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Eigenvalue Distribution

of Semi-Elliptic Operators

in Anisotropic Sobolev Spaces

Erika Tamási

Abstract. We study the spectral properties of the compact non-negative self-adjoint
operator T = A−1 ◦ trΓ acting in the anisotropic Sobolev space H

s,a
2 (Rn) and give

two-sided estimates for the asymptotic behaviour of its eigenvalues λk(T ), where A

is a semi-elliptic differential operator of type

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1

1

+ · · · + (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x),

and trΓ a special trace operator on an anisotropic d-set Γ.
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ators, traces
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1. Introduction

Let us consider a differential expression with real coefficients A(D) =
∑
aαDα,

where α = (α1, . . . , αn) is a multi-index, Dα = ∂|α|

∂x
α1

1
···∂x

αn
n

, and |α| =
∑n

i=1 αi.

Let l = (l1, . . . , ln), (lk > 0, 1 ≤ k ≤ n) be a fixed multi-index. We write
(α : 2l) =

∑n

k=1
αk

2lk
. We study the following differential operator:

A(D)u =
∑

(α:2l)=1

aαDαu.

A(D) is said to be semi-elliptic if the corresponding polynomial is positive,

A(ξ) =
∑

(α:2l)=1

aαξ
α > 0, ξ ∈ R

n \ {0}.
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First we explain the physical background of the interest in such operators
and start with a classical situation. Let Ω be a bounded domain in the plane
R

2 with C∞ boundary ∂Ω, interpreted as a membrane fixed at its boundary.
Vibrations of such a membrane in R

3 are measured by the deflection v(x, t),
where x = (x1, x2) ∈ Ω, and t ≥ 0 stands for the time. In other words, the
point (x1, x2, 0) in R

3 with (x1, x2) ∈ Ω of the membrane at rest, is deflected to
(x1, x2, v(x, t)) at time t > 0. Up to constants the usual physical description is
given by

∆v(x, t) = m(x)
∂2v(x, t)

∂t2
, x ∈ Ω, t ≥ 0, (1.1)

and
v(y, t) = 0 if y ∈ ∂Ω, t ≥ 0,

where ∆ = ∂2

∂x2

1

+ ∂2

∂x2

2

is the Laplacian and the right-hand side of (1.1) is New-

ton’s law with the mass density m(x). To find the eigenfrequencies one inserts
v(x, t) = u(x)eiλt with λ ∈ R in (1.1) and obtains

−∆u(x) = λ2m(x)u(x), x ∈ Ω; u(y) = 0 if y ∈ ∂Ω,

where one is interested in non-trivial solutions u(x). Hence one asks for eigen-
functions and eigenvalues of the operator

B = (−∆)−1 ◦m(·),

where (−∆)−1 is the inverse of the Dirichlet Laplacian −∆. We use the notation
Dirichlet Laplacian always with the understanding that vanishing boundary
data at ∂Ω are incorporated into domains of definition for −∆ in the function
spaces considered, preferably Bs

pq(Ω) and Hs
p(Ω) with 1 < p ≤ ∞ and s > 1

p

(this will be specified in greater detail in the next subsection). If ̺ is a positive

eigenvalue of B, then λ = ̺−
1

2 is the related eigenfrequency. Of special interest
is the problem what happens when the mass density m(x) shrinks to a fractal
set Γ and a related Radon measure µ with

supp µ = Γ ⊂ Ω.

This refers to eigenfrequencies and eigenfunctions of drums with a fractal mem-
brane. This is what we call fractal drums and fractal Laplacians (extending this
notation to n ∈ N, where Ω is a bounded domain in R

n).

