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Eigenvalue Distribution
of Semi-Elliptic Operators
in Anisotropic Sobolev Spaces
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Abstract. We study the spectral properties of the compact non-negative self-adjoint
operator T = A~ o trl' acting in the anisotropic Sobolev space H3*(R™) and give
two-sided estimates for the asymptotic behaviour of its eigenvalues A\i(7T'), where A
is a semi-elliptic differential operator of type

o 0% 1u(x)
83:%51

o 0% u(2)

H2sn

Au(z) = (1) +(=1) + u(x),

and tr' a special trace operator on an anisotropic d-set I'.
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1. Introduction

Let us consider a differential expression with real coefficients A(D) = > a,D®,
_ . .. a 8\04 _ n
where o = (ayq,...,q,) is a multi-index, D* = T and |a| = >, a;.

Let [ = (I1,...,0ln), (Ix > 0,1 < k < n) be a fixed multi-index. We write

(a:20) =374, 5. We study the following differential operator:

AD)u = Z a,D%u.
(

a:2l)=1

A(D) is said to be semi-elliptic if the corresponding polynomial is positive,

A€ = D ant*>0,  £eR"\{0}.

(a:2l)=1
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First we explain the physical background of the interest in such operators
and start with a classical situation. Let 2 be a bounded domain in the plane
R? with C° boundary 91, interpreted as a membrane fixed at its boundary.
Vibrations of such a membrane in R? are measured by the deflection v(x,t),
where z = (z1,25) € Q, and t > 0 stands for the time. In other words, the
point (x1,75,0) in R? with (21, z2) €  of the membrane at rest, is deflected to
(21, z2,v(x,t)) at time ¢t > 0. Up to constants the usual physical description is
given by
0?v(x,t)

Av(z,t) = m(x)T,

e, t>0, (1.1)

and
v(y,t) =0 ifyed, t>0,

where A = 86—;2 + 88—;2 is the Laplacian and the right-hand side of (1.1) is New-
1 2

ton’s law with the mass density m(x). To find the eigenfrequencies one inserts
v(z,t) = u(r)e™ with X € R in (1.1) and obtains

—Au(z) = X’m(z)u(r), x€Q; uly)=0 if ye€ o9,

where one is interested in non-trivial solutions u(z). Hence one asks for eigen-
functions and eigenvalues of the operator

B =(-A)"om(),

where (—A) ™! is the inverse of the Dirichlet Laplacian —A. We use the notation
Dirichlet Laplacian always with the understanding that vanishing boundary
data at 02 are incorporated into domains of definition for —A in the function
spaces considered, preferably B> (2) and H3(Q2) with 1 < p < oo and s > ]19
(this will be specified in greater detail in the next subsection). If p is a positive
eigenvalue of B, then A = g’% is the related eigenfrequency. Of special interest
is the problem what happens when the mass density m(z) shrinks to a fractal

set I' and a related Radon measure p with
supp p =1 C Q.

This refers to eigenfrequencies and eigenfunctions of drums with a fractal mem-
brane. This is what we call fractal drums and fractal Laplacians (extending this
notation to n € N, where Q is a bounded domain in R™).

We want to mention that the notion of fractal drums has several meanings.
As for the study of fractal membranes in smooth domains, there are the papers
by Fujita 7], Naimark and Solomyak [11,12], Solomyak and Verbitsky [15], and
by Edmunds and Triebel [2]. Further results on the vibration of ”fractal drums”
are obtained in different settings. Maybe the best known version is connected
with the study of the Laplacian on a fractal, as it is done for example in the
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works of Kigami and Lapidus, see [8,9]. A detailed discussion on these different
aspects concerning fractal drums can de found in [23, Sections 26.2, 30.1-30.5].

