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A Generation Result

for Cosine Functions of Operators
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Abstract. In this work a generation result for strongly continuous cosine functions
of operators is established, and the result is applied to study a geometric property of
self-accessible states of linear second order abstract control systems.
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1. Introduction.

Throughout this work X denotes a Banach space endowed with a norm ‖ · ‖
and A : D(A) ⊆ X → X is a closed linear operator. In [3] a characterization of
a well posed first order abstract Cauchy problem (abbreviated by ACP)

x′(t) = Ax(t) + f(t), t ∈ I = [0, a],

x(0) = x0 ∈ X,

was established, where f : I → X is an integrable function. The aim of this
paper is to show that a similar result holds for the second order ACP

x′′(t) = Ax(t) + f(t), t ∈ I = [0, a], (1.1)

x(0) = x0, x′(0) = x1. (1.2)

As an application we study a geometric property of self-accessible trajectories of
second order distributed control systems. Our exposition is based on the theory
of strongly continuous cosine functions of linear operators. In this section we
review some fundamental aspects of this theory needed to establish our results.
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The terminology and notations are those generally used in functional anal-
ysis. In particular, if (Z, ‖ · ‖Z) and (Y, ‖ · ‖Y ) are Banach spaces, we indicate
by L(Z, Y ) the Banach space of bounded linear operators from Z into Y en-
dowed with the uniform operator topology. We abbreviate this notation to L(Z)
whenever Z = Y , and Z∗ = L(Z, K) denotes the dual space of Z. In addition,
if T is a linear operator, then R(T ) designates the range space of T , and if T

is a linear operator defined in a dense subspace D(T ) of Z we represent by T ∗

the adjoint of T . Finally, along this paper, C(I, Z) is the space of continuous
functions from I into Z endowed with the norm of the uniform convergence.

For the theory of cosine functions of operators we refer to [1,5,8,20]. Next
we only mention a few concepts and properties relative to the second order
abstract Cauchy problem. A function C : (−∞,∞) → L(X) is called a strongly
continuous cosine function of operators if the following conditions hold:

(i) C(0) = I;

(ii) C(t + s) + C(t − s) = 2C(t)C(s) for all s, t ∈ (−∞,∞);

(iii) for each x ∈ X, the function (−∞,∞) → X, t 7→ C(t)x, is continuous.

The infinitesimal generator A : D(A) ⊆ X → X of C(t) is defined by

Ax = 2 lim
h→0

C(h)x − x

h2
, x ∈ D(A),

and the domain of A is the subspace consisting of all x ∈ X such that the
preceding limit exists. We denote by S(t) the sine function associated to C(t),
which is defined by

S(t)x =

∫ t

0

C(s)x ds, x ∈ X, t ∈ R.

The notation E stands for the space formed by the vectors x ∈ X for which
C(·)x is of class C1 on R. We know from Kisińsky [14], that E endowed with
the norm

‖x‖E = ‖x‖ + sup
0≤t≤1

‖AS(t)x‖, x ∈ E,

is a Banach space. The operator valued function G(t) =
[

C(t) S(t)
AS(t) C(t)

]

is a strongly

continuous group of bounded linear operators on the space E × X, generated
by the operator A =

[ 0 I

A 0

]

defined on D(A) × E. It follows from this that

S(t)(E)⊆D(A), the linear operator AS(t) : E →X is bounded and AS(t)x → 0,
t → 0, for each x ∈ E. Furthermore, if x : [0,∞) → X is locally integrable,
then y(t) =

∫ t

0
S(t− s)x(s)ds defines an E-valued continuous function, which is

a consequence of the fact that
∫ t

0

G(t − s)

[

0
x(s)

]

ds =

[

∫ t

0
S(t − s)x(s) ds

∫ t

0
C(t − s)x(s) ds

]

defines an E × X-valued continuous function.
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The existence of solutions for the second order abstract Cauchy problem
(1.1)–(1.2) has been discussed in [18]. Similarly, the existence of solutions for
the semilinear second order abstract Cauchy problem has been treated in [19].
Let f be a function in L1(I,X). We only mention here that the function u(·)
given by

u(t) = C(t)x0 + S(t)x1 +

∫ t

0

S(t − s)f(s) ds, t ∈ I, (1.3)

is called mild solution of (1.1)–(1.2). When x0 ∈ E, this function u(·) is con-
tinuously differentiable and

u′(t) = AS(t)x0 + C(t)x1 +

∫ t

0

C(t − s)f(s) ds.

The regularity of mild solutions of (1.1)–(1.2) has been treated in Travis &
Webb [19], Bochenek [4] and Henŕıquez & Vásquez [12].