We want to mention that the notion of fractal drums has several meanings.
As for the study of fractal membranes in smooth domains, there are the papers
by Fujita [7], Naimark and Solomyak [11,12], Solomyak and Verbitsky [15], and
by Edmunds and Triebel [2]. Further results on the vibration of ”fractal drums”
are obtained in different settings. Maybe the best known version is connected
with the study of the Laplacian on a fractal, as it is done for example in the
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works of Kigami and Lapidus, see [8,9]. A detailed discussion on these different
aspects concerning fractal drums can de found in [23, Sections 26.2, 30.1–30.5].

Our motivation in this paper is Triebel’s (isotropic) result in [24] for the
fractal elliptic operator of type

Bs = (−∆ + id)−s ◦ trΓ, s > 0. (1.2)

Then Bs is a compact, non-negative, self-adjoint operator in W s
2 (Rn), where

trΓ = idΓ ◦ trΓ,

and trΓ : W s
2 (Rn) → L2(Γ) is the trace operator, and idΓ is the dual of the trace

operator. If we restrict the outcome to the classical example of a compact d-set
with 0 < d < n and n− d < 2s ≤ n, we get that

λk(Bs) ∼ k−
1

d
(d+2s−n), (1.3)

see [24, Theorem 3, Remark 10]. We look for an anisotropic counterpart of
(1.2), (1.3).

An important first step in this context was made by Farkas in the papers [6]
and [4]. He studied the operator

A−1 ◦ trΓ, (1.4)

where

trΓ : B
2−d

p
,a

p1 (R2) → B
−

2−d

p′
,a

p∞ (R2), (1.5)

A−1 is the inverse of

Au(x) = (−1)t1
∂2t1u(x)

∂x2t1
1

+ (−1)t2
∂2t2u(x)

∂x2t2
n

+ u(x),

and he proved that the operator A−1 ◦ trΓ is compact, non-negative, and self-
adjoint in W t,a

2 (R2) and its positive eigenvalues can be estimated by

λk(A
−1 ◦ trΓ) ∼ ck−

1

d
(d+2t−2). (1.6)

We extend this result to the case R
n, n ≥ 2, related to a generalised notion

of anisotropic d-sets introduced in [18], that is, a set Γ ⊂ R
n satisfying that

µ(Ba(γ, r)) ∼ rd, 0 < r < 1, where Ba(γ, r) = {y ∈ R
n : |y − γ|a ≤ r},

γ ∈ Γ, 0 < d < n, and µ a positive Radon measure in R
n with compact support

Γ = supp µ, 0 < µ(Rn) <∞, and |Γ| = 0. Our main aim is to study operators
of type (1.4) in the case R

n, and to prove counterparts of (1.6). We shall apply
approximation number results from [18] (instead of related ones for entropy
numbers as in [6]), following thus ideas in [24].
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The plan of the paper is the following. First we recall some basic notation
and concepts in anisotropic spaces. Then we give the definitions and some im-
portant properties of anisotropic function spaces of Besov and Sobolev type. In
Section 4 we deal with the concepts of anisotropic d-sets, approximation num-
bers of related embeddings and trace operators, and recall some results from [18]
that will be applied afterwards. Finally, in the last section we formulate and
prove our main result and briefly discuss it.

2. Preliminaries

2.1. General notation. As usual, R
n denotes the n-dimensional real Eu-

clidean space, N the collection of all natural numbers, N0 = N ∪ {0}, C stands
for the complex numbers, and Z

n means the lattice of all points in R
n with

integer-valued components. We use the equivalence “∼”, in ϕ(x) ∼ ψ(x), in
the sense that there are two positive numbers c1 and c2 such that

c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of x, where ϕ, ψ are non-negative functions. If a ∈ R,
then a+ := max(a, 0). Let α = (α1, . . . , αn) ∈ N

n
0 be a multi-index, then

|α| = α1 + · · · + αn, α! = α1! · · ·αn!, α ∈ N
n
0 , the derivatives Dα have the

usual meaning, xα means xα = xα1

1 · · ·xαn
n for x = (x1, . . . , xn) ∈ R

n, and
αγ = α1γ1 + · · · + αnγn, γ ∈ R

n, stands for the scalar product in R
n.