Our motivation in this paper is Triebel’s (isotropic) result in [24] for the
fractal elliptic operator of type

By = (—A+id)fotr’, s>0. (1.2)
Then By is a compact, non-negative, self-adjoint operator in W3 (R™), where
tI’F = ldp 9] tI'F,

and trp : W5 (R"™) — Ly(T") is the trace operator, and idy is the dual of the trace
operator. If we restrict the outcome to the classical example of a compact d-set
with 0 <d <n and n —d < 2s < n, we get that

Ao(By) ~ ki aldt2s=n) (1.3)

see [24, Theorem 3, Remark 10]. We look for an anisotropic counterpart of
(1.2), (1.3).

An important first step in this context was made by Farkas in the papers [6]
and [4]. He studied the operator

Aol (1.4)

where
2—d 2—d
! 70'

o' Br Y(R?) — By’ T (R?), (1.5)

A~1 is the inverse of

0*ru(x) D*2y(x)
Au(r) = <_1)tle“ + (—1)t2W u(zx),
and he proved that the operator A= o trl is compact, non-negative, and self-
adjoint in W5 *(R?) and its positive eigenvalues can be estimated by

Ae(A™ o t2h) ~ ek a(d20-2) (1.6)

We extend this result to the case R", n > 2, related to a generalised notion
of anisotropic d-sets introduced in [18], that is, a set I' C R™ satisfying that
w(B(y,7)) ~ 1l 0 < r < 1, where B(y,r) = {y € R" : |y — | < 1},
veTI,0<d<n,and p a positive Radon measure in R" with compact support
I' = supp p, 0 < u(R™) < 0o, and |I'| = 0. Our main aim is to study operators
of type (1.4) in the case R™, and to prove counterparts of (1.6). We shall apply
approximation number results from [18] (instead of related ones for entropy
numbers as in [6]), following thus ideas in [24].
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The plan of the paper is the following. First we recall some basic notation
and concepts in anisotropic spaces. Then we give the definitions and some im-
portant properties of anisotropic function spaces of Besov and Sobolev type. In
Section 4 we deal with the concepts of anisotropic d-sets, approximation num-
bers of related embeddings and trace operators, and recall some results from [18]
that will be applied afterwards. Finally, in the last section we formulate and
prove our main result and briefly discuss it.

2. Preliminaries

2.1. General notation. As usual, R" denotes the n-dimensional real Eu-
clidean space, N the collection of all natural numbers, Ny = NU {0}, C stands
for the complex numbers, and Z" means the lattice of all points in R™ with
integer-valued components. We use the equivalence “~”  in @(z) ~ ¥(x), in
the sense that there are two positive numbers ¢; and ¢, such that

crp(r) <Y(z) < crp(w)

for all admitted values of x, where ¢, 1) are non-negative functions. If a € R,

then ay := max(a,0). Let o = (aq,...,a,) € Nj be a multi-index, then
la|l = a1 + -+ ap, al = aq!---a,!, a € Nj, the derivatives D have the
usual meaning, z* means z® = z{'---z% for v = (2y,...,2,) € R", and

ay =aqv1 + -+ apyn, 7 € R”, stands for the scalar product in R™.

Given two quasi-Banach spaces X and Y, we write X — Y if X C Y
and the natural embedding of X in Y is continuous. All unimportant positive
constants will be denoted by ¢, occasionally with additional subscripts within
the same formula.

2.2. Anisotropic distance function. Let a = (aq,. .., a,) be a fixed n-tuple
of positive numbers with a; + - -+ + a, = n, then we call a an anisotropy. If
a=(1,...,1) we speak about the “isotropic case”.

The action of ¢ € [0,00) on x € R" is defined by the formula
the = (t"xy, ... t"x,).

Fort > 0 and s € R we put t**z = (¢*)%z. In particular, we write t %z = (¢t ~!)x
and 2779 = (277)x.