In the following lemma we collect some properties of cosine functions that
will be needed in the next section.

Lemma 1.1. Let A be the infinitesimal generator of a strongly continuous co-

sine function of operators C. Then the following properties are fulfilled:

(a) For every x ∈ X and t ∈ R,
∫ t

0
S(ξ)x dξ ∈ D(A) and

A

∫ t

0

S(ξ)x dξ = C(t)x − x.

(b) For every f ∈ L1([0, τ ], X),
∫ τ

0

∫ t

0
S(t − ξ)f(ξ) dξ dt ∈ D(A) and

A

∫ τ

0

∫ t

0

S(t − ξ)f(ξ) dξ dt =

∫ τ

0

[C(τ − s) − I]f(s) ds.

(c) Let x∗ ∈ D(A∗). Then the function C(·)∗x∗ is continuously differentiable

and
d

dt
C(t)∗x∗ = S(t)∗A∗x∗.

(d) Let x∗ ∈ D(A∗). If f ∈ L1([0, τ ], X), then the function t →
∫ t

0
〈C(t −

s)f(s), x∗〉 ds is absolutely continuous and the equality

d

dt

∫ t

0

〈C(t − s)f(s), x∗〉 ds = 〈f(t), x∗〉 +

∫ t

0

〈S(t − s)f(s), A∗x∗〉 ds

holds almost everywhere.
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Proof. Assertion (a) follows from [1, Proposition 3.14.5 (a)]. To prove (b), we
observe that

∫ τ

0

∫ t

0
S(t − ξ)f(ξ) dξ dt =

∫ τ

0

∫ τ

ξ
S(t − ξ)f(ξ) dt dξ. It follows from

(a) that
∫ τ

ξ
S(t − ξ)f(ξ) dt ∈ D(A) and

A

∫ τ

ξ

S(t − ξ)f(ξ) dt = A

∫ τ−ξ

0

S(s)f(ξ) ds = C(τ − ξ)f(ξ) − f(ξ).

Since A is a closed operator, we obtain

A

∫ τ

0

∫ τ

ξ

S(t− ξ)f(ξ) dt dξ =

∫ τ

0

A

∫ τ−ξ

0

S(s)f(ξ) ds dξ =

∫ τ

0

[C(τ− ξ)f(ξ)−f(ξ)] dξ,

which shows (b). Let x∗ ∈ D(A∗). Using the definition of S(t), we have that
the operator map S(·) is continuous for the norm of operators. This implies
that the map S(·)∗ is also continuous for the norm of operators. Combining
with assertion (a) gives

〈x,C(t)∗x∗− x∗〉 = 〈C(t)x − x, x∗〉 =

〈

A

∫ t

0

S(ξ)x dξ , x∗

〉

=

∫ t

0

〈S(ξ)x,A∗x∗〉 dξ =

∫ t

0

〈x, S(ξ)∗A∗x∗〉 dξ,

for all t ∈ R and x ∈ X. Therefore, we have C(t)∗x∗ − x∗ =
∫ t

0
S(ξ)∗A∗x∗ dξ

which establishes (c). Similarly, it follows from (b) that

∫ t

0

〈C(t − s)f(s), x′′(t)〉 ds =

∫ t

0

〈f(s), x∗〉 ds +

∫ t

0

〈

∫ s

0

S(s − ξ)f(ξ) dξ, A∗x∗
〉

ds

and this equality yields assertion (d).

2. A generation result

In this section A : D(A) ⊆ X → X denotes a closed linear operator with dense
domain. We begin with the concept of a weak solution.

Definition 2.1. A continuous function u : I → X is said to be a weak solution

of the abstract Cauchy problem (1.1)–(1.2) if for each x∗ ∈ D(A∗) the function
〈u(·), x∗〉 is continuously differentiable, the function d

dt
〈u(t), x∗〉 is absolutely

continuous and the following conditions hold:

(i) d2

dt2
〈u(t), x∗〉 = 〈u(t), A∗x∗〉 + 〈f(t), x∗〉 a.e.;

(ii) 〈u(0), x∗〉 = 〈x0, x
∗〉;

(iii) d
dt
〈u(t), x∗〉|t=0 = 〈x1, x

∗〉.
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Remark 2.2. Since D(A∗) is w∗-dense in X∗ ( [7, Theorem II.2.11]), it follows
from (ii) above that u(0) = x0. Similarly, if u is a differentiable weak solution,
it follows from (iii) that u′(0) = x1.

The following properties will be used to establish Theorem 2.5.

