u§, ) = f in Q
us = ¢ on 0f2.

Next we prove that u§ converges to a C*-viscosity solution u of the original
Dirichlet problem. Therefore we check that Ff(M,p,r,x) — F(M,p,r,x) uni-
formly on compact subsets of S(n) x R* x R x Q and, u§ — wu uniformly
on compact subsets of 2. From [2, Lemma 5.2] we infer Fs(M,p,r z9) <
F¢(M,p,r,x0) < F5(M,p,r,xf) and

w0 — wg|* = 2¢ (Fs(M, p, 7, 25) — F5 (M, p,7,20)) < e C (| M|+ [pl + |r[),

where C' = C(A,b,c), 70 € ¥ CcC Q, 25 € Y, M € S(n), p€ R*, and r € R. If
M, p, r are bounded we conclude z§ — z as € — 0. Note that F' is uniformly
continuous on compact subsets of S(n) x R" x Rx 2 and hence F5(M, p,r,zo) —
Fs(M,p,r, o) uniformly on compact subsets of S(n) x R” x R x Q. Clearly,
we also have Fs(M,p,r,xo) — F(M,p,r, xy) uniformly on compact subsets of
S(n) x R x R x .

Since Fj is non-increasing in r we may apply the Alexandroff maximum
principle, Theorem 1.7 and obtain

uglle @) < lellze@a) + C(n, A, A, b, diam(Q)) || f||r ) =: K.

We deduce u§ € S*(\, A, b, f + 2cK) and thus Theorem 1.10 yields that uj is
uniformly bounded in C%*()) for Q' CC Q.

It remains to show that uj§ achieves the boundary value in an equicontinuous

manner. Fix o > 0 and let o € 99 be arbitrary. For u := v,,, from the
proof of Proposition 1.6 we have that M™*(D?u) + b|Du| + @~ < f. Moreover
we may assume ¢ < @ on Jf). Consequently, v := u§ — @ is a C*-viscosity

subsolution of Ff(D?*v, Dv,v,x) = 0 in Q. From the maximum principle we
infer supgv < supyg(p — @) < 0 and hence u§ < w. Similarly we obtain
u§ > u = (xg) — 0 — Cow(] - —2p|) where w, 29, C, are the same as in the proof
of Proposition 1.6. Therefore we have |u§(x) — p(z0)| < 0+ C,w(|x — 20|) < 20,
provided that |z — x| is sufficiently small.

Finally, by Arzela—Ascoli’s theorem we obtain the existence of u € C°(Q)
and a subsequence such that u§ — u in C°(Q). O

2. W?P-estimates at the boundary

The aim of this section is to prove W2P-boundary estimates for C?-viscosity
solutions. Before we state the theorem, we introduce the function  in order to
measure the oscillation of F' in x:
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Definition 2.1. Let F': S(n) x @ — R™ be continuous in z. We define

F(M,z) — F(M
ﬁF(l‘yy) = 5(£L'7y) = sup | ( ,.CE) ( 7y)’
MeS(n)\{0} || M|

An important hypothesis on F' will be

Assumption A: We assume that the function F satisfies interior and boundary
Cllestimates, i.e. for xyp € By and wy € C°(0B;) there exists a solution

w € C%(B;) N C°(By) of

{ F(D*w,z9) =0 in B

w=wy on dB;

such that ||w||cl,1(§1/2) < ¢e||lwo|| (o, Additionally, we assume that for zo €
By N {x, = 0} and wy € C°(OB"), wyp = 0 on B; N {z, = 0}, there exists a
solution w € C*(B;if) N CO(BY) of

{ F(D*w,20) =0  in By

w=wy ondB;

such that waHcLl(B—+ < Ce”leHLoo(aBj)- Taking wy = 0 we observe that As-

1/2) —
sumption A implies F'(0,-) = 0. Now, the main result of this section is

Theorem 2.2. Let u be a bounded C?*-viscosity solution of

F(D?u,z) = f in By

u=>0 on By N {x, = 0}.
Assume that F is uniformly elliptic with ellipticity constants \, A, continuous
in x, and that Assumption A is satisfied. Let f € LP(B]) N C%B;) forn <

p < oo. Then there exist constants By and C depending on n, X\, A, c., p such
that

<W ﬂ(xoax)ndl)n < 5o

) N Bf_| By (z0)NBy

for all zo € B and all v > 0 implies u € W>P(B],) and

lullwzosy,) < Cllulle sy + 1l

Remark 2.3. One can show that the oscillation condition in Theorem 2.2
implies that the oscillation measured in the L°°-norm is also small. In order to
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show this we consider z,y € B, z := ¥ and r := |*;¥| and compute
1
B@,y)" = B(x,y)"dw
|B,(2) N By'| Jp, 257
2n—1 (u/"
< = =5 B(x, w)"dw +/ ﬁ(w,y)"dw)
|B,(2) N B Br(2)NB} (2)NB}
2n—1
< ——F—~———5+ Bz, w)"dw
|Bar () N BY| J By, (o)t
anl
B e B(w, y)"dw
| Bar(y) N B | /iy, (st
< 4" 3.

Particularly with regard to the linear case we observe that the assumption on a
small oscillation, measured in the L™-norm, is not weaker than the correspond-
ing assumption in the Calderon-Zygmund estimates.

However, in the present paper we continue using the L"-condition.

Before we start to prove Theorem 2.2 we introduce some terminology. A
function P(z) = py + prz + &|z|? is called a paraboloid with opening M. The
paraboloid is convex in the case + and concave in the case —. For u € C°(Q),
Q' C Qand M > 0 we define

there is a concave paraboloid P of opening M,

G (u, ) = {xo €25 Guch that P(xg) = u(xo), P(v) <u(z) Ve Q,}

and Ay (u, Q) == Q'\ G(u, ). Using convex paraboloids we similarly define
G (u, Q) and Ap(u, ) and set

Gar(u, ) = Gy (u, ) N Gay(u, )

A (u, Q) = Ayp(u, Q) N Apg(u, ).
Moreover, we define O(u, Y, z) = inf{M > 0;z € Gp(u, )} and again we
similarly define ©(u, ', z) and ©(u, Y, x).

We will need the following technical proposition whose proof is based on [8,
Lemma 9.7], the details are left to the reader.

Proposition 2.4. Let f > 0 be a measurable function, ps(t) = |{f > t}| be
the distribution function and n > 0, M > 1 constants. Then we have

FELM(Q) = > MYp(nM?) =: Sy < o0
jEN
for every p € (0,00). In particular there exists a constant C' = C(n,n, M), such

that
CSy < | 5wy < C (191 +5p)-
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Note that, once we have estimates for paraboloids at the boundary, the
arguments are similar to those of Caffarelli’s proof of the interior estimates. We
recall Cafarelli’s idea: Consider the distribution function of ©

/,L@}Q’(t) = |{JJ S Q/; @(]7) > t}l
It is clear that ue o/ (t) = |Ai(u, )| and an application of Proposition 2.4 yields

O(u,,-) € LP(Q) — <Zij|AnMj(U/, Q’)]) —: Sg < 0.
Jj=1
From Proposition 1.1 in [2] we infer || D?u|| 1pq) < C(n, M, p) (|9 + Seo) . There-
fore it suffices to prove estimates for 3., MP/|A, s (u, )| in order to derive
W?P-estimates in V.

