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Description of Pointwise Multipliers
in Pairs of Besov Spaces BF(R")
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Abstract. Necessary and sufficient conditions for a function to be a multiplier map-
ping the Besov space BJ*(R") into the Besov space B!(R") with integer I and m,
0 < [ < m, are found. It is shown that multipliers between B(R") and B}(R"™)
form the space of traces of multipliers between the Sobolev classes W{”H(R’}fl) and

WllJrl (RiJrl)'
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1. Introduction

By a multiplier acting from one Banach function space S; into another Sy, we
mean a function v such that yu € S, for any v € S;. We adopt the notation
M(S; — Ss) for the space of multipliers 7 : S; — S with the norm

Va8 -52) = sup{lly ulls, = Jlulls, <1}

and we write M S instead of M (S — 9).

A theory of multipliers in spaces of differentiable functions was developed
in the book [4]. Necessary and sufficient conditions for a function to belong to
the space M (B} (R") — BL(R")) with p € (1, 00) and integer m and I, subject
to 0 < I < m, were given in [4] for [ = m and in [5] for [ < m. The case of
p € [1,00) and non-integer [ and m such that 0 < [ < m was characterized in [4].
The space M (B;/lp (R") — B2 (R™)) was described by Gulisashvili [1]. Two
results on multipliers preserving a Besov class are due to Sickel and Smirnov [6],
who described M B; (R™) for 1 <p < ¢ < o0, 5> -, and to Koch and Sickel [2],

who characterized the spaces M BY | (R") and M BY,  (R").

T. Shaposhnikova: Department of Mathematics, Linkoping University, Linkoping SE-
58183, Sweden; tasha@mai.liu.se



68 T. Shaposhnikova

A complete description of the space M (B"(R") — B!(R")) in the case of
positive integer m and [, m > [, is the main result of the present paper. We
show also that M (B™(R") — B.(R")) is the space of traces on R™ of functions
in M (W (R — WEL(RIH),

Let s = k + «, where a € (0, 1] and k is a nonnegative integer. Further, let
Ag)u(x) = u(z + h) — 2u(z) + u(x — h) and

(Can)(@) = | A Vyu(a)| [ dh, (1)
R
where V stands for the gradient of order %, ie., Viu = {031 ...00"}, oy +
-+« + ap, = k. The Besov space Bj(R™) is introduced as the space of functions
defined on R"™, which have the finite norm

||U||Bf(Rn) = ||C'su||L1(Rn) + ||U||L1(R")~ (2)

Throughout this paper, the equivalence relation a ~ b means that there
exist positive constants c;, ¢ such that ¢;b < a < cob. Let Bf«n)(x) denote the
ball {y € R" : |y — z| < r} and let B = B™(0). Further, we adopt the
notation B for BY‘). In what follows, ¢ stands for different constants depending
on [, m, and n. We also use the notation (A®u)(z,y) = u(z) — 2u(Z2) +u(y).

With any Banach function space S of functions on R", one can associate

the spaces
Sloc = {u :nu e S forallny € CgO}

and

Sunif = {u :osup ||n.ul|s < oo},
z€R"™

where n,(z) =n(x — 2),n € C°, n=1on B.

The following theorem proved in Section 3 provides a complete character-
ization of the space of multipliers M (B7*(R") — B.(R")). The integral over
(15’7(«7"”)(2))2 stands for the double integral over Bﬁn)(z).

Theorem 1.1. Let m and | be integers, m > 1 > 1. The following equivalence
relation holds:

H’YHM(B{”(R")HBKR")) ~

dx dy
m—n (2) -1
sup r / AN w) (@) gt I, s )
( (BI(2))2 ( ) ‘|€6—y| +1 L (8:7(2))

zZERM
re(0,1)

(3)

Remark 1.2. It is obvious that for m = [ relation (3) can be written as

”’Y”MB{(RTL) ~

e dx dy
sup r / APV 1y (2,9) [ ——
s Jerer ==y

4
ey, @
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Another description of the space M(B*(R") — Bi(R")), involving the
function Cjy given by (1), is presented in the following assertion.