Lemma 2.3 ( [7, Lemma VI.1.4]). Let A be a closed linear operator with dense

domain and let x, y ∈ X. If 〈y, x∗〉 = 〈x,A∗x∗〉, for all x∗ ∈ D(A∗), then

x ∈ D(A) and Ax = y.

In the next result we use the terminology of [5].

Lemma 2.4. Let C : [−τ, τ ] → L(X), τ > 0, be a strongly continuous mapping

such that C(0) = I and the D’Alembert functional equation

C(t + s) + C(t − s) = 2C(s)C(t), −
τ

2
≤ s, t ≤

τ

2
,

is fulfilled. Then C has a unique extension to R as a strongly continuous cosine

function of operators on X.

Proof. We define the operator A as in [5, Theorem II.3.1]. From the construction
carried out in the proof of [5, Theorem II.3.1] we conclude that the Cauchy
problem for the equation

x′′(t) = Ax(t) (2.1)

is well posed in [0, τ
2
]. Since the equation (2.1) is autonomous, the Cauchy

problem for (2.1) is well posed in [0,∞). The assertion is now a consequence
of [5, Theorem II.1.1].

We are now ready to state the main result of this section.

Theorem 2.5. Let A be a closed linear operator with dense domain. Then

the ACP (1.1)–(1.2) has a unique weak solution for each x0, x1 ∈ X and each

f ∈ L1(I,X) if, and only if, A is the infinitesimal generator of a strongly con-

tinuous cosine function of linear operators C. In this case, the weak solution

coincides with the mild solution u given by (1.3) and

d

dt
〈u(t), x∗〉 = 〈S(t)x0, A

∗x∗〉 + 〈C(t)x1, x
∗〉 +

∫ t

0

〈C(t − s)f(s), x∗〉 ds (2.2)

holds for each x∗ ∈ D(A∗) and 0 ≤ t ≤ a.

Proof. We assume initially that A generates a strongly continuous cosine func-
tion of operators C(t). We shall show that the mild solution u given by (1.3) is
also a weak solution. In fact, for each x∗ ∈ D(A∗) we have that

〈u(t), x∗〉 = 〈C(t)x0, x
∗〉 + 〈S(t)x1, x

∗〉 +

∫ t

0

〈S(t − s)f(s), x∗〉 ds

= 〈x0, C(t)∗x∗〉 + 〈S(t)x1, x
∗〉 +

∫ t

0

〈S(t − s)f(s), x∗〉 ds.
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Applying Lemma 1.1(c) to the first term on the right hand side of the above
expression, and using the properties of the convolution S(·) ∗ f(·) mentioned
in the Introduction, we obtain that 〈u(·), x∗〉 is continuously differentiable and
(2.2) holds. Similarly, applying now Lemma 1.1(c) and (d) to the right hand
side of (2.2), we infer that

d2

dt2
〈u(t), x∗〉 = 〈C(t)x0, A

∗x∗〉 + 〈S(t)x1, A
∗x∗〉

+ 〈f(t), x∗〉 +

∫ t

0

〈S(t − s)f(s), A∗x∗〉 ds, a.e.

= 〈u(t), A∗x∗〉 + 〈f(t), x∗〉, a.e.

Since the conditions (ii) and (iii) of Definition 2.1 are immediate consequences of
expressions (1.3) and (2.2), this completes the proof that u is a weak solution. It
only remains to show that u is the unique weak solution. Utilizing the linearity
of A and the Definition 2.1, it follows that the difference of two weak solutions
of the ACP (1.1)–(1.2) is a weak solution of the ACP problem

x′′(t) = Ax(t), t ∈ I = [0, a], (2.3)

x(0) = 0, x′(0) = 0. (2.4)

Thus, in order to finish the proof, it is sufficient to show that a weak solution x(·)
of (2.3)–(2.4) is x = 0. To this end, we set x∗ ∈ D(A∗) and define the function
h(t) = 〈x(t), x∗〉. Clearly, h(0) = h′(0) = 0 and h′′(t) = 〈x(t), A∗x∗〉, a.e. Hence
we infer that h(t) = 〈

∫ t

0

∫ s

0
x(ξ) dξ ds, A∗x∗〉. Setting z(t) =

∫ t

0

∫ s

0
x(ξ) dξ ds, we

have that h(t) = 〈x(t), x∗〉 = 〈z(t), A∗x∗〉. In view of that this property is
verified for all x∗ ∈ D(A∗), Lemma 2.3 implies that z(t) ∈ D(A) and Az(t) =
x(t). Also, since x(·) is continuous, z′′(t) = x(t) = Az(t) and z(0) = z′(0) = 0.
Applying the properties of the second order ACP mentioned in the Introduction,
we deduce that z(t) = C(t)z(0) + S(t)z′(0) = 0 and, therefore x(t) = 0.