Definition 2.1. An anisotropic distance function is a continuous function u :
R™ — R with the properties u(z) > 0 if x # 0 and u(t*z) = tu(z) for all t > 0
and all z € R™.
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Remark 2.2. It is easy to see that uy : R — R defined by

ur(z) = (Z:;]x %)A (2.1)

is an anisotropic distance function for every 0 < A < 00, uy is usually called
the anisotropic distance of x to the origin, see [13, 4.2.1]. It is well known,
see [1, 1.2.3] and [26, 1.4], that any two anisotropic distance functions u and
u’ are equivalent (in the sense that there exist constants ¢, > 0 such that
cu(z) < u/(x) < du(x) for all x € R™) and that if w is an anisotropic distance
function, there exists a constant ¢ > 0 such that u(z + y) < c(u(z) + u(y))
for all z,y € R™. We want to use smooth anisotropic distance functions. Note
that for appropriate values of A one can obtain arbitrary (finite) smoothness
of the function u, from (2.1), cf. [1, 1.2.4]. A standard method concerning the
construction of anisotropic distance functions in C*(R™\{0}) was given in [16].

For x = (x1,...,2,) € R", & # 0, let |z|, be the unique positive number ¢

such that )

2
xl ‘rn _
t2a1+”'+t2an_1

and let |0], = 0; then | - |, is an anisotropic distance function in C*°(R"\{0}),
see [26, 1.4/3,8]. Plainly, |z|, is in the isotropic case the Euclidean distance of x
to the origin.

3. Anisotropic function spaces

Before introducing the function spaces under consideration we need to recall
some notation. By S(R™) we denote the Schwartz space of all complex-valued,
infinitely differentiable and rapidly decreasing functions on R™ and by S’'(R")
the dual space of all tempered distributions on R". Furthermore, L,(R™) with
0 < p < oo, stands for the usual quasi-Banach space with respect to the
Lebesgue measure, quasi-normed by

1= ([ i)

with the usual modification if p = oco. If ¢ € S(R"), then

3(6) = (Fo)(€) = (2m) 3 / e p(r)dz, €€ R", (3.1)

n

denotes the Fourier transform of . As usual, F~ 1y or ¢V, stands for the inverse
Fourier transform, given by the right-hand side of (3.1) with ¢ in place of —i.
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Here ¢ denotes the scalar product in R®. Both F and F~! are extended to
S'(R™) in the standard way. Let ¢ € S(R™) be such that

ple) =1 if [z, <1 and supp o C {z € R : Jo], <2},
and for each j € N let
#5(x) = p(27) — o277 %),z e R™

Then the sequence (go?);‘;o , with g = ¢, forms a smooth anisotropic dyadic
resolution of unity, cf. [13, Section 4.2]. Let f € S'(R™), then the compact
support of @?]?implies by the Paley—Wiener—Schwartz theorem that (gp?f)v is
an entire analytic function on R".

Let 0 <p<oo, 0<g<oo, s€R, a=(ay,...,a,) an anisotropy, and
(¢3)529 a smooth anisotropic dyadic resolution of unity. Then B;:(R") is the
collection of all f € §'(R™) for which the quasi-norm

[e.9]

1 | BitRY)]| = (Z2jsqu<so§ff>V!Lp<R">||q)q (3.2)

=0
(with the usual modification if ¢ = o0) is finite.

Note that there is a parallel definition for spaces of type F»(R"), 0 < p <
00,0 <qg< oo, s€R, a=(a...,a,) an anisotropy, when interchanging
the order of ¢,- and L,- quasi-norms in (3.2). It is obvious, that the quasi-
norm (3.2) depends on the chosen system (¢});en,, but not the space Bs:(R")
(in the sense of equivalent quasi-norms); therefore we omit in our notation the
subscript ¢ in the sequel. It is well-known that B,:*(R") are quasi-Banach
spaces (Banach spaces if p > 1 and ¢ > 1), and, as in the isotropic case,
SR") — Bya(R") — S'(R") for all admissible values of p, ¢, s, see [21,
Section 2.3.3]. If s€e Rand 0 < p < 00, 0 < ¢ < o0, then S(R") is dense in
Bsa(R™), see [26, Section 3.5] and [1, Section 1.2.10]. Note that we indicated the
only (formal) difference to the isotropic counterparts of (3.2) by the additional
superscript at the smooth anisotropic dyadic resolution of unity (gp?)j?‘io.

