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Non-Trivial Self-Similar Extinction Solutions

for a 3D Hele-Shaw Suction Problem

G. Prokert and E. Vondenhoff

Abstract. We show the existence of noncircular, self-similar solutions to the three-
dimensional Hele–Shaw suction problem with surface tension regularisation up to
complete extinction. In an appropriate scaling, these solutions are found as bifurca-
tion solutions to a nonlocal elliptic equation of order three. The bifurcation parameter
is the ratio of the suction speed and the surface tension coefficient.
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1. Introduction

The problem of Hele–Shaw flow with suction in one point and surface tension
regularisation consists in finding a family of moving domains t 7→ Ω(t) in R

3

and functions p(·, t) : Ω(t) → R such that

∆p = µδ in Ω(t) (1)

p = −γκ on Γ(t) := ∂Ω(t). (2)

Here κ stands for the mean curvature of the moving boundary t 7→ Γ(t) (taken
negative if Ω(t) is convex) and γ > 0 is the surface tension coefficient. The
parameter µ > 0 denotes the suction speed and δ is the delta distribution. As
usual, the evolution of the boundary is given by

vn = −
∂p

∂n
, (3)

where vn is the normal velocity of the boundary.
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Besides liquid flow in a Hele–Shaw cell [2], the model and variations of it
describe the growth of tumours [1] and porous media flow [3,4].

Trivial solutions are given by balls around the origin whose volume decreases
linearly in time, with rate µ. The evolution of the domain that is initially the
unit ball B

3 is therefore
Ω(t) = α(t)B3,

with α : [0, 4π
3µ

) → (0, 1] given by α(t) := 3

√

1 − 3µt

4π
. In [10] it is shown that if µ

γ
≤

ζ2 := 32π
5

then this solution is nonlinearly stable with respect to perturbations
that do not change the volume and the center of mass of the initial domain.

In this note we prove the existence of non-trivial solutions with the property

Ω(t) = α(t)Ω(0),

for µ

γ
near the values ζk := 4π k3+k2−2k

k+3
, k = 2, 3, 4 . . . .

This communication is organized as follows: in Section 2 we introduce a
rescaled evolution equation (5) in a way that the trivial solutions described
above are represented by trivial stationary solutions. In turn, non-trivial sta-
tionary solutions of (5) correspond to non-trivial self-similar extinction solutions
of the original Hele–Shaw problem. We repeat some results from [9, 10] which
form the framework for our considerations here. Because of the rescaling, the
evolution operator depends on time. For the problem in R

3, the operator scales
in such a way that this time dependence occurs simply as a multiplication by a
function of time. In Section 3 we will apply a well known result on “bifurcation
from a simple eigenvalue”. To ensure that the eigenvalue under consideration
is simple, we have to restrict our basic space, thereby introducing a symme-
try breaking. This approach is also used (for other free boundary problems)
in [5–7].

We want to point out here that the result depends crucially on the space
dimension 3. This is due to the fact that only in this dimension the fundamental
solution for the Laplacian has the same scaling behavior with respect to dilations
as the curvature.

2. The evolution problem

Let H
s(S2) be the Sobolev space of order s of functions on the unit sphere S

2

in R
3. We recall some constructions and propositions from [10] which form the

basis for the results given in Section 3.

We restrict ourselves to domain evolutions that can be described by a con-
tinuous function R : S

2 × [0,∞) → (−1,∞) such that

Ω(t) = ΩR(·,t) :=
{

ξ ∈ R
3 \ {0} : |ξ| < 1 + R

(

ξ

|ξ|
, t

)

}

∪ {0}.
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Besides R we introduce r : S
2 × [0,∞) → (−1,∞) by 1+ r(x, t) = 1+R(x,t)

α(t)
. This

definition of r is equivalent to

Ωr(·,t) = α(t)−1ΩR(·,t). (4)

Let ΩR(t) = α(t)Ωr(t) be a solution to the Hele–Shaw problem (1)-(3). Then
r(t) satisfies an evolution equation of the form

∂r

∂t
=

1

α(t)3
(γF1(r) − µF2(r)) , (5)

with smooth F1 : U → H
s−3(S2) and F2 : U → H

s−1(S2), where s > 5 and U is
a certain neighbourhood of the origin in H

s(S2). For the precise structure of F1

and F2 and a derivation of (5) we refer to [10]. (Hölder spaces are used there
instead of Sobolev spaces. Formally, however, the arguments are identical.)
Here it is sufficient to investigate the first Fréchet derivatives of F1 and F2.