Conversely, we assume now the existence of weak solutions for the problem
(1.1)–(1.2). Let u(t, x0) be the weak solution of (1.1)–(1.2) corresponding to
x1 = 0 and f = 0. For 0 ≤ t ≤ a we define the map C(t) : X → X by

C(t)x = u(t, x).

It is clear from the Remark 2.2 that C(0) = I. Moreover, a standard argument
using the uniqueness of the weak solutions allows us to conclude that C(t) is a
linear map. Furthermore, since u(·, x) is continuous the map C(·) is strongly
continuous. We divide the rest of the proof into several steps.

Step 1. For each 0 ≤ t ≤ a, the linear map C(t) is bounded.

We define the mapping V : X → C(I,X), x → C(·)x. From our preceding
statements we have that V is well defined with values in C(I,X) and also V is a
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linear map. Moreover, V is a closed linear map. To put in evidence this fact, we
take a sequence (xn)n in X such that xn → x and u(·, xn) = C(·)xn → v(·), as
n → ∞. This implies that v is continuous and 〈u(t, xn), x∗〉 → 〈v(t), x∗〉, n →
∞, uniformly for t ∈ I and for every x∗ ∈ X∗. This shows that

d2

dt2
〈u(t, xn), x∗〉 = 〈u(t, xn), A∗x∗〉, a.e.

converges to 〈v(t), A∗x∗〉, n → ∞, uniformly for t ∈ I and for all x∗ ∈ D(A∗).
By successive integration we get

〈u(t, xn), x∗〉 = 〈xn, x
∗〉 +

∫ t

0

∫ s

0

〈u(ξ, xn), A∗x∗〉 dξ ds,

and taking limit as n → ∞, we can write

〈v(t), x∗〉 = 〈x, x∗〉 +

∫ t

0

∫ s

0

〈v(ξ), A∗x∗〉 dξ ds,

which implies that v is a weak solution of (1.1)–(1.2) corresponding to x0 =
x, x1 = 0 and f = 0. Therefore, v = V x and V is a closed linear operator.
From the closed graph theorem it follows that V is a bounded operator. Thus,
‖C(t)x‖ ≤ ‖V x‖ ≤ ‖V ‖ ‖x‖, t ∈ I, which shows that C(t) is also a bounded
operator.

Step 2. The map C : I → L(X) can be extended to R as a strongly
continuous cosine function of operators.

We define C(−t)x = C(t)x, for t ∈ I and for every x ∈ X. Let x∗ ∈ D(A∗).
In view of that the right derivative of 〈C(t)x, x∗〉 at t = 0 is equal to zero, it
follows that the function 〈C(t)x, x∗〉 is continuously differentiable, its derivative
is absolutely continuous and d2

dt2
〈C(t)x, x∗〉 = 〈C(t)x,A∗x∗〉, for all t ∈ [−a, a].

Now, for each t ∈ I we define the functions v(s) = C(t + s)x + C(t − s)x and
w(s) = 2C(s)C(t)x, for s ∈ I. Using the previous remarks, we obtain easily
that both v as w are weak solutions of problem (1.1)–(1.2) corresponding to
x0 = 2C(t)x, x1 = 0 and f = 0. Consequently, v = w, which shows that
C(·) verifies the D’Alembert functional equation on I. The assertion is now
consequence of Lemma 2.4. Next we utilize the symbol C to denote this cosine
function.

Step 3. The operator A is the infinitesimal generator of C.

Let A0 be the infinitesimal generator of C. Initially we prove that A is
an extension of A0. Let x ∈ D(A0) and x∗ ∈ D(A∗). We define the function
h(t) = 〈C(t)x, x∗〉. Then, combining the properties of cosine functions and
Definition 2.1, we obtain

h′′(t) = 〈A0C(t)x, x∗〉 = 〈C(t)A0x, x∗〉 = 〈C(t)x,A∗x∗〉, a.e.



110 H. R. Henŕıquez and C. Landero H.

Since the functions on the right hand side of the above expressions are contin-
uous, we infer that the preceding equality holds for all t ∈ I. In particular, for
t = 0 we infer that 〈A0x, x∗〉 = 〈x,A∗x∗〉 and applying Lemma 2.3 we deduce
that x ∈ D(A) and Ax = A0x.