Theorem 1.3. Let m and [ be an integers, m > 1 > 1. The following equiva-
lence relation holds:

IWlarmp e pigny ~ 51 ™ ICA . gy + Iy (5)

z€RM
re(0,1)
If m =1, then
1Yl ar 3 @y ~ sup Tm_nHOﬂHLl(B;m(z)) F Y Lo ) (6)
re(0,1)
Form >n and m > 1,
1V 8By () — By () ™~ jg@(”cﬁ“h(sgm(z)) + Hvl!Ll(B@(z))) (7)

which, in its turn, is equivalent to ||[v|gt  (@n)-

We use the notation R = {(z,y) : € R,y > 0} and R* = 9R’*!. By
WE(R’) we mean the space of functions defined on R’ with the finite norm

10l ety = IR0 gty + (U1, s

The following theorem shows that M (B*(R") — B! (R")) is the space of traces
on R of functions in M (W™ (R — WITHR™)).

Theorem 1.4. Let m and | be integers, m > 1> 1.
(i) Suppose that v € M(B™"(R") — BLY(R"™)). Then the Dirichlet problem

has a unique solution in M (W™ (R"™) — WITH(RY™)) and the esti-

mate
HFHM(W{“*l(R1+1)_>W{+1(R1+1)) <c HVHM(B{R(Rn)_»Bg(Rn)) (8)
holds.
(ii) Suppose that T € M(W{" (R — WITHRTM)). If v is the trace of T
on R™, then

v € M(BY"(R") — Bi(R"))
and the estimate
HVHM(B{”(]Rn)HBi(R")) <c HF|’M(W{”+1(R’+L+1)—>W1Z+I(RT'1)) (9)

holds.
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2. Auxiliary assertions

2.1. Properties of functions in Besov spaces. We start with the statement
of a well-known trace and extension results.

Lemma 2.1 ([8]). Suppose m > 1.

(i) Let U be an arbitrary function in the space Wi (R*Y). Then for almost
all x € R™, there exists the limit u(x) = lim, o U(x, p), the function u
belongs to the space BL(R™) and

Hu“Bi(Rn) <c HUHW{“(R?_“)'

(ii) Let Tw denote the Poisson operator of the function w € Ly yni(R™) defined
by
1 yu(§)dE
1™ Jn (2 + |z — €2)"7
where |S™| is the area of the boundary S™ of the (n + 1)-dimensional unit
ball. Then

(Tu)(x, y) = (z,y) € RY, (10)

||Tu||wf+1(Ri+1) <c ||U||B§(Rn)-

The next lemma contains an interpolation inequality for functions in B! (R").

Lemma 2.2. Let u € BY(R™). Then, for any j =0,...,1—1,

1=J
[ell prs gny < €l i emy ||UI|L1 &n)- (11)

Proof. We introduce the function

@ (2
) = [ S (12

with any integer ¢ > s, where A,(f)u(x) is the difference of order ¢ defined by

ADy(z) =39, () (=1)"w(z + (g — i)h). Given s > 0, the equivalence relation
|

holds for all values of ¢ greater than s (see [7, Section 3.5.3]). Let ¢ > [.
Summing up the two inequalities

(q) (9)
n n B

’h|n+l j bt

|A(q
/n/n\B |h|”+l L Y T

)~ 1 COu| 1y @y + (|| 2, ey (13)

and
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we find that

HCz ]UHLl ®Rn) = / / |h|n+l dhd$<c(|\C uHL1 r) + [[ullz,@ny). (14)

By (13), |Ci—jullL,®r) < C(HCZ(E)]-UHM(R”) +[Ju|l, @®n)) . This, together with (14)
and (13), leads to

IC—jull @y < e(ICrullz, @) + L, @n)- (15)
The interpolation inequality (11) follows by dilation transform in (15). O

We introduce the space B! (B) of functions on the unit ball B with the finite
norm

-1
dx dy
ull gy = > 11V ull s +Z// (AR ) \‘x_y‘nﬂ
7=0
A local variant of inequality (11) is contained in the next statement.
Corollary 2.3. Let u € BY(B). Then, for anyj =0,...,1—1,
e
[l grs gy < e llull gi sy [l 2, ) (16)

Proof. 1t is standard (see [7, Section 4.5]) that u can be extended onto R™ so
that

[ull Bt @ry < cllullpi s (17)
[l oy < el ) (18)
These inequalities, combined with Lemma 2.2, give (16). [

We need the following Hardy type inequality.