2.1. Estimates for paraboloids at the boundary. The first step towards
W?2P-estimates at the boundary are estimates for paraboloids at the boundary.
The goal of this subsection is the proof of a power decay at the boundary for
| Ai(u, Q)]. We restrict ourselves to a flat boundary, more precisely we look at
Bf. In this chapter we only consider equations without dependence on Du
and u. Therefore we set S, S, S(\, A, 0, f) =5,5,S()\ A, f) as an abbreviation.
Let Q%(x) := (zo — 5,29 + 5)? be the cube of dimension d, side-length r and
center x. In case 7o = 0 we write Q% instead of Q%(0) and if d = n we write
Q. (zo) instead of Q7 (xy). Throughout the paper, a constant is called universal
if it depends only on the dimension n and the ellipticity constants A\, A. In
the course of the proof we will need the Maximal function and the Calderon—
Zygmund cube decomposition:

Proposition 2.5. For f € L}, .(R™) the Mazimal function M(f) of f is defined
by

M) =sup s | las

The Mazimal operator M is of weak type (1,1) and of strong type (p,p) for
1 < p < o0o. More precisely we have

{M(f) > )} < Ct [ fllorgn for f e LYR™),¢>0

and
| M(f)llr@ny < C(n,p) | fllzr@ny for f € LP(R"),1 < p < o0,

Moreover, if f € LP(R), 1 < p < oo then M(f) is finite almost everywhere.

See [10, Theorem 1] for a proof of Proposition 2.5. We turn to the Calderon—
Zygmund cube decomposition. By (k-times) repeated bisection of the edges we
split the unit cube @, into 2*" sub cubes of side-length 27*. The cubes obtained
in this way are called dyadic cubes. By Q we denote the unique predecessor of
a dyadic cube Q; see [2, Lemma 4.2] for the proof of the following Lemma.
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Lemma 2.6 (Calderon-Zygmund decomposition). Suppose A C B C Qy, |A] <
d<1land |ANQ| > d|Q| = Q C B hold whenever Q is a dyadic qube. Then
|A] < 0|B|.

Now, all necessary preparations are completed and we start with a rescaled
version of the interior power decay result for |A;(u, )| from [2]:

Lemma 2.7. Let Bg, (1) C Q and u € C°(Q) satisfy ||ul|p~@) < 1 and
u € S(f) in Bg.m(xo). Then there are universal constants p,8 > 0 and C,

such that || f||tn (B, (o)) < 7' implies

Ay (u, ) N Qi (wo)| < CHHr™1Q; (20)]- (8)
Moreover, if u € S*(f) in By, m(70), then (8) holds for Ai(u, ).

Lemma 2.8. Let u € S(f) in Q satisfy u € C°(Q) and ||ul|p=@) < 1. Then
for any € CC Q we have

A, Q) N Q] < Cln, A, A, Q, dist (Y, 09)) (1+ [ fll )" 7

Proof. Fix € > 0 such that 6e\/n < dist(©',09) and choose a finite cover of
Y with axially parallel cubes having side-length ¢ and disjoint interior. The
choice of € implies B, /n(z;) CC € for all centers z; of cubes Q.(x;). Without
loss of generality we may assume € < 1. By N = N({?, ¢) we denote the total
number of cubes. Set @ = ﬁm and f = m, where §y is as in
Lemma 2.7. Then @ and f satisfy the hyotheses of Lemma 2.7 in Bg, /(2;) and
we get |A, (4, Q) N Qc(z;)] < Ce"t Fe . Now

N
A, (1, Q) N Q) < A5, Q) N Q)| < Ctre ™,
i=1

where we have used Ne™ < C(n)|Q| for the last estimate. Finally, by definition
A (Ku, Q) = A+ (u,Q) for any constant K. O

=x
Our first estimate for |Gy(u, )| at the boundary is a direct consequence of
the preceeding Lemma.

Lemma 2.9. Assume that v € S(f) in B, s € Q u € C%Q) and that

|| o) < 1. Then there exist universal constants M > 1 and 0 < o < 1,
such that || f || pnp+ ) < 1 implies
12y/n

G (u, )N ((QF T % (0,1)) +a0)| > 1—0

for any xy € By sz N {x, > 0}.
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Proof. Fix 0 < 0 < 1 and set zy = (7, 2o,,). In case zg, > § the assertion
follows from Lemma 2.8. Otherwise we apply Lemma 2.8 in the following way:

| A (u, Q) N ((QF! % (0,1)) + o) |
< |4, ) N (@17 (5 200+ 1))+ (a5 0)) [+ (@17 % (w0, 3)) + (6,0)
< C(n,\, A o)t + %.

This estimate holds for ¢t > 1. Therefore the lemma is proven if we choose
t =t(n,\, A, o) large enough. ]

Lemma 2.10. Assume that u € S*(f) in B, ~ C Q C R}, ue C%(Q) and let

Gi(u, Q) N ((Q57" % (0,2)) + Zo) # O for some Ty € By m N {x, > 0}. Then
there exist universal constants M > 1 and 0 < o < 1, such that || f|| ;np+ . <1
12/n
implies
|Gar(u, Q)N (@171 % (0,1)) +20)[ =10
for any xy € By sz N {x, > 0}.

Proof. Let z1 € G1(u, ) N ((Q5~" x (0,2)) 4 Zo). Then there are paraboloids
with opening 1 touching u in 21 from above and below, i.e., we have L(z)— 3|z —

21> < u(z) < L(z)+ 35|z —2|? for z € Q and an affine function L. Set v := “z—f),

<1

) —= 9
N

and —|z2 < v(z) < |22 in Q\ Bf;\/ﬁ. Applying Lemma 2.9 to v € S(W>

in B;\/E we obtain |GM(U,B;;\/E) N((Q7" x (0,1)) +20) | > 1 — 0. From the
preceeding estimates we infer

Q

where the constant C'(n) is chosen large enough, such that [|v|| Lo (B*
12

I~

|Gn (0, )N ((QF % (0,1)) +m)| >1—0

for N > M large enough. Finally, we have G (v,Q2) = Grem)(u,2) which
finishes the proof. O]

We proceed with an iteration Lemma to improve the estimate given by
Lemma 2.9.

Lemma 2.11. Let u € S*(f) in Bf, . C Q C R}, u € CQ), [[ullr=@) <1

and HfHLn(BEﬁ) < 1. Extend f by zero outside B;;\/ﬁ and define

A= Appena (u, Q) N (QF 1 x (0, 1))
B = (A (u, ) N (Q77 % (0,1))) Ufz € Q771 x (0,1); M(f") > (CoM*)"}

for k € Ng. Then |A| < o|B|, where Cy = Co(n) and 0 < o <1, M > 1 are
universal constants.
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Proof. The proof is based on the Calderon—Zygmund cube decomposition, given
by Lemma 2.6. We have A C B C (Q7™" x (0,1)) by Appis1(u, Q) C Apge(u, Q)
and by Lemma 2.9 we get |A|] < o < 1. It remains to show that for any
dyadic cube @ with |A ﬂ Q| > 0|Q| we obtain Q C B. Assume that for

some i > 1, Q = ( 1/21 x (0, 2%)) + x¢ is a dyadic cube with predecessor

Q (Ql/w , x (0, T 1)) + Zg. Assume further that () satisfies
[ANQ| = [Appe+1 (u, Q) N Q| > 0|Q) (9)
but Q ¢ B. Then there exists z; € Q \ B, i.e.,
1 € QN Gy(u,Q), M(f")(x1) < (CoM*™)™. (10)

Consider the transformation T'(y) := o+ 2 and set u(y) := ]?Jku(T(y)), fly) =
= f(T(y)) and Q = T71(Q). Since ¢ > 1 and QcC (@7 % (0,1)), we obtain
B;rz\/ﬁ/w'(jo) C B;;\/ﬁ which implies @ € S*(f) in B;;f Note that [T — 1|0 <
57, implies BE\M/? (Zo) C Qagynsai(w1). Therefore, we obtain from (10)

21’
o0 < 57 (]

provided Cy is sufficiently small. Moreover, from (10) we infer Gy(@,Q) N
(Q5"x (0,2)) # 0 and hence we have shown that the hypotheses of Lemma 2.10
are satisfied in . Since Zop > Top and |xg — To| < \/_ n we have 2'(zy — Z¢) €
By m N {zn, > 0}. Applying Lemma 2.10 we obtain

f(x)"dx)n < Cn)Cy < 1
28\/5/2i($1)

|Gar(@, ) 0 (@71 % (0,1)) + 2'(wo = 7o) 21— 0
and hence |G+ (u, Q) N Q| > (1 — o) |Q] which is a contradiction to (9). O
From Lemma 2.11 we derive the power decay for |A;(u, Q)| at the boundary.