On the other hand, let x ∈ X and x∗ ∈ D(A∗). Since d2

dt2
〈C(t)x, x∗〉 =

〈C(t)x,A∗x∗〉 by successive integration, we get

〈C(t)x − x, x∗〉 =

〈
∫ t

0

∫ s

0

C(ξ)x dξ ds , A∗x∗

〉

. (2.5)

From Lemma 2.3, we conclude that
∫ t

0

∫ s

0
C(ξ)x dξ ds ∈ D(A) and

A

∫ t

0

∫ s

0

C(ξ)x dξ ds = C(t)x − x.

Assume now that x ∈ D(A). Applying the preceding result to Ax instead of x

we can assert that
∫ t

0

∫ s

0
C(ξ)Axdξ ds ∈ D(A) and

A

∫ t

0

∫ s

0

C(ξ)Axdξ ds = C(t)Ax − Ax. (2.6)

We define the function

z(t) =

∫ t

0

∫ s

0

C(ξ)Axdξ ds − C(t)x + x, t ≥ 0.

Then the following properties hold:

(i) Clearly z(·) is continuous and z(0) = 0.

(ii) It follows from (2.5) that for each x∗ ∈ D(A∗), the function 〈z(·), x∗〉 is
continuously differentiable and

d

dt
〈z(t), x∗〉 =

〈
∫ t

0

C(ξ)Axdξ, x∗

〉

−

〈
∫ t

0

C(ξ)x dξ,A∗x∗

〉

is continuous and d
dt
〈z(t), x∗〉|t=0 = 0.

(iii) Combining the assertion in (ii), equality (2.6) and the definition of z, we
have

d2

dt2
〈z(t), x∗〉 = 〈C(t)Ax, x∗〉 − 〈C(t)x,A∗x∗〉

=

〈

A

∫ t

0

∫ s

0

C(ξ)Axdξ ds + Ax, x∗

〉

− 〈C(t)x,A∗x∗〉

= 〈z(t), A∗x∗〉.
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From (i), (ii) and (iii), we conclude that z is a weak solution of problem (2.3)–
(2.4). As consequence of the uniqueness of weak solutions we obtain that z(t)=0.
This yields

∫ t

0

∫ s

0
C(ξ)Axdξ ds = C(t)x − x, t ≥ 0. This implies that

2
C(t)x − x

t2
=

2

t2

∫ t

0

∫ s

0

C(ξ)Axdξ ds → Ax, t → 0+,

Hence x ∈ D(A0) and A0x = Ax. This completes the proof.

3. Second order abstract control systems

In the remainder of this work A denotes the infinitesimal generator of a strong-
ly continuous cosine function of linear operators C on the Banach space X.
Furthermore, henceforth we assume that X is a real Banach space. Certainly, if
X is a complex Banach space, our results are applicable to the underlying real
space.

In this section, we are concerned with second order linear control systems
that can be modeled by the equation

x′′(t) = Ax(t) + Bu(t), (3.1)

with states in x(t) ∈ X, controls u(t) in a Banach space U and where the
control action B : U → X is a bounded linear operator. Both the exact and
the approximate controllability of these systems have been studied by several
authors. Directly related to systems modeled by equation (3.1) we mention
[6, 10, 21–23], and there is also an extensive literature related to functional
systems [16, 17]. Roughly speaking, the exact controllable systems are rather
scarce, while they usually are approximately controllable. In this section, we
study a concept, introduced by Baccioti in [3] and studied in [9] for abstract
first order systems, similar but weaker than the controllability, which is called
self-accessibility.

We consider as admissible trajectories of (3.1) in the time domain I = [0, τ ]
the mild solutions corresponding to control functions u ∈ L∞(I, U) and initial
conditions x(0) = x0 and x′(0) = x1. Consequently, the admissible trajectories
of system (3.1) are given by

x(t; x0, x1, u) = C(t)x0 + S(t)x1 +

∫ t

0

S(t − s)Bu(s) ds, 0 ≤ t ≤ τ, (3.2)

and it follows from Section 2 that the following relations hold:

〈x(t; x0, x1, u), x∗〉 =

〈

C(t)x0 + S(t)x1 +

∫ t

0

S(t − s)Bu(s) ds, x∗

〉

d

dt
〈x(t; x0, x1, u), x∗〉 = 〈S(t)x0, A

∗x∗〉 +

〈

C(t)x1 +

∫ t

0

C(t − s)Bu(s) ds, x∗

〉

,

for every x∗ ∈ D(A∗). These expressions lead to the following definition.
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Definition 3.1. The pair (x0, x1) is said to be self-accessible on I if there is
u ∈ L∞(I, U) such that

〈x0, x
∗〉 =

〈

C(τ)x0 + S(τ)x1 +

∫ τ

0

S(τ − s)Bu(s) ds, x∗

〉

(3.3)

〈x1, x
∗〉 = 〈S(τ)x0, A

∗x∗〉 +

〈

C(τ)x1 +

∫ τ

0

C(τ − s)Bu(s) ds, x∗

〉

, (3.4)

for all x∗ ∈ D(A∗).