Lemma 2.4. Let u € B{(R"), | <n. Then
s 2|~ u(@)] do < c |lull gy @ny. (19)

Proof. Let U € WITH(R”) be an arbitrary extension of u. We have

2l —1 [~ d
ol fuG)de == [ | Dlde.(20)
Rn l o ritt B<n>\3(n>

To estimate the right-hand side of (20), we use the standard trace inequality

/(n) o lu(z)|dx < c/ (r—1|U(z)| + |VU(,z)|)dz7
By’ \Br G2r\Gr
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where G, = B AR, Together with (20), this implies

[t @ar<e [ (B e wuen) B e

|| |[f

[terating the Hardy type inequality

dz
Lo TV <e [ VOIS

with j = 0,...,1 — 1, we find that the right-hand side in (21) is dominated by
¢ Jan1 |Vi41U(2)|dz. Taking into account that u is the trace of U on R™ and
+

using part (i) of Lemma 2.1, we complete the proof. [

The next lemma contains two more inequalities for intermediate derivatives
of functions given on the ball B

Lemma 2.5. Let | be a positive integer and let j =0,...,l — 1. Then, for any
€ (0,1],

P gl o
dx dy (22)
<o ( /(BW (A1) ()] 2+ 7l g,
and
dz d
,,,J+1z/ |(A(2)Vju)(x,y)| T ay
(B2 |z — y|" (23)

dx dy
s I e T )
< (B2 ‘ | |z — y[n (Br)

Proof. By dilation, the proof reduces to the case r = 1. It is well known that
fory=1,...,1—2,

IVjullz, ) < e (IVimrullzs) + lullrus) - (24)

Hence, it suffices to prove (22) for j =1 — 1. We introduce the function ¢ €
C§°(B) subject to [, ¢(y)dy = 1. Integrating by parts, we have

Viou(z) = /B P(y) APV ) (2, y)dy

0 [ (20T - ) (T
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Therefore,

/ |Vi—qu(x)|de <
B

Since the right-hand side does not exceed

dydx
<//| AV 1u (z y)‘WJr ||U||L1(B))a

we arrive at (22) with j = [ — 1. The proof of (22) is complete. Finally, (23)
results from the definition of the space B!(B) and inequalities (16) and (22). O

e(y) (APV,_u) (z,y) dy|dz + ¢ ||ul| 1, s5)

2.2. Auxiliary estimates for the Poisson operator. We deal with the
operator 1" defined by (10).

Lemma 2.6. Let v € WL (R"). Then

1,loc

dy < c(Cry)(x), (25)

where (Cyy)(x) is defined by (1).

Proof. For any n-dimensional multi-index o with |a| = 2,

E—x

DT (e) = [ (076
—y [ 00 (g)wx + hydh (26)

i GJarom.

where (o = 5(D%C)(€). The last equality in (26) is valid because D¢ is even
and satisfies [, D*((t)dt = 0. Since

>7(§)d§

1, h
) = [ o(2)alrn ) (27)
it follows for any n-dimensional multi-index § with |3| = 1 that
0 1/ 0 h
—D%(T == [ =y YD) (=) ) AP~ (x)dn
siren = [ (i (1)) alw

(28)
h
=y "7 /Rn o8 (5) APy (x)dh,

where (o5 = —1((n+ 1+ (£, V))D?C)(¢).
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Suppose [ > 2. Let 7= a+ 9, where |7|=1+1,|a|=2,|0|=1— 1. By (26),

DL(Ty)(x,y) =y "2 /R Coa (S) AP(D)(x)dh.

Next, let 7 = 40, where |7| =1, |3| =1, |6| =1 — 1. In view of (28),

0 . h

5. D) (@, y) =y / Co,6 <—) AP (D*)(w)dh.
) R™ Y

Suppose that [ + 1 is even, then the harmonicity of T~ implies

al—H 1
gyt IV@ ) = (=8:) = (T)(@,y).