Given two quasi-Banach spaces X and Y , we write X →֒ Y if X ⊂ Y

and the natural embedding of X in Y is continuous. All unimportant positive
constants will be denoted by c, occasionally with additional subscripts within
the same formula.

2.2. Anisotropic distance function. Let a = (a1, . . . , an) be a fixed n-tuple
of positive numbers with a1 + · · · + an = n, then we call a an anisotropy . If
a = (1, . . . , 1) we speak about the “isotropic case”.

The action of t ∈ [0,∞) on x ∈ R
n is defined by the formula

tax = (ta1x1, . . . , t
anxn).

For t > 0 and s ∈ R we put tsax = (ts)ax. In particular, we write t−ax = (t−1)ax

and 2−jax = (2−j)ax.

Definition 2.1. An anisotropic distance function is a continuous function u :
R

n → R with the properties u(x) > 0 if x 6= 0 and u(tax) = tu(x) for all t > 0
and all x ∈ R

n.
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Remark 2.2. It is easy to see that uλ : R
n → R defined by

uλ(x) =

( n∑

i=1

|xi|
λ
ai

) 1

λ

(2.1)

is an anisotropic distance function for every 0 < λ < ∞, u2 is usually called
the anisotropic distance of x to the origin, see [13, 4.2.1]. It is well known,
see [1, 1.2.3] and [26, 1.4], that any two anisotropic distance functions u and
u′ are equivalent (in the sense that there exist constants c, c′ > 0 such that
cu(x) ≤ u′(x) ≤ c′u(x) for all x ∈ R

n) and that if u is an anisotropic distance
function, there exists a constant c > 0 such that u(x + y) ≤ c(u(x) + u(y))
for all x, y ∈ R

n. We want to use smooth anisotropic distance functions. Note
that for appropriate values of λ one can obtain arbitrary (finite) smoothness
of the function uλ from (2.1), cf. [1, 1.2.4]. A standard method concerning the
construction of anisotropic distance functions in C∞(Rn\{0}) was given in [16].

For x = (x1, . . . , xn) ∈ R
n, x 6= 0, let |x|a be the unique positive number t

such that
x2

1

t2a1

+ · · · + x2
n

t2an
= 1

and let |0|a = 0; then | · |a is an anisotropic distance function in C∞(Rn\{0}),
see [26, 1.4/3,8]. Plainly, |x|a is in the isotropic case the Euclidean distance of x
to the origin.

3. Anisotropic function spaces

Before introducing the function spaces under consideration we need to recall
some notation. By S(Rn) we denote the Schwartz space of all complex-valued,
infinitely differentiable and rapidly decreasing functions on R

n and by S ′(Rn)
the dual space of all tempered distributions on R

n. Furthermore, Lp(R
n) with

0 < p ≤ ∞, stands for the usual quasi-Banach space with respect to the
Lebesgue measure, quasi-normed by

‖f | Lp(R
n)‖ :=

( ∫

Rn

|f(x)|p dx

)1

p

,

with the usual modification if p = ∞. If ϕ ∈ S(Rn), then

ϕ̂(ξ) ≡ (Fϕ)(ξ) := (2π)−
n
2

∫

Rn

e−ixξϕ(x) dx, ξ ∈ R
n, (3.1)

denotes the Fourier transform of ϕ. As usual, F−1ϕ or ϕ∨, stands for the inverse
Fourier transform, given by the right-hand side of (3.1) with i in place of −i.
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Here xξ denotes the scalar product in R
n. Both F and F−1 are extended to

S ′(Rn) in the standard way. Let ϕ ∈ S(Rn) be such that

ϕ(x) = 1 if |x|a ≤ 1 and supp ϕ ⊂ {x ∈ R
n : |x|a ≤ 2},

and for each j ∈ N let

ϕa
j (x) := ϕ(2−jax) − ϕ(2(−j+1)ax), x ∈ R

n.