We want to point out that if 0 < p < co and s € R, then
By R") = FH(R™). (3.3)
If 1 <p<ooandsé€R, then (in the sense of equivalent quasi-norms)

Fif(R") = HX(R"), (3.4)

)

where

n

a +§£>23k~f) 1L, (R")

e = {resw): |(

k=1
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are the anisotropic Bessel potential spaces (see [17,Remark 11], [19,Section 2.5.2]
and [26, Section 3.11}).

Furthermore, if 1 <p < oo, s >0andif s; = > €N, i=1,...,n, then (in
the sense of equivalent quasi-norms)

Fift(R") = Wy (R™) (35)

)

are the classical anisotropic Sobolev spaces on R". As a consequence of (3.3),
(3.4) and (3.5) we have

where

Wy(R?) = {f € S'(R") : [If[Ln( aSkf Ly(R")

By (R") = Fy'(R") = Hy"(R") = Wy (R"), (3.6)

fors>0ands; =2 €N, i=1,...,n

4. Traces and approximation numbers

4.1. General measures. Let u be a positive Radon measure in R” with com-
pact support
['=supp i, 0< pu(R") <oo, |T|=0,

where |I'| is the Lebesgue measure of I'. For 1 < p < 0o we denote by L,(I') =
L,(T', 1) the usual complex Banach space, normed by

= ([ sepucan)” = ( [1rom)’

Since p is Radon, S(R™)|I" is dense in L,(I'), for details see [23, p.7]. If ¢ €
S(R™), then trre = ¢|I" makes sense pointwise. If 1 < p < oo and s > 0, then
the embedding trrB;*(R™) < L,(I') must be understood as follows: we ask
whether there is a positive number ¢ > 0 such that for any ¢ € S(R"),

[troep| Ly (D) || < cllo] By (R™)]]. (4.1)

If this is the case, we use that S(R") is dense in By (R™) for 0 < p < oo; hence
this inequality can be extended by completion to any f € B;]’;Z(R”) and the
resulting function is denoted by trrf,

trp : By (R™) — Ly(I). (4.2)
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The independence of trr f from the approximating sequence is shown in the stan-
dard way. On the other hand, if f € L,(I") is given, then f can be interpreted
in the usual way as a tempered distribution idr f, given by

(idr f) (s / F(e()u(dy) / F() ()il dy), € SRY). (43)

We call idr the identification operator. Let again 1 < p < oo and let %+I% =1
Then we have for the dual spaces,

(Lp(M)" = Ly(I') and  (BZH(R"))" = B, (R")

for any o0 € R. The first assertion is well known, the second is a consequence
of [25, Section 5.1.7]. In particular, all B>+ (R™) and also L,(I") with 1 < p < oo
are reflexive. By (4.3), the operators trr and idr are dual to each other. Hence
(4.2) is equivalent to

idr: Ly(I') = B, " (R"), (4.4)
and

(tl"r)l = idr, (ldp)/ == tI‘F. (45)

In the following we study the existence of the trace operator. Let Qf,, be
rectangles in R™ with side lengths 27791, ... 2779 and centered at 277%m, where
m € Z" and j € Ny. Let

p; = sup pu(Q5,), J € No.

mezZn"

Proposition 4.1. Let 1 < p < o0, % —I—[% = 1,s > 0. Let u be the Radon
measure in R™ with

[' =supp p compact, 0 < u(R") <oo, |I|=0, (4.6)
and
Z 27 ) P < oo, where p; = sup (Q5,)- (4.7)
mezmn
Jj€Np

Then the operator trr,
trp : Byt (R™) — L, () (4.8)

exists and is compact. Furthermore, there is a constant ¢ (depending on p and s)
such that for all measures p with (4.6), (4.7),

’tI‘FH < C(Z 2- ' (s=3) Iu? 1)

j€Np

1
o
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The proof can be found in [18, 4.5].

Next we recall the concept of approximation numbers. Let A and B be two
Banach spaces and let T € L(A, B). Then for any k € N the kth approximation
number a,(T') of T is given by

ap(T) =inf {||T — L|| : L € L(A, B), rank L < k},

where rank L is the dimension of the range of L. These numbers have var-
ious properties, where we collected some of them in the following lemma for
convenience.