Hence by (29),

‘ alJrl h

where
0<G(§) <c(l+lgh™
If [ + 1 is odd, then we have by harmonicity of Ty

ot o
8yl+1 (T"}/)(x,y) - a_y( A )

N~

(T7)(x,y).
This, together with (30), gives

‘ al+1

where

0 < G(6) < e(l+[gh™"

9" (Tv) Vz 17) ()]
[ Fgetlase [ o | Motmta

_ (A vl 17)( )|
_ n+1/ B

Hence,

which completes the proof.

py (T y)\ <o [ G (5) (A1) (@)

)| <o [ a(2) [T @l

(29)

(30)
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Lemma 2.7. Suppose v € Wil (R") and let

1,loc

N = sup r" "||C n 35
IE]RB H 17HL (B (z))" ( )
re(0,1)

Then, for any y € (0, 1],

0" (Ty)(x,y) -
Dy <cNy .
Proof. By Lemma 2.6,
O Ty) (= I (TY)(2,y)
< N n—m
/B(n)(:r / o ‘dy <cNr (36)

for r € (0,1). Let § <y <r. Applying the mean value theorem for harmonic
functions, we find

O™ (Ty)(x,y ’ / /

By (36), the right-hand side is dominated by ¢N7~'=™ The proof is complete. [J

8l+1 T’}/ - 77)
a T gpltt

‘dn.

The next assertion is based mainly on two previous lemmas.

Corollary 2.8. Let 0 < | < m < n and let v € W] 1016(R”) Then, for all
r € R",

0 m—l
(@) < e (N7 ((C) @) ™ + 1]z guie@n))-
Proof. We use the inequality due to Verbitsky

1| gl+1
O (T)(x, y)
()l < e (IIVIILl,umf(Rn) +/
0

Oyl +1
(see [4, Section 2.6.1]). Introducing the notation

) O(T) ()
o(y) = oy

0 for y > 1,

Y’ dy> (37)

for 0<y <1

for any R > 0, we have

! (9l+1(T'y)(x,y) 1 > ! ! f OO l
/0 ydy—/o o)y dySR/O so(y)dy+/R o(y)y'dy.

Oyl +1
By Lemma 2.6, the first term in the right-hand side is majorized by cR!(C)v)(x)
and by Lemma 2.7,

/ e(y)y'dy < cN/ Yty = ¢ N R
R

R
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1

Choosing R as R = Nwm ((Cl'y)(as)) ™ we arrive at the inequality

m—1

m

/0 " o)ydy < e N# ((C) (@)

which together with (37) completes the proof. O

Corollary 2.9. Suppose v € WL (R™). For any integer | > 1 and any z € R”

1,loc

T sy S € <p2%p1) A (] PO HVHLL“““(R”)) 9

Proof. By Corollary 2.8,

Tm_n_l ||7HL1(B$")(Z))

l

Lo om—n— mT_ m—
e N (0 R e Py

which does not exceed

c (Nni <rm” /B £n)@(c,w)(g;)czx)

by Holder’s inequality. Using (35), we complete the proof. O

m—1

; Hvuh,mm)

In the next two lemmas, we return to the Poisson operator 7.

Lemma 2.10. Letr <y < 1. Then, for any k > 1

V(T (@ y)l < er™ 7 sup o™l g - (39)
pe(0,1)
Proof. By (10),
7(9)]
Vi (Tv)(x, < c/ d€. 40
We have
[v(9)] - —k/
—d{ <cy™" [v(§)|d€
/Bﬁ’”(x) (| =& +y)n+* B™ () (41)

<er'™™ R sup pm ||
zERM
p€(0,1)

Li(BSY (2))°
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Besides,

v (€] v (€]
d —=
/Rn\3$.">(x) (Jo —&| +y)nth <= /Rn\s,@(x) |z — & tF ¢

< cr"/ dz/ —h(g)TLkdf.
R\BM (@) JBW () [T — &

Since [§ — z| > |Z;z|, it follows that the right-hand side of the last inequality
does not exceed

ertm [ s
Therefore,
7 (©)] — o
d§ < cr™"" sup p" Y[l g (42)
/ﬂw\sﬁf‘)(z) (lz =& +y)m+t sexn fa(Bp7=)
p€e(0,1)
Now, (39) results by combining inequalities (41), (42), and (40). O
Lemma 2.11. Let y > 1 and let k > 0, then
V(T (@, 9)] < ey 1|2 - (43)