Then the sequence (ϕa
j )

∞
j=0 , with ϕ0 = ϕ, forms a smooth anisotropic dyadic

resolution of unity, cf. [13, Section 4.2]. Let f ∈ S ′(Rn), then the compact

support of ϕa
j f̂ implies by the Paley–Wiener–Schwartz theorem that (ϕa

j f̂)∨ is
an entire analytic function on R

n.

Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, a = (a1, . . . , an) an anisotropy, and
(ϕa

j )
∞
j=0 a smooth anisotropic dyadic resolution of unity. Then Bs,a

pq (Rn) is the
collection of all f ∈ S ′(Rn) for which the quasi-norm

‖f | Bs,a
pq (Rn)‖ =

( ∞∑

j=0

2jsq‖(ϕa
j f̂)∨|Lp(R

n)‖q

) 1

q

(3.2)

(with the usual modification if q = ∞) is finite.

Note that there is a parallel definition for spaces of type F s,a
pq (Rn), 0 < p <

∞, 0 < q ≤ ∞, s ∈ R, a = (a1, . . . , an) an anisotropy, when interchanging
the order of ℓq- and Lp- quasi-norms in (3.2). It is obvious, that the quasi-
norm (3.2) depends on the chosen system (ϕa

j )j∈N0
, but not the space Bs,a

pq (Rn)
(in the sense of equivalent quasi-norms); therefore we omit in our notation the
subscript ϕ in the sequel. It is well-known that Bs,a

pq (Rn) are quasi-Banach
spaces (Banach spaces if p ≥ 1 and q ≥ 1), and, as in the isotropic case,
S(Rn) →֒ Bs,a

pq (Rn) →֒ S ′(Rn) for all admissible values of p, q, s, see [21,
Section 2.3.3]. If s ∈ R and 0 < p < ∞, 0 < q < ∞, then S(Rn) is dense in
Bs,a

pq (Rn), see [26, Section 3.5] and [1, Section 1.2.10]. Note that we indicated the
only (formal) difference to the isotropic counterparts of (3.2) by the additional
superscript at the smooth anisotropic dyadic resolution of unity (ϕa

j )
∞
j=0.

We want to point out that if 0 < p <∞ and s ∈ R, then

Bs,a
pp (Rn) = F s,a

pp (Rn). (3.3)

If 1 < p <∞ and s ∈ R, then (in the sense of equivalent quasi-norms)

F
s,a
p2 (Rn) = Hs,a

p (Rn) , (3.4)

where

Hs,a
p (Rn) =

{
f ∈ S ′(Rn) :

∥∥∥∥
( n∑

k=1

(1 + ξ2
k)

s
2ak f̂

)∨

|Lp(R
n)

∥∥∥∥ <∞
}
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are the anisotropic Bessel potential spaces (see [17,Remark 11], [19,Section 2.5.2]
and [26, Section 3.11]).

Furthermore, if 1 < p <∞, s > 0 and if si = s
ai

∈ N, i = 1, . . . , n, then (in
the sense of equivalent quasi-norms)

F
s,a
p2 (Rn) = W s,a

p (Rn) , (3.5)

where

W s,a
p (Rn) =

{
f ∈ S ′(Rn) : ‖f |Lp(R

n)‖ +
n∑

k=1

∥∥∥∥
∂skf

∂xsk

k

|Lp(R
n)

∥∥∥∥ <∞
}

are the classical anisotropic Sobolev spaces on R
n. As a consequence of (3.3),

(3.4) and (3.5) we have

B
s,a
22 (Rn) = F

s,a
22 (Rn) = H

s,a
2 (Rn) = W

s,a
2 (Rn), (3.6)

for s > 0 and si = s
ai

∈ N, i = 1, . . . , n.