Lemma 4.2. Let A and B be two Banach spaces and let T, S € L(A, B).
) Tl = ax(T) = as(T) = --- = 0;
(ii) for alln, m €N, apin1(S+7T) < an(S)+ a,(T);
(iii) for alln, m € N, and R € L(B,C), amin-1(RT) < a(R)an(T);
(iv) a,(T) =0 if and only if rank T < n.

These formulations coincide essentially with [3, II. Proposition 2.2], where
one finds also a short proof. Further properties, comments and references may
be found in [18, p. 11-18], [3, Chapter II.]. We restricted ourselves to those
assertions which we shall need later on.

Now we consider some connections between approximation numbers and
spectral assertions of compact operators. Let A be a complex quasi-Banach
space and T € L(A) a compact map. We know from [18, Theorem 1.2] that the
spectrum of T, apart from the point 0, consists solely of eigenvalues of finite
algebraic multiplicity: let {A\y(T") : k € N} be the sequence of all non-zero
eigenvalues of T, repeated according to their algebraic multiplicity and ordered
so that

M) = [A(T)] = -+ = 0. (4.9)
If T has only m(< oo) distinct eigenvalues and M is the sum of their algebraic

multiplicities, we put \g(7) = 0 for k > M.

Proposition 4.3.

(i) Let A and B two Banach spaces and T € L(A, B) be compact with dual
operator T" € L(A', B'), then

ap(T) = ax(T")  for all k € N.

(ii) Let H be a Hilbert space and let T € L(H) be a compact, non-negative
and self-adjoint operator. Then the approximation numbers ay(T) of T
coincide with its eigenvalues (ordered as in (4.9)).
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Remark 4.4. Proofs of these well-known assertions may be found in [3, Propo-
sition 2.5, p. 55] for (i), and [3, Theorem 5.10, p. 91] for (ii).

Let T' = trp according to Proposition 4.1. We strengthen (4.7) by
> ol g T T e N, (4.10)
j=J
where only the cases s < 7 are of interest, otherwise (4.10) is always satisfied.

Proposition 4.5. Let 1 < p < oo, %+z% =1, s> 0. Let i be a Radon measure
in R™ with (4.6) and (4.10). Let ay = ax(trr) be the approximation numbers of
the compact operator trr in (4.8). There are two positive numbers ¢ and ¢’ such
that

1

At < 0'2_‘](5_%)/@, J € Ny,
where 2™ is always assumed to be a natural number.

The proof can be found in [18, 4.6].

4.2. Anisotropic d-sets in R". We assume that y is a positive Radon measure
in R™ with compact support

['=supp i, 0< pu(R") <oo, |I|=0,

where |T'| denotes the Lebesgue measure of I'. Let again a = (aq,...,a,) be a
given anisotropy.

Definition 4.6. Let 0 < d < n. Then I' C R" is called an anisotropic d-set, if
w(B(y,r)) ~r% 0<r<1, (4.11)
where B*(y,7) ={y € R": |y — 7], <r} and v €T.

The existence of such anisotropic d-sets as well as some examples are shown
in [18, 4.7].

Now we are prepared to formulate our main result an approximation num-
bers of related compact trace operators in [18].

Theorem 4.7. Let the anisotropic d-set I and p be given according to (4.11),
and 0 <d<mn,1<p< oo, %+§:1,§25>"%. Let ay, = ay(trr) be the
approximation numbers of the compact operator trr. Then there exist numbers

¢, >0 so that for all k € N,

=
—
TS

|

)

N

|
=

ka9 < ay, (trp B (R™) — LP(P)) <k

The proof can be found in [18, 4.8]
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5. Main results

In this section we restrict ourselves to the case p = 2 since we have Proposi-
tion 4.3(ii) for Hilbert spaces only.