Proof. First, observe that

()1 d s | o
téw@ﬂw—ﬂ+yWM B P

Clearly,

[v(©)] Iy (€)]
d§ = d N ges (45
/ﬂ%n\@éﬁ(z) (|$ — f| —l—y)n+k §<c /RH\B;M(%) Z/BY’)(Z) |:E — £|n+k 3 ( )

Since |£ — x| > @, the right-hand side of (45) is dominated by

I / dz
¢ 7 L uni R” —n
1, £(R™) R"\Bén)(as) ‘Z — xl +k
Therefore,
[v(€)] N
d€ < cy™|vlle i (R - (46)
/R”\BL")(@ (|2 =& +y)mt* 1, unif (R™)

Summing up inequalities (44) and (46), and then using estimate (40), we com-
plete the proof. O]
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3. Proof of Theorem 1.1

We make use of the norm

i dx dy

”|UH|BI By = ZTJ le U”L (B —i—ZrJH z/ . ’AéﬁV v ‘—|x Mias

defined for a positive integer [ and r € (0,1]. Lemma 2.5 implies

dx dy

2 —1
ol s, ~ /(B(n))z\(A; Vi) @) el ey (4D

By dilation in (16), we obtain

olsoen, < el o I00E e, (48)

for any j =0,...,1 —1.
Owing to (47), the required relation (3) can be written as

HVHM(B{”(R”)HB{(R")) ~ Sgg rminmﬂ)/‘”Bi(Bﬁn)(z))' (49)

re(0,1)

In view of Lemma 2.4 and (47), we obtain

ol gy g, < € N0l an (50)

for I < n. Letuy) n(£2), Wherere(() 1) for m <n and r =1 for m > n,
and n € C’go( ), n=1on 15’ ", Setting this u into the inequality

||7U||B§(Rn) < ||7||M(B;H(Rn)—>B§(Rn)) ||u||B’1”(R") (51)

and using (50) with v = yu, we have
m’V”lBll(zsi")(x)) < "MV w ey — B @) (52)

for any x € R". The required lower estimate for the norm [|v(|y;(pm@®r)— 5t (&n)
follows from (47).

Now we obtain the upper estimate for the norm ||v|[ /gy @ny— gt &n))- Let,

as before, Ty stand for the Poisson integral of 7. For any U € W " 1 (R,
we have by Lemma 2.1 that

I ullpt ey < [TVl gy, (53)
1 (RYT)
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where u(z) = U(z,0). Let X = (z,y) € R*™ and let G,(X) = B (X)nR?H
as in the proof of Lemma 2.4. Tt is shown in [4, Sect. 6.1], that for any integer
l€[0,m),

~

“F||M(W{”‘Ll(RT'l)HWf"'I(RiH))

sup " |\ Vil oy + sup [Tz g (x))- 59
xer7H XeRryH
re(0,1)

The first supremum in (54) can be replaced by SUD y 1 IVigaT || Ly (x)) in
the case m > n. Furthermore,

IVl ety ~ sup. r Vil oy + 1T @y (55)
XeRi
re(0,1)

This and (53) give

7 ull gy ey < € K |lUlymer gy, (56)
where
King= sup " "[Vigr(TY) Loy + sup Tyl zy6x))- (57)
XerH! XeRr!

re(0,1)

We introduce one more notation

dx dy

kpy = sup r" " ADVY,_iy(x,y) | ——— 58
N ze]RI?l /(B£”>(Z))2 | l 17( y)’ |$ _ y|n+1 ( )
re(0,1)
and intend to show that
Koy < ¢ (kg + sup 11, 56 (29))- (59)

Then the upper estimate for ||7([ ;@m @n)— pi (mny) follows from (56) by Lemma 2.1
and the arbitrariness of U.

Let us justify (59). When estimating ||V;11(T7)|L, (g, (x0)), Where X €
R%H it suffices to take Xy = (0,1). Suppose first that yo > 2. Then by
Lemma 2.11, 77|V 1 (TY) | 216 (x0)) < € IVl|y anie®ny- For 2 > o > 27, in
view of Lemma 2.10, we have

m—n m—n—I
NV (T g (xo)) < € sup p V2, 55 -

p€(0,1)

Given any r € (0, 1), it remains to estimate the norm ||V (TY)|| L, (g, (x0))
for yo < 2r.