4. Traces and approximation numbers

4.1. General measures. Let µ be a positive Radon measure in R
n with com-

pact support
Γ = supp µ, 0 < µ(Rn) <∞, |Γ| = 0,

where |Γ| is the Lebesgue measure of Γ. For 1 ≤ p <∞ we denote by Lp(Γ) =
Lp(Γ, µ) the usual complex Banach space, normed by

‖f |Lp(Γ, µ)‖ =

( ∫

Rn

|f(x)|pµ( dx)

) 1

p

=

( ∫

Γ

|f(γ)|pµ( dγ)

) 1

p

.

Since µ is Radon, S(Rn)|Γ is dense in Lp(Γ), for details see [23, p. 7]. If ϕ ∈
S(Rn), then trΓϕ = ϕ|Γ makes sense pointwise. If 1 < p < ∞ and s > 0, then
the embedding trΓB

s,a
pp (Rn) →֒ Lp(Γ) must be understood as follows: we ask

whether there is a positive number c > 0 such that for any ϕ ∈ S(Rn),

‖trΓϕ|Lp(Γ)‖ ≤ c‖ϕ|Bs,a
pp (Rn)‖. (4.1)

If this is the case, we use that S(Rn) is dense in Bs,a
pp (Rn) for 0 < p <∞; hence

this inequality can be extended by completion to any f ∈ Bs,a
pp (Rn) and the

resulting function is denoted by trΓf ,

trΓ : Bs,a
pp (Rn) →֒ Lp(Γ). (4.2)
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The independence of trΓf from the approximating sequence is shown in the stan-
dard way. On the other hand, if f ∈ Lp(Γ) is given, then f can be interpreted
in the usual way as a tempered distribution idΓf , given by

(idΓf)(ϕ) =

∫

Γ

f(γ)ϕ(γ)µ( dγ) =

∫

Γ

f(γ)(trΓϕ)(γ)µ( dγ), ϕ ∈ S(Rn). (4.3)

We call idΓ the identification operator. Let again 1 < p <∞ and let 1
p
+ 1

p′
= 1.

Then we have for the dual spaces,

(Lp(Γ))′ = Lp′(Γ) and (Bσ,a
pp (Rn))′ = B

−σ,a
p′p′ (Rn)

for any σ ∈ R. The first assertion is well known, the second is a consequence
of [25, Section 5.1.7]. In particular, all Bs,a

pp (Rn) and also Lp(Γ) with 1 < p <∞
are reflexive. By (4.3), the operators trΓ and idΓ are dual to each other. Hence
(4.2) is equivalent to

idΓ : Lp′(Γ) →֒ B
−s,a
p′p′ (Rn), (4.4)

and

(trΓ)′ = idΓ, (idΓ)′ = trΓ. (4.5)

In the following we study the existence of the trace operator. Let Qa
jm be

rectangles in R
n with side lengths 2−ja1 , . . . , 2−jan and centered at 2−jam, where

m ∈ Z
n and j ∈ N0. Let

µj = sup
m∈Zn

µ(Qa
jm), j ∈ N0.

Proposition 4.1. Let 1 < p < ∞, 1
p

+ 1
p′

= 1, s > 0. Let µ be the Radon

measure in R
n with

Γ = supp µ compact, 0 < µ(Rn) <∞, |Γ| = 0, (4.6)

and ∑

j∈N0

2−jp′(s−n
p
)
µ

p′−1
j <∞, where µj = sup

m∈Zn

µ(Qa
jm). (4.7)

Then the operator trΓ,

trΓ : Bs,a
pp (Rn) →֒ Lp(Γ) (4.8)

exists and is compact. Furthermore, there is a constant c (depending on p and s)
such that for all measures µ with (4.6), (4.7),

‖trΓ‖ ≤ c

( ∑

j∈N0

2−jp′(s−n
p
)
µ

p′−1
j

) 1

p′

.
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The proof can be found in [18, 4.5].