Again let I' be an anisotropic d-set with respect to the anisotropy a =
(ay,...,a,), then by (4.2) and (3.6), trp : Hy*(R") — Lo(T"), s > 0. By (3.6),
(4.4) and (4.5) we have that idp : Le(T") — H, **(R™), and consequently,

tr' = idp o trp : Hy*(R™) — H, >*(R™). (5.1)

Let sq,...,s, € Nand let s € R be defined by

Ly 62)

Let A be the operator defined by
o ()

281
0x]

5, 0% u(x)

Au(z) = (—1) (D" (). (5.3)

where z € R". Using elementary properties of the Fourier transform we have
Au= (14" +- + f?f")ﬂ)v for any u € S’'(R").

It is well known, see for example [10], that A is a lift operator for the scale
Bie(R"), t € R, 0 < p < oo, 0<qg< oo More precisely, A maps any space
BLe(R™) onto B ***(R") and ||A(-)| B, *>*(R")|| is an equivalent quasi-norm
on BL#(R™), the inverse A" of A has to be understood in this way.

Theorem 5.1. Let I' C R™ be an anisotropic d-set according to Definition 4.6
with respect to the anisotropy a. Let tr'" be the operator given by (5.1), s; €
N,i=1,...,n, 1 :l(i+---+i), A given by

7 s n \ sy

o 0% 1u(z)

281
0x]

5, 0% u(x)

Au(x) = (—1) +(—1) gz T u(x)

with 0 < d < n, and%23>”7_d. Then
T=A" otrh (5.4)
is a compact, non-negative self-adjoint operator in Hy*(R™) and with null space
N(T)={f € Hy"(R") : trp f = 0}.

Let (Ar)ren be the sequence of all positive eigenvalues of T', repeated according
to multiplicity and ordered by their magnitude. Then

A~ kma@sntd) - p e N
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We begin the proof of Theorem 5.1 with some preparation.

Lemma 5.2. Let s be given by (5.2) and A the operator from (5.3).

1. There exists a constant ¢ > 0 such that (Au,u),mny > c|lu|Ly(R"™)|| for
any u € Lo(R™).
2. There exist two constants ci,co > 0 such that

e |ul Hy*(R™)|* < (Av, u)pymey < oof|ul H (R

Proof of Lemma 5.2. We closely follow the ideas in [6, Section 6.2, Lemma 6.3]
where Farkas proved the lemma for the case if n = 2. This can be extended to
the case n € N.

Let ¢ € C°(R™) and (Ap, @) 1, = [pa (Ap)(2)p(7) dz. After integration
by parts we have

(e, e
(e = [ (|ZE2) 4ot | 2D (o) e,

and the conclusion of the lemma follows immediately using the density of
C°(R™) in Ly(R™) and in W5*(R™), together with (3.6). O

Finally we can prove Theorem 5.1.

Proof of Theorem 5.1.

Step 1: We first show that T given by (5.4) is a compact, non-negative self-
adjoint operator in Hy*(R"). In view of (5.4) and tr' = idr o trr the operator
T = A~ o tr" can be decomposed into

tI‘F . H;’G(Rn) — LQ(F)

idp : Ly(T) — Hy, " (R™) (5.5)

A7 H P (R™) — HYY(R™).
By Lemma 5.2 we have that the operator A is positive-definite as an operator
acting in L,(R™) and we may fix the norm in Hy*(R™) by ||A2(-)|Ly(R™)|| and
a corresponding scalar product. By Proposition 4.1, (3.6) and (4.1) there exists

a constant ¢ > 0 such that ||trre|Lo(T)|| < cllp|Hy*(R™)|| for all ¢ € Hy*(R™).
Defining

/ FgMIn(dy) for any f.g € HY(R™),

it is clear that ¢(-,-) is a non-negative quadratic form in H;“(R™). Then there
exists a non-negative and self-adjoint operator 7" uniquely determined such that
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q(f,9) = <ff, 9 uyemn for any f,g € Hy"(R"), see for example [22, p. 91].
Furthermore,

loxr FILo(T) | = IV T FH3* (R (5.6)

where \/? = Tz. So it remains to prove that the above operator is the same
asin (5.4). Let f € Hy“(R") and ¢ € D(R"™). Then by (4.3), (4.5) and (5.1),