80 T. Shaposhnikova

For any even k > 2 and |o| = [ + 1 — k, the harmonicity of 77 in R’
implies 22 DI(T)(x,y) = DI(~A,)%(T)(x, y). Hence by (29),

S| <er? [ (D) I@Pvim@lan o)

where (; obeys (32). Similarly, 3 o 35 Da(T)(w,y) = (%Dg(—Ax)%(Tv)(m,y)
for any odd k£ > 3. Using (30), we have

e <er? [ oY) [@Pvem@lan o

with (, satisfying (34).
Introducing the notation

h
no= [ty | 42(—) ADV@dh, (62)
G (Xo) By \Y

we deduce from (34) that for yy < 2r

3r
J; < c/ y”2dy/ da:/ ‘Ag)vl,w)(a:)‘dh
0 s e

. / At / (AP, 1) (2)|dr.

3r

Therefore,
Ty < er™ ™ (63)
with k,,; given by (58).
Let
= [ [ (D) APV @)y e dy. (0
~(Xo) JRM\BYY Y

In view of (61) and (34), we have for the inner integral over R”\B@(,n)

AYING APV, _y)(z)|dh
— <
/]Rn\B(") CQ (y) }(Ah vl—er) (x) ‘dh >Cy /Rn\BSJ”) |h|n+2 .

We write the mte?ral in the right-hand side as the sum of two integrals, one
taken over BY"\BY" and another over R™\B. We see that

o 7 Sy RN B;¢>\Bg,n> |h| 2
/ / W Vi) (@)|dh (65)
(n) () |h|nt1

prm
kml
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Besides,

3 APV, _~)(2)|dh
/0 dy/B(mdx/Rn\B(n) I |;L|nl+,3( ) <c(I+I.+1),  (66)

where .
" dh
I= d _ d —_—
/0 y/Bﬁ") |Vl 17(1‘” x/Rn\ng) |h|n+2
and . | )
" Vi_1y(zxh)|dh
I, = d .
+ / y/m /W\B("> ||+ dz
Clearly,
I<cr /( : |Vi_1y(z)|de. (67)
B
Hence,
I< cr"’m< sup pmnl/() Vi_1y(z )]d:v) (68)
pzee(](l){,l)
Obviously,

Lo <erl™ / / / Vian(eth)ldh o
+ BUU R”\B“ﬁ BOU |h¢n+2 '

In view of the the estimate || < r + |h| < %|£| + |h|, this implies

dg
I < cr1”/ / / |Vi_1y(zth)| de dh——= (69
mag B &) B €[+ )
and therefore,
I < cr”_m( sup pm_”_l/ |Vl_1’7(l‘)|dl’). (70)
5
pe(0,1)

Summing up (65), (67), and (70), we conclude that J, defined by (64) is
subject to the inequality

Jy < e (kl,m+ up 0 [ |vl_n<a:>|dx). (71)
Bpn (2)

zZ€ERM
p€(0,1)

Together with (63), this leads to

Tm_nHVH_l(T")/)HL1(QT(XO))
< C(kz,m+ sup Pm_n_l/() Viciy(z )\dx) ()
B,

z€R™
pe(0,1)
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It remains to show that

W T lla@ucxon < € 3P 11l (s - (73)
Xb6R1+

If yo > 2, this inequality stems directly from (43). Let yo < 2. Clearly,

3 13
oo s [ [ <(
0 /B JB{M(z)

x)rvﬁﬂdédxgg

Y )
3 . (1)
L o (5 s
0 B JR\BYY () Yy el
The first term in the right-hand side does not exceed
3
Jewa [ [narmlavdy<esw bl uoe,: 0
B 0o JB 2€R™ e
Since ( is the Poisson kernel, the second term in (74) is dominated by
(x4 h)|[dh
dxydy
<m/}<m (y + )1
B Jre\BY (76)

h)|dh d
gc/ / / dg/ et h)dh,, dy
o Jm Jems T s A y"

In view of the inequality |h| > | , the right-hand side in (76) is majorized by

3
¢ dy
c V(@ + h)|dvdhi~5—=5 < cesup V], g,
/o /n\B;Z)/B;")(g) /B@ gt ynt sern | P1BL()

Combining the last estimate with (75) and (76), we arrive at (73).