Next we recall the concept of approximation numbers. Let A and B be two
Banach spaces and let T ∈ L(A,B). Then for any k ∈ N the kth approximation
number ak(T ) of T is given by

ak(T ) = inf
{
‖T − L‖ : L ∈ L(A,B), rankL < k

}
,

where rank L is the dimension of the range of L. These numbers have var-
ious properties, where we collected some of them in the following lemma for
convenience.

Lemma 4.2. Let A and B be two Banach spaces and let T, S ∈ L(A,B).

(i) ‖T‖ = a1(T ) ≥ a2(T ) ≥ · · · ≥ 0;

(ii) for all n, m ∈ N, am+n−1(S + T ) ≤ am(S) + an(T );

(iii) for all n, m ∈ N, and R ∈ L(B,C), am+n−1(RT ) ≤ am(R)an(T );

(iv) an(T ) = 0 if and only if rank T < n.

These formulations coincide essentially with [3, II. Proposition 2.2], where
one finds also a short proof. Further properties, comments and references may
be found in [18, p. 11–18], [3, Chapter II.]. We restricted ourselves to those
assertions which we shall need later on.

Now we consider some connections between approximation numbers and
spectral assertions of compact operators. Let A be a complex quasi-Banach
space and T ∈ L(A) a compact map. We know from [18, Theorem 1.2] that the
spectrum of T , apart from the point 0, consists solely of eigenvalues of finite
algebraic multiplicity: let {λk(T ) : k ∈ N} be the sequence of all non-zero
eigenvalues of T , repeated according to their algebraic multiplicity and ordered
so that

|λ1(T )| ≥ |λ2(T )| ≥ · · · ≥ 0. (4.9)

If T has only m(<∞) distinct eigenvalues and M is the sum of their algebraic
multiplicities, we put λk(T ) = 0 for k > M .

Proposition 4.3.

(i) Let A and B two Banach spaces and T ∈ L(A,B) be compact with dual

operator T ′ ∈ L(A′, B′), then

ak(T ) = ak(T
′) for all k ∈ N.

(ii) Let H be a Hilbert space and let T ∈ L(H) be a compact, non-negative

and self-adjoint operator. Then the approximation numbers ak(T ) of T

coincide with its eigenvalues (ordered as in (4.9)).
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Remark 4.4. Proofs of these well-known assertions may be found in [3, Propo-
sition 2.5, p. 55] for (i), and [3, Theorem 5.10, p. 91] for (ii).

Let T = trΓ according to Proposition 4.1. We strengthen (4.7) by

∑

j≥J

2−jp′(s−n
p
)
µ

p′−1
j ∼ 2−Jp′(s−n

p
)
µ

p′−1
J , J ∈ N0, (4.10)

where only the cases s ≤ n
p

are of interest, otherwise (4.10) is always satisfied.

Proposition 4.5. Let 1 < p <∞, 1
p
+ 1

p′
= 1, s > 0. Let µ be a Radon measure

in R
n with (4.6) and (4.10). Let ak = ak(trΓ) be the approximation numbers of

the compact operator trΓ in (4.8). There are two positive numbers c and c′ such

that

ac2nJ ≤ c′2−J(s−n
p
)
µ

1

p

J , J ∈ N0,

where c2nJ is always assumed to be a natural number.

The proof can be found in [18, 4.6].

4.2. Anisotropic d-sets in R
n. We assume that µ is a positive Radon measure

in R
n with compact support

Γ = supp µ, 0 < µ(Rn) <∞, |Γ| = 0,

where |Γ| denotes the Lebesgue measure of Γ. Let again a = (a1, . . . , an) be a
given anisotropy.

Definition 4.6. Let 0 < d < n. Then Γ ⊂ R
n is called an anisotropic d-set, if

µ(Ba(γ, r)) ∼ rd, 0 < r < 1, (4.11)

where Ba(γ, r) = {y ∈ R
n : |y − γ|a ≤ r} and γ ∈ Γ.