(617 . Phratery = | FOVPDT () = (FF. Py
r

= (AT f, A2¢),n) (5:7)

= <ATfa @)LQ(R”),
where the second equality in (5.7) is justified by the fact that we fixed the scalar
product in Hy“(R") by (u,v)gsemn) = (Azu, A%U>L2(Rn). Considered as a dual
pairing in (D(R"), D'(R™)) we obtain ATf = tr' f, and we have that T = T by
(5.4). The compactness is a consequence of Theorem 4.7 and (5.5).
Step 2: We prove that there is a number ¢ > 0 such that

Ap < ck—a@sntd) e N, (5.8)

Recall that the identification operator idr is the dual of the trace operator trr
by (4.5). Thus standard reasoning for dual operators, Proposition 4.3(i), and
Theorem 4.7 imply that

a,(idr) = ay(trp) ~ k13972 k€N,

where we make use of § > s > ”T_d. By (5.5) and the multiplication property
for approximation numbers, Lemma 4.2(iii), one obtains

asi(T) < ¢ ap(trr)ag(idp) ~ k~a@s=ntd), (5.9)

Since Proposition 4.3(ii) tells us that the approximation numbers of 1" coincide
with its eigenvalues, assertion (5.8) follows from (5.9).

Step 3: To obtain the converse of (5.8) we use the same argument as in Theo-
rem 4.7, Step 2, now with p = 2, see [18, 4.8]. Let J € N and ¢ > 0 be suitably
chosen numbers such that there are lattice points

Vil = 20=1=Ne with meZ", 1=1,..., M;, where M; ~ 2% (5.10)

with 4
dist (v, ') <277,

assuming further that the anisotropic balls B%(vy;;, c277%1) are disjoint. Let k
be a non-negative C'*° function in R" with

supka{yGR”:\y|a<2Jand yj>0,j:1,...,n},
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for some J € N, and ) .. k(x —m) =1, z € R". For some J € N, we put for
j € N07
M;
fi@)=> 27 V@@ — ), cn€C, zER™ (5.11)

=1

Using the same argument as in Step 2 in the proof of [18, Theorem 3.7,p. 319]
we obtain that || f¢|Ly(T)|| > ¢ 277672 2793 whenever I f71H (R ~ 1.
By (5.6) (with T replaced by T') this can be rewritten as

s,a n —(s—")y—j2 : a s,a n
IVTf7 | Hy " (R™)|| > 2770792798 i | [ Hy* (R™)] ~ 1.

On the other hand, for an arbitrary operator L with rank L < M; — 1 we
can always find some ff according to (5.11) such that || f#|Hy“(R")|| ~ 1 and
Lf} = 0. This leads to

ar, (VT) > 2790692773,
1
see also Theorem 4.7. Since ai(vT) = A7, we obtain by (5.10) that
A > ckma@sntd) g e

This concludes the proof. [l

Remark 5.3. (i) Let I' be the anisotropic d-set considered in [6, Section 3.1].
Farkas proved in [6, Section 4] for the operator (1.4) that Ap(A~! o tr') ~

ck=a(@+2=2) If we take the case n = 2 and ¢ = s we have the same result
)\k ~ k75(2t72+d)‘

(ii) If we restrict ourselves to the case n = 2, sy = 1 and sy = 2, then

B Pu(z)  Otu(x)

2 4
Oxy x5

Au(x) = +u(z), x=(11,29) € R% (5.12)

Let again I" be the anisotropic d-set considered in [6, Section 3.1], with respect to
the anisotropy a = (3, 3). Farkas obtained in [5, Section 4] that Ap(A™otr") ~
ck~a(@3) where tr' is given by (1.5) and A~ is the inverse of (5.12). For this
special case our results coincide. Operators of this type have been investigated
by Triebel in [20] and by Shevchik in [14].

(iii) In view of the isotropic results [24, Theorem 3, Remark 10] for the
operator By = (id — A)~% o tr"’ we have the same results like in the anisotropic
case if we restrict the outcome to the classical example of a compact d-set with

0<d<nandn—d<2s<n, see (1.3).
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