Proposition 2.12. Let u € S(f) in Bf, . C @ C R}, u € C°(Q) and let

[ul| oo () < 1. Then there exist universal constants C, p such that || f|| pn 5+ ) <1
12y/n
implies
A, Q) 0 (@1 % (0,1)) + o) [ < CE*
for any xy € By s N {2, >0} and t > 1.

Proof. 1f o = 0, we define

O 1= |AM’<(U’ Q) N (Q?_l X (07 1)) |
Oy o= [{z € QY71 x (0,1); M(f")(x) > (CoM*)"}],
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and apply Lemma 2.11 to obtain agpy; < o (ap + By). Hence ap < of +

Z?;é o¥=33;. In order to estimate the second part we use the properties of

the maximal function M, see Proposition 2.5:

B < C)M) | s,y < OM™.

Hence oy, < o —i—CZ "y o*IM T < (14 Ck) max(o, M)k < CM~#*. Now,
choose u suffiently small to finish the first part of the proof.

If ¢ # 0 choose a finite covering of (Q’f‘l x (0, 1)) +xo with suitable cubes.
From the first part of the proof and Lemma 2.7 we deduce the claim. m

2.2. Proof of Theorem 2.2. We proceed in a way similar to [2] und prove
an approximation lemma at the boundary first. Using this result we iterate
the estimates of the previous subsection to obatin W?%P-estimates. Recall that
Assumption A implies F(0,-) = 0.

Proposition 2.13 (Approximation lemma). Let 0 < ¢ < 1, and let u be a

C?-viscosity solution of

14y/n

F(D*u,z) = f in B,
u=0 onDBymN{r, =0}

such that ||u||Loo(B;r4ﬁ) < 1. Assume Hﬁ(.,O)HLn(BEﬁ) < € and that Assump-

tion A s satisfied. Then there exists a function h € CQ(ﬁuﬁ) such that for
o= f—F(D%,.) € CO(B;FQI) we have u — h € S(p) and
||h||cl,1(ﬁ12ﬁ) < C(n,\ A c)

o= hll g,y + Blings oy < CE+ 1 langss, )
where v € (0,1) is universal and C' = C(n, A\, A, c.).

Proof. Let h € C?(B, -) be the solution of

13y/n
F(D?h,0)=0 inBj;
h=u on GBE,,\/E.

Assumption A implies [|h]|¢11 57, < Cllulf oo (B ) < C(n, ce). Moreover,

) where 0 <

2vm) —
from the Holder estimate, Theorem 1.10, we infer v € C%#(BY,

13y/n
( < 1 is universal. Using Theorem 1.10 we get

Wllooa e,y o < C(1+ lloszs, ) < C(L+ Il ) ):
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where 0 < o < (3 is a universal constant. Since u — h = 0 on GBIF3 Jn e have

(u—h)(z) <6 hol, B+f(u — h) where 0 < § < 1 and z € OB, Hence
7T13y/n

13¢5
))- (11)

Let g € Bl3\f 5o If Bg/g(xg) C Bl3\f we apply rescaled interior C':!-
estimates in Bs/o(xg) to h — h(zg) and get

lu — hHLoo(aB ) = C(Sa(l + HfHL"(B

13y/m— 14y

52 o
D2 ()| < Cllh = h(zo) (o, o) < CF (14 1 g, )

If not, there exists zp € Bizyms N {z, = 0} such that xy € By ,(2). We

apply rescaled C''-estimates in By (29) to h—h(xo) and obtain || D2h(x)|| <
Co*(L+ [[fllpn(p f)). From the definition of § we infer
14v/n

|F(D?h(x0), 20)| < Cda_25($o,0)(1 + ||f||Ln(Bl+4ﬁ)>’ (12)

where z( € Bgﬁﬂ;. Proposition 1.4 yields u—h € S(2, A, f(z)—F(D?h(z), z))

in Bf:af By the maximum principle, (11), (12) we obtain

o=l + 17(@) = F(D*h(@) 0) oo,
gc@wmﬂwm@MJO+mm@4)+mmmwfy
Choose § = €2 to finish the proof. [l

In the next step we use the approximation lemma to improve Lemma 2.10,
more precisely we prove |Gy (u, Q) N Q| > 1 — ¢ for arbitrary €, > 0.

Lemma 2.14. Let ¢y € (0,1), B, - C Q@ C R? and u € C°Q) be a C*-

14v/n
viscosity solution of
F(D*u,z)=f in By, m
u=0 onBymN0{r, =0}
Assume that Assumption A holds and that F(0,-) =0,

1l ey, o 158G OMlLnesy, ) <€

13/

where € = €(n, \, A, €9, ¢.). Then Gy(u, Q)N ((Q;‘_l x (0, 2)) + 5:0) # () for some
T € By ym N {xn > 0} implies

|G (u, ) N (@™ % (0,1)) +20) | > 1 — e,
where xo € By, 5 N {x, > 0} and M = M(n,c.).
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Proof. Similar to the proof of Lemma 2.10 we set @ := % where L is affine

and C' = C(n) is chosen sufficiently large such that @ has the same properties
as v in Lemma 2.10. We know that @ is a solution of
o 1 ) 1 .
F(D*u,z) == =F(CD*u,z) = —=f(z) =: f(z)
C C
and that the ellipticity constants of /" and F agree. As in Proposition 2.13, let
h e C*(By, ~) N C°(B*3;) be the solution of

13/
F(D?h,0) =0 in Blsf
h=1u ondBf ..

From the maximum principle we infer [[A| ;g (B, ) < ||u||Loo(aB+ . < 1. Also

2s) < C(n,c.) implies Ay(h, Bf;f) (Q1~* x (0, )) +1z) = 0

for some N = N(n,c.) > 1. We extend h|z+  continuously outside BE v
12

such that h = @ outside Bfaf and |G — h|p=(9) = |t — Al (B, )" Hence

[t =Rl < 2and —2—|z|* < h(z) < 2+[zf? in Q\ BY, . These estimates

imply

1Pl v

Anp(h, ) 0 ((Q17 % (0,1)) +20) =0 (13)
for some My = My(n,c.) > N. For w := 4 — h Proposition 2.13 yields

ol g,y + 1 = FD? 0 Y niy ) < O(€ + Wiy, ) < C€

<

and w € S(2,A, f — F(D?h,")) in BY, /- Hence |Jw[| =) = Hw||Loo(Buf)

Ce". Therefore w = (Ce”) 'w satisfies the hypotheses of Proposition 2.12 and
we obtain for ¢ > 1:

[Au(0, Q) N ((QT % (0,1)) + o) | < Cln, A A et ™.
Using Aapn, (@) C Apg(w) U Apg, (R) and (13) we conclude
| Aonge (@, ) N ((QF % (0,1)) 4+ 20) | < Cn, A, A, o)™ M.