We have used expressions (3.3) and (3.4) to define a self-accessible state
(x0, x1) in order to avoid some a priori conditions on x0 or x1. Nevertheless, we
can establish the following property.

Remark 3.2. If (x0, x1) is self-accessible on I, it follows from (3.4) that

〈S(τ)x0, A
∗x∗〉 =

〈

x1 − C(τ)x1 −

∫ τ

0

C(τ − s)Bu(s) ds, x∗

〉

,

for all x∗ ∈ D(A∗). As consequence of Lemma 2.3, we derive that S(τ)x0 ∈
D(A) and that

AS(τ)x0 = x1 − C(τ)x1 −

∫ τ

0

C(τ − s)Bu(s) ds.

Combining this property with (3.3) and using the fact that D(A∗) is w∗-dense in
X∗ we obtain that (x0, x1) is self-accessible on I if, and only if, S(τ)x0 ∈ D(A)
and there is u ∈ L∞(I, U) such that

x0 = C(τ)x0 + S(τ)x1 +

∫ τ

0

S(τ − s)Bu(s) ds (3.5)

x1 = AS(τ)x0 + C(τ)x1 +

∫ τ

0

C(τ − s)Bu(s) ds. (3.6)

In this case, to abbreviate the terminology, we say that x(·, x0, x1, u) is a self-
accessible trajectory.

This motivates to introduce the space Eτ = {x ∈ X : S(τ)x ∈ D(A)}.
Clearly, from the properties mentioned in the Introduction, D(A) ⊆ E ⊆ Eτ .

Related to the concept of self-accessible states, we say that x0 ∈ X is
stationary on I if there exists a control function u ∈ L∞(I,X) such that
x(t; x0, 0, u) = x0, for every 0 ≤ t ≤ τ and we introduce the subspace F =
{x ∈ D(A) : Ax ∈ R(B)}. Clearly, every x0 ∈ F is stationary. In fact, if
Ax0+Bu = 0 and we chose the constant control u(t) = u, then from Lemma 1.1
it follows that x(t; x0, 0, u) = x0, for all 0 ≤ t ≤ τ .

We next show that the integral of a self-accessible trajectory is included
in F .
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Proposition 3.3. If x = x(·, x0, x1, u) is a self-accessible trajectory of the con-

trol system (3.1), then
∫ τ

0
x(s) ds ∈ F .

Proof. From (3.2) we can write

∫ τ

0

x(s) ds = S(τ)x0 +

∫ τ

0

S(t)x1 dt +

∫ τ

0

∫ t

0

S(t − ξ)Bu(ξ) dξ dt.

The first term on the right hand side belongs to D(A) by Remark 3.2 while the
second and third term on the right hand side belong to D(A) by Lemma 1.1.
Moreover, again applying Lemma 1.1 and combining with (3.6) we get that

A

∫ τ

0

x(s) ds = AS(τ)x0 + (C(τ) − I)x1 +

∫ τ

0

[C(τ − s) − I]Bu(s) ds

= −B

∫ τ

0

u(s) ds

which establishes the assertion.

Proposition 3.3 yields the following geometric property of self-accessible
trajectories.

Theorem 3.4. Let x = x(·, x0, x1, u) be a self-accessible trajectory of the control

system (3.1) on I, then

max
0≤t≤τ

‖x0 − x(t)‖ ≥ d(x0, F ).

Proof. We set y = 1
τ

∫ τ

0
x(t) dt. From Proposition 3.3 we have that y ∈ F .

Hence

d(x0, F ) ≤ ‖x0 − y‖ =
1

τ
‖

∫ τ

0

(x0 − x(t)) dt‖ ≤ max
0≤t≤τ

‖x0 − x(t)‖.

The following consequence is immediate.

Corollary 3.5. Let x0 be stationary on I. Then x0 ∈ F .