Now, summing up inequalities (63), (71), and (73), we conclude that the
value K, defined by (57) satisfies

z€R™
r€(0,1)

K < C(kz,m+ sup r"“”/( Ve (@)lde + sup 171, s z))> (77)
B (2)

Estimating the second term in the right-hand side by Lemma 2.5, we arrive at
(59). The result follows for [ < m. For m = [, instead of (73), we use the
maximum principle ||T7||LOO(R1“) < [[Vllzee®ny- The proof of Theorem 1.1 is
complete. [l
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4. Proof of Theorem 1.3

The desired lower estimate for the norm [|7v|[ (g ®n)— gt (mn)) follows from (52)
and the estimate

||leYHL1(B£n)(z)) < CSSRE “w’”Bi(Bf)(ﬁ))’ (78)

which holds for all z € R™ and r € (0,1]. In fact, in order to justify (78), it
suffices to check that

(2)
/BL”)(Z)/W\BL")HA}L Viey) (@ ||h| de <ecr” sup Vel B (79)

e 7L

Clearly,

/B<") /IR\B(”) 1—17( )||h|n+1 de < ert sup V- WHL (B (€))° (80)

Besides,

dh
/B(n)(z) /R”\B(") |vl—1’7(x:|:h)| |h|n+1 da

c dh
< — \Viiy(zth)| e d€ d.
rm /Bﬁ")(z) / " B4 /zs,ﬁ”’(g) |h[nt

Since || < r + |h], it follows that |h| > @ and, therefore, the right-hand side
of the last inequality is dominated by

d¢
c Viery(@£h)|dhig < er™ sup [Vl g,
/ B /Bﬁ”(s) €t e

z€R™?

which together with (80) implies (79).

To get the required upper estimate for |v||a;(pm@n)—pi @ny), We combine
(77) with Lemma 2.5 and Corollary 2.9 to conclude

zERM
r€(0,1)

ot < s 7"+ e )

Using this in (56), the result follows.

For m > n, the right-hand side in (49) is obviously equivalent to Bf ;(R™).
The proof is complete. n
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5. Proof of Theorem 1.4

(i) Suppose that v € M (B (R") — B!(R")). Then by Theorem 1.1, the
right-hand side in (3) is finite. Taking into account (59), we conclude that K,
defined in (57) is finite. The reference to the equivalence relation (54) completes
the proof of part (i).

(ii) Let U € W™ (R and U(z,0) = u(z). Clearly, by part (i) of Lemma 2.1,

Minimizing the right-hand side over all extensions U of u and using part (ii) of
Lemma 2.1, we complete the proof. m

6. Interpolation inequality for multipliers

We start with the following known assertion.
Lemma 6.1 ([3]). Let s > 0 and let u be a measure in R™. The best constant C
in the inequality [o, |ul dp < Cllul|ps@ny is equivalent to

sup rS’”u(B,(n")(x)).

T ER™
re(0,1)

For s > n the last supremum should be replaced by sup,cpn M(BY” (x))
JFrom Lemma 6.1, one readily obtains

Corollary 6.2. Let 0 < s <n, then

‘|7||M(BS (R?)—Ly(R)) ~~ Sup T n|’7HL B (2))" (81>
T ERMT
r€(0,1)
Let s > n, then
H’Y|’M(Bf(R”)—>L1(R")) ~ msggl H7|’L1(B§")(x))' (82>

Theorem 6.3. Let m and | be integers, m > 1 > 0, and let j = 0,...,1 — 1.
Then

. . -1 {
||7||M(B;”—J(Rn)_,Bi—J(Rn)) < CH”YH m(]Rn)_)Bl R")) ||’7|| M(BP = (RM) Ly (R™))" (83)
Proof. By (48), ully-s sy < cllelly e 11 e Henee,
sup ™| n
ZERp Hl ”| 1= (B (z))
re(0,1)
;

<e(sm ey (s @)

re(0, 1) re(0,1)

It remains to apply Theorem 1.1 and Corollary 6.2. [
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