Finally, since Aapn, (%, Q) = Asong (u, 2) we set M = 2C M, and choose € =
e(X, A, n, ce, o) sufficiently small to finish the proof. O]

Lemma 2.15. Let 0 < ¢y < 1 and u be a C*-viscosity solution of

14y/m

F(D*u,x) = f in B,
u=0 onBym;N{r, =0}

Assume that Assumption A holds and that ||u||Loo(B;r4ﬁ) <1, ||f||Ln(Bl+4ﬁ) <e.
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Ezxtend f by zero outside BL . Let

NG

1
('Br(x0> N B{Z\/ﬁ‘ Br(mo)ﬁBi‘;l

B(xo, x)"dm)n <e.

N

for xy € B;:l andr > 0. For k € Ny we set

N
A= Ay (u, B, ) N QT % (0, 1)
B = (Ape(u, B, 7) N QT x(0,1)) U{z € Q17 x(0,1): M(f") = (CoM™)™y.

Then |A| < €| B|, where M = M(n,c.) > 1, € = e(n, \, A, ce, €0).

Proof. Like the proof of Lemma 2.11, this proof is also based upon the Calderon—
Zygmund decomposition. We have AC B C (Q7 ' x(0,1)) and from Lemma 2.14
we infer [A] < 6 < 1 for § = €. Therefore it remains to show that for dyadic
cubes Q with [AN Q| > ¢|Q| we have Q C B. Let @, Q be the same as in
Lemma 2.11. We assume that () satisfies

AN Q| = [Apsss (w, B, ) N QI > Q) (14)

but Q ¢ B. Therefore there exists 2, € Q \ B, ie.,
m € QN Gy(u, B, 5),  M(f")(x1) < (CoM™)™. (15)

In case |xg — (x,0)] < Sv/n we consider T(y) = (2(,0) + 27y and define

a(y) = 1ru(T(y), F(X,y) = gF(M"X,T(y)) and f(y) = 55/ (T(y)).
Now @ C (Q}~* x (0,1)) implies B;\/ﬁ/y (z4,0) C B;\/ﬁ and we have that  is

a C%-viscosity solution of

F(D*u,y) = f in B;\/ﬁ
=0 on By, N{r, =0}

The ellipticity constants of F' and F agree and F satisfies the C'"!-estimates
with the same constant as F'. Moreover, 3z(y,0) = Br(z, (75,0)) and hence

) < . <
||ﬁF||Ln(Bl+3ﬁ) < C(n)e. Similar to the proof of Lemma 2.11 we get ||f||Ln(Bl+4ﬁ)

¢ from (15) for Cy sufficiently small. Again by (15) we obtain
Gi (@, T (B, 5)) N ((Q57" % (0,2)) +2'(&o — (x(,,0))) # 0.

From |zo — Zo| < 5:/n we get [2(Zo — (27, 0))| < 9y/n such that the hypotheses
of Lemma 2.14 are satisfied. It follows

|Gar(a, T7H(B], ) N ((QT 7 x (0,1)) + 2 (20 — (24, 0))| > 1 — e
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and hence |G yze+1 (u, Baf) NQ| > (1 —¢€)|Q| which is a contradiction to (14).

If |zo — (xf,0)| > 2+/n, we conclude By /9i (20 + giren) C B+ , where e,
is the n-th unit Vector Using the transformation 7'(y) := (zo+ QM en) + ziy we
proceed in a way similar to the first part of the proof. Now we apply [2, Lemma
7.11] instead of Lemma 2.14 in order to obtain a contradiction to (14). O
Proof of Theorem 2.2. Fix xg € By N {r,=0},0<r< 114|\$f0| and define

er

KZ: )

ET_IHUHLOO(BL Ja(@0)) y ||f||Ln(B

14f( ))

where € = €(n, A, A, p, ¢, €) is the same as in Lemma 2.14 and 0 < ¢g < 1 will
be chosen later in the proof. We set @(y) := Kr~?u(ry + o), f := K f(ry + xo)
and F(M,y) := KF(K~'M, ry + x,). Then @ is a C%-viscosity solution of

14ym

F(D*u,z)=f in B,
=0 on ByymN{z, =0}.

The ellipticity constants of F' and F agree. We have 34 (y,0) = Br(ry + 20, 2o)
and || B¢l g+ ) < C(n)By < ¢, provided fy is chosen sufficiently small. More-
14/n

over HaHL‘)"(Bﬂ\/ﬁ) <1 and

im0 = o s, e < (16)
such that the hypotheses of Lemma 2.15 are satisfied. Let M = M (n,c.) and
Co = Co(n, A\, A, p, e, €9) be the same as in Lemma 2.15 and choose ¢y = ﬁ
We define
Qp = ‘AM" (u Bl4f) (Q?il x (0, 1>)‘
B = [{z € (Q17 x (0,1)) s M(f")(2) > (CoM*)"}|.
and apply Lemma 2.15 to obtain axi1 < € (o + Gx) and hence
k-1
ok <€+ ) e B (17)
i=0

From Propositon 2.5 and (16) we infer
1Mz < Clr,p)If"ll, 2 = Clr,p) I flize < C(n,p):

Since (3, is the distribution function of M (f") we infer from Proposition 2.4

ZM”kﬁk < C(n,p). (18)

keN
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By the choice of ¢, (17) and (18)

Soarta < Yot (Y ) (X ke ) < o)

keN keN k>0 keN

Consequently ||D2ﬂ||Lp(Bl+/2) < C(n,p, M) and hence

1Dl o5 wyy < €A A ps s ) ([ull ooy + 1 llinmy)- (19)

Finally choose a suitable covering of Bfr/Q with B;f (zo) for zg € ByjsN{x, = 0}
and B,.(x) for zq € Bfr/Q respectively where r is chosen to be suffiently small.
The desired assertion is a consequence of (19) and [2, Theorem 7.1]. O

Caffarelli’s interior W*P-estimates were generalised by L. Escauriaza to the
range of n — ey < p < oo where ¢y = eo(%,n). The boundary estimate, Theo-
rem 2.2, can be generalised similarly. Using results from [5] we obtain the weak
Harnack inequality (at the boundary) and global Hélder continuity for 12" <o-
viscosity solutions. In the related estimates ||f||z» is replaced by || f||zn—<o-
Therefore, by repeating the arguments of Subsections 2.1 and 2.2 we obtain

Theorem 2.16. Let u be a bounded C?-viscosity solution of

F(D*u,z) = f inBf
u=0 on B N{z, =0}
Assume that F is uniformly elliptic with ellipticity constants \, A\, continuous
inx, F(0,.) =0 and that Assumption A holds. Then there exist constants ¢y =
eo(%,n), C=Cn,\ A ce,p) and By = Bo(n, A\, A, ce, p), where n — ey < p < 00
such that the following holds: If

n

! B(xo, $)ndl’) < Bo,

(!Br(fco) N By | JB, @onBs

forzg € B, r >0 and f € LP(B;), then u € WQ’p(BfF/Q) and

||U||W2,p(31+/2) < C(HUHLOO(Bf) + ||f||Lp(Bl+))-

3. WlP-estimates at the boundary

The objective of this section is the proof of W!P-estimates at the boundary
for equations with dependence on Du, u. Interior estimates of this type were
proven by A. Swiech in [11], see also [1] and [2]. Our proof is similar to the
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proof in [11]. Before we state the main theorem of this section we need some
preparations.