The existence of such anisotropic d-sets as well as some examples are shown
in [18, 4.7].

Now we are prepared to formulate our main result an approximation num-
bers of related compact trace operators in [18].

Theorem 4.7. Let the anisotropic d-set Γ and µ be given according to (4.11),
and 0 < d < n, 1 < p < ∞, 1

p
+ 1

p′
= 1, n

p
≥ s > n−d

p
. Let ak = ak(trΓ) be the

approximation numbers of the compact operator trΓ. Then there exist numbers

c, c′ > 0 so that for all k ∈ N,

ck
1

d
(n

p
−s)− 1

p ≤ ak

(
trΓ : Bs,a

pp (Rn) →֒ Lp(Γ)
)
≤ c′k

1

d
(n

p
−s)− 1

p .

The proof can be found in [18, 4.8]
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5. Main results

In this section we restrict ourselves to the case p = 2 since we have Proposi-
tion 4.3(ii) for Hilbert spaces only.

Again let Γ be an anisotropic d-set with respect to the anisotropy a =
(a1, . . . , an), then by (4.2) and (3.6), trΓ : Hs,a

2 (Rn) →֒ L2(Γ), s > 0. By (3.6),
(4.4) and (4.5) we have that idΓ : L2(Γ) →֒ H

−s,a
2 (Rn), and consequently,

trΓ = idΓ ◦ trΓ : Hs,a
2 (Rn) →֒ H

−s,a
2 (Rn). (5.1)

Let s1, . . . , sn ∈ N and let s ∈ R be defined by

1

s
=

1

n

(
1

s1

+ · · · + 1

sn

)
. (5.2)

Let A be the operator defined by

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1

1

+ · · · + (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x) , (5.3)

where x ∈ R
n. Using elementary properties of the Fourier transform we have

Au =
(
(1 + ξ2s1

1 + · · · + ξ2sn
n )û

)∨
for any u ∈ S ′(Rn).

It is well known, see for example [10], that A is a lift operator for the scale
Bt,a

pq (Rn), t ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. More precisely, A maps any space
Bt,a

pq (Rn) onto Bt−2s,a
pq (Rn) and ‖A(·)|Bt−2s,a

pq (Rn)‖ is an equivalent quasi-norm
on Bt,a

pq (Rn), the inverse A−1 of A has to be understood in this way.

Theorem 5.1. Let Γ ⊂ R
n be an anisotropic d-set according to Definition 4.6

with respect to the anisotropy a. Let trΓ be the operator given by (5.1), si ∈
N, i = 1, . . . , n, 1

s
= 1

n

(
1
s1

+ · · · + 1
sn

)
, A given by

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1

1

+ · · · + (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x)

with 0 < d < n, and n
2
≥ s > n−d

2
. Then

T = A−1 ◦ trΓ (5.4)

is a compact, non-negative self-adjoint operator in H
s,a
2 (Rn) and with null space

N(T ) =
{
f ∈ H

s,a
2 (Rn) : trΓf = 0

}
.

Let (λk)k∈N be the sequence of all positive eigenvalues of T , repeated according

to multiplicity and ordered by their magnitude. Then

λk ∼ k−
1

d
(2s−n+d), k ∈ N.
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We begin the proof of Theorem 5.1 with some preparation.

Lemma 5.2. Let s be given by (5.2) and A the operator from (5.3).

1. There exists a constant c > 0 such that 〈Au, u〉L2(Rn) ≥ c‖u|L2(R
n)‖ for

any u ∈ L2(R
n).

2. There exist two constants c1, c2 > 0 such that

c1‖u|Hs,a
2 (Rn)‖2 ≤ 〈Au, u〉L2(Rn) ≤ c2‖u|Hs,a

2 (Rn)‖2.

Proof of Lemma 5.2. We closely follow the ideas in [6, Section 6.2, Lemma 6.3]
where Farkas proved the lemma for the case if n = 2. This can be extended to
the case n ∈ N.