In general, the subspace F is not closed and, as a matter of fact, there are
elements x ∈ F which are not stationary. As a simple example we can take
A = I, U = X and B : X → X a compact linear operator with dense range.
Clearly, F = R(B) is dense in X. On the other hand, we define the operator
Λ : L∞(I,X) → X by the expression

Λ1(u) =

∫ τ

0

S(τ − s)Bu(s) ds.
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Then Λ1 is a compact operator ( [10]). Since C(t) = cosh t I, for an stationary
element x ∈ X, we can write (1 − cosh τ)x = Λ1(u), for some u ∈ L∞(I,X).
This shows that the stationary elements of X are included in R(Λ1) 6= X = F .

Certainly, if A is a bounded operator and R(B) is a closed subspace, then
F is closed.

As a further application of Theorem 3.4 we can obtain a property of periodic
cosine functions. The periodic cosine functions have been studied by several
authors. In particular, from the characterization established in [15], we infer
that if C(·) is τ -periodic and ker(A) = {0}, then S(τ) = 0.

Corollary 3.6. Assume that the cosine function C is τ -periodic and that A is

injective. Then, for every x ∈ X,

max
0≤t≤τ

‖C(t)x − x‖ ≥ ‖x‖.

Proof. We consider the control system (3.1) with B = 0. Clearly, (x, 0) is self-
accessible on the interval [0, τ ], and since F = {0}, the assertion is a consequence
of Theorem 3.4.

We return to the study of control system (3.1) on the interval [0, τ ]. We
define the maps Λ2 : L∞(I,X) → X and Λ : L∞(I,X) → X × X by the
expressions

Λ2(u) =

∫ τ

0

C(τ − s)Bu(s) ds

and Λ = (Λ1, Λ2). It follows from (3.5), (3.6) and the definition of the group
G(t) that if (x0, x1) ∈ E × X is self-accessible, then

(I − G(τ))

[

x0

x1

]

⊆ R(Λ).

We will denote by Pτ the space consisting of self-accessible vectors (x0, x1) ∈
E × X. System (3.1) is said self-accessible on [0, τ ] if Pτ = E × X. In general,
this property is rarely satisfied for infinite dimensional systems. To justify this
assertion, we state the following.

Proposition 3.7.Assume that B is a compact map and that there is an infinite-

dimensional closed subspace Zτ of E × X such that Zτ ⊆ R(I − G(τ)). Then

Pτ 6= E × X.

Proof. It follows from [10] that Λ is a compact map. If Pτ = E × X, from
the preceding remark we have that R(I − G(τ)) ⊆ R(Λ), which implies that
Zτ ⊆ R(Λ), but this is a contradiction by the open mapping theorem. This
proves the assertion.
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For real control systems the control space U has finite dimension and the
operator B is compact. Consequently, for large classes of systems Pτ 6= E ×X.
We illustrate the criterion established in Proposition 3.7 with an application.

Example 3.8. Consider the controlled wave equation

∂2w(t, ξ)

∂t2
=

∂2w(t, ξ)

∂ξ2
+

m
∑

i=1

bi(ξ)ui(t), t > 0, 0 < ξ < π (3.7)

w(t, 0) = w(t, π) = 0 (3.8)

w(0, ξ) = w0(ξ),
∂w(t, ξ)

∂t
= w1(ξ). (3.9)

This system can be modeled in the form (3.1) on X = L2([0, π]). The operator
A is defined by

(Az)(ξ) =
d2z(ξ)

dξ2

with domain D(A) = {z ∈ X : z ∈ H2([0, π]), z(0) = z(π) = 0}. The spectrum
of A consists of eigenvalues −n2 for n ∈ N, with associated eigenvectors ϕn(ξ) =
(

2
π

)
1

2 sin (nξ). Furthermore, the set {ϕn : n ∈ N} is an orthonormal basis of X.
In particular,

Ax =
∞

∑

n=1

−n2〈x, ϕn〉ϕn. (3.10)

for x ∈ D(A) ( [20, Example 5.1], [13, p. 117]). Using (3.10), one easily verifies
that the operators C(t) defined by

C(t)x =
∞

∑

n=1

cos (nt)〈x, ϕn〉ϕn, t ∈ R,

form a cosine function on X. We take τ = π. Let X0 be the closure of the
subspace generated by the functions ϕ2n−1 for n ∈ N. For x ∈ X0, we obtain
that C(τ)x = −x and S(τ)x = 0. Therefore,

(I − G(τ))

[

0
x

]

=

[

I − C(τ) −S(τ)
−AS(τ) I − C(τ)

] [

0
x

]

= 2

[

0
x

]

.

Hence, the subspace Zτ = {0} × X ⊆ R(I − G(τ)). Assuming that bi ∈ X for
i = 1, . . . ,m, the operator B : R

m → X is given by B(u1, . . . , um) =
∑m

i=1 uibi.
It is clear that B is compact. By Proposition 3.7, system (3.7)–(3.9) is not
self-accessible.