Henceforth we assume that F'(M,p,r,-) is measurable in z. Similar to
Section 2 we define the function  to measure the oscillation of F' in x:

F(M,0,0,2) — F(M,0,0
6(1’,1‘0) = sup | ( > ,ZL‘) ( ) ,ZL‘0)|
Mesm\(0} 1M

Instead of Assumption A we will make use of

Assumption A*: We assume that F satisfies C%® interior and boundary
estimates, i.e., there exist constants 0 < & < 1 and ¢, such that for any
wy € C°(DBy) there exists a C*-viscosity solution w € CV*(B;) N C°(By) of

loc

{ F(D*w,0,0,0) =0 in B

w=wy on 0B

such that
lwlloras, ) < cellwlles,).-

Additionally, we assume that for any w, € C°(0B]") N C*(B; N {z, = 0})
there exist a constant 0 < & < 1, depending on v, and a C?-viscosity solution
w e CL(Bf U {z, =0})NC%B) of

loc

F(D?w,0,0,0) =0 inB;
w =wy onB; N{z, =0}

such that
lwllcras;,) < Ce([[wll ooy + llwollcraBingaa=oy)-

The main result of this section is

Theorem 3.1. Let p > n — 60(%, n,b) and u be a W*P-viscosity solution of

F(D*u, Du,u,z) = f in B
u=¢ ondB;N{x, =0},

where f € LP(By), ¢ € CY(ByN{z, = 0}). Assume that F satisfies Assump-
tion A*, F(0,0,0,2) =0, and structure condition (5).

If p>nlet « < min(1 — %,64(1 —7)). There exists By = Bo(n, \, A, p, a, &)
such that the existence of ro > 0 with

1

T 5(907170)pd$) T < B
(|Br(930) N B | J B, (wo)nBt
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for all o € B and r < ro implies: w € CH*(Byjs N {x, > 0}) and

[ulloraes, prgenzop < C(lull oo (piy + I@llcrrmnten=on + 1fllos))

where C'= C(n, \, A, b,¢,p,q,r0).
If p < n there exists By = Bo(n, N\, A, p) such that the existence of ro > 0
with

1
1 P
] 5($,Io)pd$) < o
(|Br($0) N By | JB, (@Bt
for all oy € By and r < ry implies: v € WhHe (BIF/Q) for every q < p* = n”—_’;?

and
ullyrasy,,) < C(lull gy + lellorrmnen=on + 1l oat))s

wher@ C = C<n7 )\7 A, b7 ¢ p,q, TO)‘

For later application we remark that in case ¢ = 0 Theorem 3.1 requires
the second part of Assumption A* to hold for wy = 0 only.

3.1. Proof of Theorem 3.1. In the proof of Theorem 3.1, we will make use
of the sets BY(xg) := B,(xo) N {z, > —v} for v > 0. We commence with an
approximation result.

Proposition 3.2. Let p > n — eg(%,n,b). Assume that F satisfies (5) and

F(0,0,0,z) = 0 in BY(0) for some 0 < v < 1. Let p € C%7(OBY) satisfy
| ¢llcorapyy < Co. Then for all o > 0 there exists 6 = 6(0,n, A, A, p,7,Co) < 1
such that

180, M ey, | fll oy, 0, ¢ < 6

implies the following: Any two W?P-viscosity solutions u and v of

v=¢ ondbBy

F(D*u, Du,u,z) = f in BY i F(D%v,0,0,0) =0 in BY
u=¢ ondBy o

satisfy ||u — vl Le(sy) < o

Proof. We argue by contradiction and assume that the claim is not satisfied.
Then there exist o9 > 0, a sequence 0 < v, < 1, and sequences of functions Fj,
satisfying (5) with b replaced by bg, and ¢ replaced by cg,, ¢ € C*7(9B}*)
with ||kl con(aB%) < Cp and f, for which there exist viscosity solutions wuy, vy,
of

{Fk(D2uk, Dug,ug,z) = f in Bj*

up = ¢ on OB
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and
{Fk(D%k, 0,0,0)=0 in B%

vy = ¢ on OB

such that ||Gr, (0, -)HLP(Blvk), kaHLp(Blvk),ka,ch < dr — 0 as k — oo, and
[Jur, — Uk‘HLOO(Bll'k) > Qo- (20)

Since the functions F}, are Lipschitz continuous in M, p, r we infer from (5) and
Arzela—Ascoli’s theorem that there exists a function F,, and a subsequence such
that Fy(-,-,-,0) — F(-) uniformly on compact subsets of S(n) x R” x R. The
maximum principle yields [|ug|| gy < Co + C(n, A, A) (05 + cr ||| oo px))
and consequently [|ug | oo gy, Vel oo (prny < C(Co) if k is sufficiently large.
Moreover, from Theorem 1.10 we get

HukHCO,a(Bilyk)? HURHCO,a(Bil"k) < C(nv A AL D, CO) (21>
We may assume that there exist 0 < v, < 1 and a subsequence such that
Vr — Vs as k — 00. Choosing another subsequence, if necessary, we may also
assume that v is monotonous. Thus we have either B{> C By* or B{* C B{*.
In the first case we apply Arzela—Ascoli’s theorem in B> directly. In the second
case, there is an elementary extension of ¢ to By N {—vy < x, < —14} such
that || @k [|con(Binfre<e<—v}) < Co and hence we may suppose that (21) holds
in BY> for the extended wuy, vy

Therefore, in both cases, we apply Arzela—Ascoli’s theorem in By~ and
obtain the existence of functions s, vs € CY(B}™), ps € C°(OBY*) and
subsequences such that uy — Ueo, Vp — Vo uniformly on By and us = voo =
Voo 0N OB} Clearly, vy, is a C*-viscosity solution of

(22)

Foo(D*v4,0,0,0) = 0 in BY>
Uso = Poo  ON OBY™.

Finally, we use Proposition 1.5 to prove that u., is also a viscosity solution
of (22). In order to check the hypothesis of that lemma we take ¢ € C*(£2) and
apply (5) to obtain

|Fe(D*¢, Do, ug, ) — fr(x) — Fso(D?6,0,0,0)|
< ¢p,C(Co) + bp, | Do| + Be(0, )| D[ + | fil-

The LP-Norm of this term goes to 0 as k — oo. Hence, Proposition 1.5 is
applicable. Since (22) is uniquely solvable we get u., = v, which contra-

dicts (20). O
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Remark 3.3. Consider a C?-viscosity solution w of

{ F(D*w,0,0,0)=0 in BY

w=wy on 0B,

where wy € C°(OBY)NCY(B;N{x, = —v}). By rescaling Assumption A* and
using a covering argument if necessary we obtain

HchLa(m) < Ko (H’WHLOO(Bf) + Honclw(Bm{:cn:u}))

for a constant Ky = Ks(n,c.).