For the equation (5), r ≡ 0 is a stationary solution corresponding to the
shrinking ball Ω(t) = α(t)B3. On the other hand, it is clear that any stationary
solution, i.e., any time independent r satisfying

γF1(r) − µF2(r) = 0, (6)

corresponds to a solution Ω(t) = α(t)Ωr. This represents a self-similar solu-
tion of the original problem (1)–(3) which exists up to time 4π

3µ
when complete

extinction of the domain takes place.

We introduce the Dirichlet-to-Neumann operator N : H
σ(S2) → H

σ−1(S2),
σ > 1, as the operator that maps a function h to Nh := ∂u

∂n
, where u satisfies

∆u = 0 on B
3

u = h on S
2.

This is a first order pseudodifferential operator on S
2 whose spectrum consists

of the nonnegative integers. The eigenfunctions are the spherical harmonics of
corresponding degree.

The linearisations of F1 and F2 around r ≡ 0 are given by

F ′
1(0)h = N (−N 2h −Nh + 2h) (7)

F ′
2(0)h = −

1

4π
(Nh + 3h) . (8)

For this we refer to [9, Lemma 2.12] and [10, Lemma 2.5].
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3. Non-trivial stationary solutions via bifurcation

Let Sl be the space of spherical harmonics of order l. Define for σ ≥ 0 the
subspace H

σ
×(S2) of H

σ(S2) consisting of those functions that are invariant with
respect to rotations around the z-axis. It is well known that

Sl ∩ Hσ
×(S2) = 〈Y 0

l 〉,

where Y 0
l are the zonal harmonics given by Y 0

l (θ) = Pl(cos θ), where θ denotes
the polar angle coordinate on S

2 and Pl are the Legendre polynomials.

The mappings F1 and F2 respect rotational symmetries. Therefore, on
a suitable neighbourhood U× of zero in H

s
×(S2), we have a smooth mapping

F×,µ : U× → H
s−3
× (S2) given by

F×,µ = (γF1 − µF2)|U× .

We shall now state the main result of this note. We keep s and γ fixed
and denote by Xk the orthoplement of 〈Y 0

k 〉 in H
s
×(S2). Moreover, we write

µk := γζk.

Theorem 3.1. Let k ≥ 2 be an integer. There exists a δ > 0 and a C1-curve

(f,m) : (−δ, δ) → Xk×R such that (f(0),m(0)) = (0, µk) and for all τ ∈ (−δ, δ)
we have

F×,m(τ)

(

τY 0
k + τf(τ)

)

= 0. (9)

Furthermore, there is a neighbourhood of (0, µk) in Xk × R on which any zero

of (r, µ) 7→ F×,µ(r) is either of the form
(

τY 0
k + τf(τ),m(τ)

)

or of the form

(0, µ).

This theorem ensures the existence of non-trivial stationary solutions to (6).
In particular, Y 0

k gives the direction in which these solutions bifurcate from the
trivial one, see Figure 1. The proof of Theorem 3.1 uses the following lemma.
To simplify notation here, we define Ak ∈ L(Hs

×(S2), Hs−3
× (S2)) by

Ak := F ′
×,µk

(0).

Lemma 3.2. Let k ≥ 2 be an integer. We have ker Ak = 〈Y 0
k 〉 and R(Ak) has

codimension one.

Proof. The zonal harmonics form a complete orthogonal system in H
s
×(S2).

Consequently, we get from (7), (8), and the fact that NY 0
l = lY 0

l

Akh =
∑

l≥0

gl(k)‖Y 0
l ‖

−2
0 (h, Y 0

l )0Y
0
l , h ∈ H

s
×(S2),

where (·, ·)0 denotes the usual inner product on L2(S
2), ‖ · ‖0 the corresponding

norm, and gl(k) = −γ(l3 + l2 − 2l) + µk

4π
(l + 3). As gl(k) = 0 if and only if l = k

and gl(k) ∼ −γl3 for large l, both statements follow immediately.



Self-Similar Extinction Solutions 187

Figure 1: The domains ΩcY 0

2
, for several values of c ∈ R. For |c| small but

nonzero, these domains approximate non-trivial stationary solutions of the
rescaled problem, i.e., shapes of self-similarly vanishing domains.

The proof of Theorem 3.1 follows if we combine Lemma 3.2, [8, Theo-
rem 13.5] and the fact that

∂µ(F ′
×,µ(0))|µ=µk

Y 0
k = −F ′

2(0)Y 0
k =

k + 3

4π
Y 0

k /∈ R(Ak).

Our analysis does not provide any strict results concerning the more com-
plicated question of stability of the solutions we found. At least for k > 2,
instability is to be expected because of the linear instability of the trivial solu-
tion for µ = µk.
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