These results lead us to consider the weaker concept of approximate self-
accessibility. If x = x(·, x0, x1, u) is an admissible trajectory with x0 ∈ Eτ , we
shall denote

y(τ) = AS(τ)x0 + C(τ)x1 +

∫ τ

0

C(t − s)Bu(s) ds.
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Definition 3.9. Let x0 ∈ Eτ . We say that (x0, x1) is approximately self-

accessible on I if for each ε > 0, there exists an admissible trajectory x =
x(·, x0, x1, u) such that ‖x(τ)− x0‖+ ‖y(τ)− x1‖ ≤ ε. In this case we say that
x(·) is an admissible trajectory of ε-self-accessibility.

We introduce some additional notations. If x∗ ∈ D(A∗), A∗x∗ 6= 0, we
denote by P (x∗) the closed hyperplane formed by the elements x ∈ X such that
〈x,A∗x∗〉 = 0. Moreover, N(B∗) = ker(B∗) ∩ D(A∗). In the calculation that
follows we use the well known property that the distance of a point z to the
hyperplane P = {x ∈ X : 〈x, y∗〉 = 0} is given by d(z, P ) = |〈z,y∗〉|

‖y∗‖
.

Theorem 3.10. Let x0 ∈ Eτ and let x = x(·, x0, x1, u) be an admissible tra-

jectory of the control system (3.1) on I such that ‖x1 − y(τ)‖ ≤ δ, for some

δ > 0. If x∗ ∈ N(B∗) and A∗x∗ 6= 0, then there is s ∈ I such that

d(x(s), P (x∗)) ≤
δ

τ

‖x∗‖

‖A∗x∗‖
.

In particular, if x is a trajectory of self-accessibility, then there is s ∈ I such

that x(s) ∈ P (x∗).

Proof. We define h(t) = 〈x(t), x∗〉. Since B∗x∗ = 0, it follows from the Section 2
that h is continuously differentiable, h′ is absolutely continuous and h′′(t) =
〈x(t), A∗x∗〉 is continuous. Hence, we have that h′ is continuously differentia-
ble. Moreover, |h′(0)−h′(τ)| = |〈x1 − y(τ), x∗〉| ≤ δ‖x∗‖. From the mean value
theorem we find that there exists s ∈ I such that τ |〈x(s), A∗x∗〉| = |h′′(s)|τ =

|h′(0) − h′(τ)|. Since d(x(s), P (x∗)) = |〈x(s),A∗x∗〉|
‖A∗x∗‖

, we obtain the first assertion.
The second statement is an immediate consequence of this result by taking
δ → 0.

We are able now to establish an extension of Theorem 3.4 for trajectories
that have a property of approximate self-accessibility.

Theorem 3.11. Assume that F⊥ ⊆ A∗(D(A∗) ∩ ker(B∗)). Let x0 ∈ Eτ such

that d(x0, F ) > 0. Then for each ε > 0, there exists δ > 0 such that

max
0≤t≤τ

‖x(t) − x0‖ ≥ d(x0, F ) − ε

for every admissible trajectory x = x(·, x0, x1, u) of the control system (3.1) on I

such that ‖x1 − y(τ)‖ ≤ δ.

Proof. We set r = d(x0, F ). From the Hahn-Banach theorem, we infer that
there exists a closed hyperplane H in X which contains F and d(x0, H) = r.
Let y∗ ∈ X∗ such that H = {x ∈ X : 〈x, y∗〉 = 0}. Since y∗ ∈ F⊥, using our
hypothesis we can affirm that there exists x∗ ∈ N(B∗) such that H = P (x∗).
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This implies that A∗x∗ 6= 0 and we can select a constant δ > 0 such that
δ ≤ ετ

‖A∗x∗‖
‖x∗‖

. It follows from Theorem 3.10 that there is s ∈ I such that

d(x(s), H) ≤ ε. This implies that max0≤t≤τ ‖x(t) − x0‖ ≥ ‖x(s) − x0‖ ≥
|d(x0, F ) − d(x(s), F )|, which completes the proof.

Remark 3.12. In [11, Theorem 3], we have shown that if R(A)+R(B) is closed
in X and F is included in a closed hyperplane H, then H = P (x∗), for some x∗ ∈
N(B∗). Consequently, we can change the condition F⊥ ⊆ A∗(D(A∗)∩ ker(B∗))
in Theorem 3.11 by the condition R(A) + R(B) closed.
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2006.
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