Proof of Theorem 3.1. Let p > p' > n—ep. Fixy = (v, yn) € BijpN{x, > 0}
and set d := min(%, o). Initially we rescale the equation such that the assump-

tions of Proposition 3.2 are satisfied. Therefore we choose a constant o such

that p 5 5
<% <X Se<c 0 2
7=5 =30 TRy (23)

where 0 is the constant from Proposition 3.2 and M will be chosen later. If
Yn < Z we define

K = K(y) = ||u||zoBuy)nfznz01) + [€llc17(Baw)ngen=0p)

1 . O\
+— sup|r ¢ 7’_"/ |f(x)]P dx )
Bo r<d By () {zn >0}

1
Since K(3) < [ullsp) + Iellcrsmngenoy + Cln,B) (M(P)(y))? we ob-
serve that K (y) is finite almost everywhere. We proceed under the assumption
that K(y) < oo and consider a(z) := wu(ox +y). Set f(z) = %f(ax + ),
F(M,p, r,x) = %F(%M, %p, Kr, Ux—i—y), and ¢(x) := %gp(aa:—ky). It is easy
to check, using (23), that @ is a W?P-viscosity solution of

F(D%u, Di, i, z) = f in BY
u=¢ on ByN{z,=—-v},

where v := %2 We have that F satisfies (5) with b replaced by bz := ob and ¢
replaced by ¢z := oc. Moreover, we obtain for all 0 < r < 2

1
7

1 ~ , P
pl-a (- / Fla)P dx) < o1+,
™ JBy (o)

Since B7(0,z) = B(y,ox + y) we estimate

1 ;
H%@NWWWZ(—/ I%MWM>§CW%§5
- (y)N{zn>0}

O—TL
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provided [, is chosen sufficiently small.

We proceed similar to [11], [1] and [2] and show that there exist positive
constants u, Ky, Ky, C(K3), 0 < «, 8 < 1, and a sequence of affine functions
lp(z) :== a + bz for k € NU{—1,0} such that

() 18— Il (o) < 10+

(i) Jar—1 — a| + pFbr_1 — by < 2Kopulk-D+e)
(i) [(@ — l) () — (@ — I) (1*2)| < O(FKo) Ky ) |z — 2|
for all z,z € ByN{x, > —v},and £ > 0. Set [_; =0 and Iy = 0.
To prove the claim let Ky := C(n,\,A,p), 5 := a(n,\,A,p) where C, «
are the constants from Theorem 1.10 when it is applied to a function @ €

S*(A AL, f) in BY. Furthermore, let K3 and & be the constants from Remark
3.3. We take a < a(1 — ), choose p < 1 such that

2) K2(2 ,u)lJr& S u1+a7 (24)

and set ‘
- 1 “ - o
M:4K2;(Z) 24}(2;” . (25)
By definition, (i) and (i) are satisfied for k = 0. Since & € S*(\, A, 1, f+ 2) we
can apply Theorem 1.10 and obtain ||@cospry < 4K which is (iii) for & = 0.
Assume now, that (i)—(iii) hold for some k£ > 0. We will prove that they hold
for k 4+ 1. Define

_a(ptr) = (pte)
v(x) = ) .

We have that v is a viscosity solution of

F(D*v, Dv,v,z) = fi + g in B

V= Qg on Bgﬂ{xn:—%},
1

where

Fo(M, p,r, x) = pF 0= F(uFO=D M, pbep, pF etV k)
ge(2) := F(D*v, Dv, v, 2) — Fi(D*v, Dv +p~*by,, v+ p ¥4 (iF ), x)
folw) = pF=) f(uta)

o =T (p(pbr) — (b)) -

Using (i) and || @14 (Byn{zn=—v}) < 1 one can check that [[ow||cr (s, nfw,=—vu-+})
< 4. We have that 35, (0,z) = 8(0, u*z) and also Fy satisfies (5) with by, =

pFbs and cp, = p?*cp. For x € BY/*" we infer from (5)

|9 ()] < b x| + e Tl (i)
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From (ii) and (25) we derive ||l]| = (py), [bx| < M and hence |gy(z)] < L& pkt=)
where we made use of (23). Therefore

J

o
e k(l—a)Z

We get HUHCO,a(Blm{anMLk}) <1+ C(Ky)K, =: Cy from (i) and (iii). Let h €
C’O(B;'//;k) be a C*-viscosity solution of

Fy(D*h,0,0,0) =0 in B/*
h=wv onﬁBf/“k.

The maximum principle yields HhHL < 1 and we can apply Proposi-

By
tion 3.2 with ¢ = K5(2u)'*® to obtain

provided ¢ is chosen sufficiently small. From Assumption A* (see Remark 3.3)
we derive

||h||c1,a(311!//5k) < KQ’ (27)

Setting I(x) = h(0) + Dh(0)x we derive from (24), (26) and (27)

T 1+a
Set lyr1(x) = lp(x) + pFH (). Since (@ — lpg)(p ) = pFl+e) (v —
[)(pz) we have that (i) ist satisfied for k£ + 1. By definition we have ajy; =
ap + pFFIR(0) and byyy = by, + p**Dh(0). Therefore (ii) is an immediate
consequence of (27). It remains to Ch%Ck (iii) for k& + 1. Therefore we utilise
(v —_Z) € S*(N A, by, fritge+ ) in B;'/“ . Theorem 1.10, properly scaled, yields
v—1€C(B,N{w, > —}) and
_ _ o — 2-n
0= g gty < K™ (15 + 7l = Hlcossngan=— ) + 265 75).

By choosing ¢ smaller, if necessary, we have 2 § < ,uo‘+§_1. In order to get an
appropriate estimate for the C%Y norm of ¢, —{ on the flat part of the boundary
we recall that h =v = ¢, on By N{z, = —%}. Hence

v _ v v 1+a
oo’ z) — 10 ) <l (v 5[
‘ 1 1k 2 1

Clearly, B, N{z, = _u_yk} is empty if 2% > p. Therefore, we have

.
m

| or — Z_HLOO(BHm{a:n:—MLk}) < 2 Kou'te.
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Moreover, we compute

(o = D)(@) = (or = 1)(2)]
= |(er = (@) = (er. = D) = D(@) = (01 = H(2)["”
< (44 Ky)'(4 K)o — 2| 307

for z,z € B, N {, = —%}. From the last estimate we derive (iii).

From (i)-(iii) we obtain the existence of an affine function [ such that

HO)], |DI0)] < CK(y),

o (28)
| — U] oo (B, ()nfanz0y) < CT K (y).

If y, > § we obtain (28) from the proof of [11, Theorem 2.1]. Thus, (28) holds
for every y € Bf/Q with K(y) < oo. Choosing p’ = n we may deduce the first
assertion of the theorem from (28), provided K (-) is finite. Applying Holder’s
inequality to K we get

K(W) < Wellmqagy + Iellcrsamnton-o + 52508 (7~ F 1 o)

Thus, in this case K(y) < oo since « is assumed to satisfy a <1 — e

In order to prove the second assertion, we remark that (28) implies

[u(y +z) — u(y)|
7|

< CK(y)

for a.e. y € By - Therefore

1
lu(y +x) —u(y)|?, \*
( / dy )" < C(lull gty + €l crnmngonoy + 1),
Bt || !

1/2

where

I ::/ sup (7“‘1(1_0‘) (r‘”/ |f(x)|p/dx>p )dy
Bt r<d r(y)N{zn>0}

1/2

_ q(1=a)= Lt +n —n/ P’
= sup ( r P r f(x) dw) f ) Yy
/B+ r<d ( < (0) a0} |f(@)] LIV Ly (B*)

1/2

< caup (17 ([ )dy)HfHLp )

r<d

< Csup (v ) A e LU

r<d

< A

Lr(B})
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provided p’ < ¢ < #p{_a). By choosing «, p — p' sufficiently small we observe

that the last estimate holds for every p’ < ¢ < p* = “£&. We have shown that

n—p’
1
— q q
Sup</ u(y + =) — u(y)| dy)
|z|<d B ‘x|q

1/2

< C(llullpeisry + lellcro mingzi=op + 1flle 1))

from which we deduce the second assertion of the theorem. O

4. W?*P-estimates in the measurable ingredients context

In this last section we will relax the continuity assumptions on f and show that
the W2P-estimates of Section 2 still hold for equations with a merely measurable
right hand side f. Moreover we extend the results to equations with dependence
on Du and u. These results lead to global W?P-estimates and an existence result
for W?2P-viscosity solutions of the Dirichlet problem

F(D*u, Du,u,z) = f in Q
u=¢ on Jf.

The standard reference for W?2P-viscosity solutions is [3] and we frequently refer
to this work. Note that our definition of uniformly elliptic functions differs in
the sign from that in [3]. Since we will frequently apply [3, Lemma 2.6] we want
to emphasise that this result is also valid under structure condition (5), which
can be observed after an examination of the proof.

We intend to apply Theorem 3.1 in the next subsection to obatin W?2P-
estimates for equations with dependence on Du and u and boundary data ¢ = 0.
Therefore we have to ensure that Assumption A* is satisfied. For the interior
C1% estimates we refer to [2, Corollary 5.7] or [12, Theorem 2.1] whereas for
the estimates at the boundary we have the following proposition.

Proposition 4.1. Let u € C°(B}) be a bounded C%-viscosity solution of

F(D*0) =0 in B
u=0 on By N{x, =0}

Assume that F' is uniformly elliptic with ellipticity constants X\, A. Then there
exists o = a(n, \, ) such that u € C’l’a(Bfr/Q) and

lullorasy ) < Clull e sy + [FO)])

for some positive constant C' = C(n, A\, \).



158 N. Winter

Proof. Like in the proof of [2, Corollary 5.7] we use an iteration argument.
Consider v, (z) = 75 (u(z 4+ hey) —u(x)) for 0 < v < 1,0 < h < § and
1 < k < n, where ¢, is the k-th unit vector. Note that [2, Proposition 5.5] yields
Uk € S(0) in B . From [12, Lemma 2.2] we derive v, € C%?(B. N {x, = 0})
and
||Un,’7||COv/3(Brﬂ{xn=0}) < hl_’y C(n7 >\7 A> T)(HUHLOO(BIL) + |F(O)|)a

where 0 < r < 1and 8= f(n,A\,A) > 0. For 1 <k <n —1 we have v, =0
on By N{z, = 0}. From Theorem 1.10 we obtain

lulloasry < C A A ) ([[ull o 57 + [F(0)]) =: Cln, A A 1)K

where a = a(n, A\, A) and 0 < r < 1. By making « smaller if necessary, we may
assume that there exists N = N(n,\,A) € N such that Nao < 1 < (N + 1)a.
We fix constants % <rypp <ry <o <rp= % and choose h sufficiently small
such that %(THl +7) < %(riﬂ +r)+h<rforl1<i<N.

We start with the iteration process. Theorem 1.10 yields

By 1l + 1F(O)])

< C(llullgns s + el ez, + 1FO)1),

where €' = C'(n, A, A, r1,73). Choosing 7y = a we obtain [[vn,allcop;) < CK.

||Un,7||CO»Q(B,.+2) < C(””TWHLOO(

After repeating the preceeding argument for vy .,...,v,_1, we infer from [2,
Lemma 5.6] ”UHCOM(B#I) < CK. In the next step we choose v = 2« in order to
get u € C*%*(B;!) and the corresponding estimate.

We repeat this process until we can choose v = Na. In this case [2,
Lemma 5.6] yields u € C’O’l(B;f/ZI) and [lulcorp,,,) < C(n,A\,A)K. Finally,

we carry out the iteration argument for v = 1 to derive the claim. [l

4.1. W?P-estimates for viscosity solutions.
Theorem 4.2. Let u be a bounded W*P-viscosity solution of
F(D?*u, Du,u,z) = f(x) in By.

Assume that f € LP(By) and that F' is convex in M, and satisfies F'(0,0,0,-) =
0 and structure condition (5) for a.e. x in By. Then there exist constants ey =
60(%,71, b), Bo = Bo(n, \, A, p) and C' = C(n, A\, A, b,c,p,rg) forn —e < p < o0
such that the following holds: If

1 AR
(|Br(900)| oy T0) d”""’) =

for all zg € By and 0 < r <1y, then u € W*P(By,2) and

[ullw2r(s, ) < C (lulloomyy + 11l Lrsy) -
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Theorem 4.3. Let u be a bounded W?P-viscosity solution of
F(D*u, Du,u,z) = f in B (20)
u=0 on By N{z, =0}

Assume that f € LP(B}") and that F is convex in M, and satisfies F'(0,0,0,-) =
0 and structure condition (5) for a.e. = in Bf". Then there exist constants
€0 = eo(g,n, b), Bo = PBo(n, A\, A, p) and C = C(n, A\, A, b,c,p,ro) where n — ey <
p < 00, such that the following holds: If

1
1 n
IE=Sy2NSEap—— B(zo, SU)ndﬂU) < Bo
<\Br(x0) N BH By (z0)NB;

for any xy € B and 0 <r < rq, then u € W*P(B]

1/2) and

lullwensy,) < Clullie sy + 1 llosy)- (30)

Remark 4.4. Unlike [5, Theorem 1] and Theorem 2.16 we have replaced the
hypotheses on Ct'-estimates by convexity of F in M. This is because we prove
Theorems 4.2 and 4.3 by approximating F' by functions F; that satisfy the
assumptions of [5, Theorem 1] and Theorem 2.16. Therefore it is required that
the F; satisfy the hypothesis on C''-estimates uniformly in j. Convexity in M
guarantees this.

Since the proofs of both theorems are very similar we restrict ourselves to
the proof of Theorem 4.3.

Proof of Theorem 4.3. Initially we show that it suffices to prove the assertion
for equations without dependence on Du and u. We infer from [3, Theorem 3.6]
that u is pointwise twice differentiable a.e. and satisfies F'(D*u, Du,u,x) =
f pointwise a.e. Let f(z) := F(D%u,0,0,z). From (5) we derive |f(z)| <
b|Du(z)| + clu(z)| + |f(z)| for a.e. = € Bf, and hence by Theorem 3.1 f €
LP(B) provided (3, is chosen small enough. Thus [11, Corollary 1.6] yields
that F(D?u,0,0,2) = f in B; in the W2P-viscosity sense. Assuming that the
theorem is already proven for equations without dependence on Du and u we
get

lullwzssy,) < Cllullesry + 1 llosy)

from which we derive (30). Henceforth we assume u to be a W?P-viscosity

solution of
F(D*u,x) = f in By
u=0 on By N{zx, =0},

where F(M,z) := F(M,0,0,z).
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Let ¢ € Cg°(R™) with supp ¢ C R™, ¢ >0, [ ¢ =1 and set ¢; := j"¢(jx)
for j € N. For x € B]" we consider the convolution with F

@mawpi/@u—memw@,

where F is extended by 0 outside B;". Note that F} is convex in M, Lipschitz
continuous, £;(0,-) = 0, and uniformly elliptic with the same ellipticity con-
stants as F. We approximate f in LP by functions f; € C>(B{") N LP(B").
From Proposition 1.11 we derive the existence of C?-viscosity solutions u; of

Fy(D*uj,x) = f; in Bf
u; =0 ondBy,

where 0B} = (B; N {x, = 0})U(dB; N {x, > 0}). Convexity of F in M implies
the hypothesis on C''!'-estimates in Theorem 2.16. So it remains to check that
Br, satisfies the assumptions of Theorem 2.16. For z € Bf jand 0 < § < 1 we
obtain Bp, (7, z0)" < fBl/J_(O) ¢j(y)Br(z —y,x0 —y)"dy. And hence for 0 < r < 9

n

1
—_— Br, (z, xo)”dx)
(|Br($o) N By | JB, (wo)nBt

1
< / ¢-(y)—/ gl _y)ndxdy>
< By ;(0) ! |BT<I0)QBT| Br(zo—y)NBY
< Bo.

n

Therefore the hypotheses of Theorem 2.16 are satisfied and hence
||Uj||W2,p(BY/2) < C(||Uj||Loo(Bl+) + ||fj||Lp(Bl+)).

A standard covering argument yields u; € W.2?(B;"). From the generalised max-

imum principle, [6, Theorem 1.2}, we infer that {u;};en is uniformly bounded in
W?P(BY) for 0 < p < 1. Since M~ (D*u;—D*u;) < fj— fir < M*(D?u;—D?uy,)
we apply [6, Theorem 1.2] again and obtain

oty — wll ey < CORAABS = Fill st

We have shown that {u;} is a Cauchy-sequence in C° (B;) which implies uj —
v in C°BY) for some v € CO(BY). Since u; is bounded in W>?(BY,,) we have
u; — v weakly in W?P (BT/Z) and hence by the lower semicontinuity of the
norm

HUHWM(B;“/Q) < C(HUHLOO(Bi") + HfHLP(Bf'))'
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Next, we prove that v is a W?%P-viscosity solution of the original Dirichlet-
problem. We consider test functions v € W??(B,(x¢)) for B,(zg) C By and
get F;(M,z) — F(M,z) whenever z is a Lebesgue point of F(M,.). Since F' is
uniformly elliptic and F'(0,z) = 0 we get

[F(M, )| < A|M]| (31)

which implies that, for fixed M, a.e. € B} is a Lebesgue point of F. Let S(n)
be a countable, dense subset of S(n), and L(M) be the set of Lebesgue points

of F(M,-). Then [(ycg0, L(M)| = |Bi|, as a countable union of Nullsets
is a Nullset. Since F' is uniformly continuous in M, almost every x € €2 is a
Lebesgue point of F(D?1,.) and hence

FJ(D2¢(5K)7$) - F(D2¢(x)vx)

for a.e. = € Bf. From (31) it follows that Fj(D?%),-) is dominated in L?.
Lebesgue’s Theorem implies that the hypotheses of Proposition 1.5 are satisfied
and hence v is a W?P-viscosity solution of (29).

It remains to show that we have u = v. Since v € W2P(Bf) N CO(By) we

loc
get that w := u—wv is a W?P-viscosity solution in S(0). The maximum principle

and w = 0 on 9By yield [[w]| poe(pt) < 0. O

Theorem 4.5. Let n — ¢y < p < oo, 2 CC R*, 90 € CY! and u be a W?P-
visocsity solution of

F(D*u, Du,u,z) = f in§
u=e ondfl,

where f € LP(Q), ¢ € W?P(Q). Assume that F satisfies (5) for a.e. =z,
F(0,0,0,-) = 0 in Q and that F is convex in M. Then there exists a con-
stant By such that the following holds: If

1 o
ol ﬁ(%ﬂfo)"d%) < B
(‘Br(xo) N Q| B (20)NQ
forxzg € Q, 0 <71 <1y and By = Bo(n, \, A, p,70), then u € W*P(Q) and
[ullw2e(0) < C (l[ull=() + lellw2o@) + [ fllzr@) (32)
where C'= C(n, \, A, b, ¢, p,19,€2).

Proof. At first we show that it suffices to prove the claim for ¢ = 0. For
u=1u— @+ = w-+ @ we have that w is a W?P-viscosity solution of

G(D*w, Dw,w,z) =g in
w=0 ondN,
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where G(M,p,r, x) := F(M + D*p,p+ Do, 7 + ¢, x) — F(D*p, Dy, ,x) and
g(z) = f(x) — F(D%*p, Dp, p,x). We infer from (5)

9O < 1FC)+ CO A b, e) (D) + [De()] + o(-)])

and hence g € LP(Q). Assuming that the theorem is already proven for ¢ = 0
we obtain ||w|lwzr@) < C(||w||re@) + |lg]lzr)) which implies (32). From now
on we assume ¢ = 0.

Now the claim follows from a standard covering argument and Theorems 4.2
and 4.3. In order to apply Theorem 4.3 we have to flatten the boundary first.
Since 92 € CH, for any xy, € 0N there exists a neighborhood U(zg) and a
CY1-diffeomorphism

U Ulzg) — Bi(0)
such that U(zq) = 0, ¥(U(z9)NQ) = Bf". For ¢ € W?P(B]") weset p = po¥ €
W?2P(U(zp)) and obtain Dy = (D@ o W) DU, and

D*p = DU (D*@ o W) DU + ((Dp o W) 8, ;9),_, .-
Therefore we have for @ = uo ¥~ € C°(By)

F(D?*p, Dp,u,x) o Ut = F(DUT o U™'D*p DV o U™!

+ (D@ 9;; ¥ o U 1)

D DU o U 4, U~ Y(z)) = F(D*¢, Dg, i, x).

1<ij<n

Consequently @ is a W*P-viscosity solution of F(Du, D, u,x) = f(z) in Bf
where f := foU~!. Note that the function F ist convex in M, F(O, 0,0,z) =0,
and F(M,0,0,2) = F(DUYT oUW~ 'M DWoW~1 0,0, ' (z)) from which we con-
clude Bz (x,x0) < C(¥)Bp(¥~1(z), ¥~1(x0)). Moreover, F is uniformly elliptic
with ellipticity constants AC(¥), AC(¥). Therefore F' satisfies the assumptions
of Theorem 4.3. O

Finally, we use the previous estimates to derive an existence result for W?2?-
viscosity solutions.

Theorem 4.6. Assume that the hypotheses of Theorem 4.5 hold. Additionally
we assume that F is non-increasing in r. Then there exists a unique W2%P-
viscosity solution u of

(33)

F(D*u, Du,u,z) = f inQ
u=@ on IS

Moreover u € W*P(Q) and

[ullwari@) < C (llullze@ + lelwan@) + [1fllzo@) -
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Proof. We proceed similar to the proof of Theorem 4.3 and consider a standard
mollifier ¢ € C§°(R™) with supp ¢ C R™, ¢ >0, [ ¢ =1 and set ¢; := j"¢(jz)
for j € N. For z € B]” we consider the convolution with F

Fj(M,p,r,z) = /cbj(w —y)F'(M,p,r,y)dy,

where F' is extended by 0 outside €2. Note that I is convex in M, non-increasing
in 7, and satisfies (5), and F}(0,0,0,2) = 0. We approximate f in LP by

functions f; € C*(B; )NLP(B;"). From Proposition 1.11 we derive the existence
of C*-viscosity solutions u; of

F;(D*uj, Duj,uj,z) = f; in Q
uj =@ on 0.

Similar to the proof of Theorem 4.3 we obtain that ﬁﬁj satisfies the hy-
potheses of Theorem 4.5 and hence

lusllwee@) < C (llugllze@ + lellwarne + 1 fillre) - (34)

From the last inequality and the generalised maximum principle we infer that
u; is uniformly bounded in W#P(2). Since W?P(Q) is reflexive there exists
u € W2P(Q) and a subsequence such that u; — u weakly in W?2?(Q). We have
p > % and hence there exists another subsequence such that u; — v in C° Q).
From the weak convergence we infer that (34) holds for u, and similarly to the
proof of Theorem 4.3 we obtain

||F}(D2¢a qua Uy, ) - F(D2¢,D¢,U, .)”LP(BT(xO)) - 07

where ¢ € W?P(B,(x)), B,(xzg) C Q. By Proposition 1.5, u is a viscosity
solution of (33) and hence it is also a strong solution. Uniqueness follows
from [3, Theorem 2.10]. O
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