Let ϕ ∈ C∞
0 (Rn) and 〈Aϕ,ϕ〉L2(Rn) =

∫
Rn(Aϕ)(x)ϕ(x) dx. After integration

by parts we have

〈Aϕ,ϕ〉L2(Rn) =

∫

Rn

(∣∣∣∣
∂s1ϕ(x)

∂xs1

1

∣∣∣∣
2

+ · · · +
∣∣∣∣
∂snϕ(x)

∂xsn
n

∣∣∣∣
2

+ |ϕ(x)|2
)

dx ,

and the conclusion of the lemma follows immediately using the density of
C∞

0 (Rn) in L2(R
n) and in W s,a

2 (Rn), together with (3.6).

Finally we can prove Theorem 5.1.

Proof of Theorem 5.1.

Step 1: We first show that T given by (5.4) is a compact, non-negative self-
adjoint operator in H

s,a
2 (Rn). In view of (5.4) and trΓ = idΓ ◦ trΓ the operator

T = A−1 ◦ trΓ can be decomposed into

trΓ : H
s,a
2 (Rn) →֒ L2(Γ)

idΓ : L2(Γ) →֒ H
−s,a
2 (Rn) (5.5)

A−1 : H−s,a
2 (Rn) →֒ H

s,a
2 (Rn).

By Lemma 5.2 we have that the operator A is positive-definite as an operator
acting in L2(R

n) and we may fix the norm in Hs,a
2 (Rn) by ‖A 1

2 (·)|L2(R
n)‖ and

a corresponding scalar product. By Proposition 4.1, (3.6) and (4.1) there exists
a constant c > 0 such that ‖trΓϕ|L2(Γ)‖ ≤ c‖ϕ|Hs,a

2 (Rn)‖ for all ϕ ∈ H
s,a
2 (Rn).

Defining

q(f, g) =

∫

Γ

f(γ)g(γ)µ( dγ) for any f, g ∈ H
s,a
2 (Rn),

it is clear that q(·, ·) is a non-negative quadratic form in Hs,a
2 (Rn). Then there

exists a non-negative and self-adjoint operator T̃ uniquely determined such that
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q(f, g) = 〈T̃ f, g〉Hs,a
2

(Rn) for any f, g ∈ H
s,a
2 (Rn), see for example [22, p. 91].

Furthermore,

‖trΓf |L2(Γ)‖ = ‖
√
T̃ f |Hs,a

2 (Rn)‖ , (5.6)

where
√
T̃ = T̃

1

2 . So it remains to prove that the above operator is the same
as in (5.4). Let f ∈ H

s,a
2 (Rn) and ϕ ∈ D(Rn). Then by (4.3), (4.5) and (5.1),

〈trΓf, ϕ〉L2(Rn) =

∫

Γ

f(γ)ϕ(γ) dµ(γ) = 〈T̃ f, ϕ〉Hs,a
2

(Rn)

= 〈A 1

2 T̃ f, A
1

2ϕ〉L2(Rn)

= 〈AT̃f, ϕ〉L2(Rn),

(5.7)

where the second equality in (5.7) is justified by the fact that we fixed the scalar

product in H
s,a
2 (Rn) by 〈u, v〉Hs,a

2
(Rn) = 〈A 1

2u,A
1

2v〉L2(Rn). Considered as a dual

pairing in (D(Rn),D′(Rn)) we obtain AT̃f = trΓf , and we have that T̃ = T by
(5.4). The compactness is a consequence of Theorem 4.7 and (5.5).

Step 2: We prove that there is a number c > 0 such that

λk ≤ ck−
1

d
(2s−n+d), k ∈ N. (5.8)

Recall that the identification operator idΓ is the dual of the trace operator trΓ

by (4.5). Thus standard reasoning for dual operators, Proposition 4.3(i), and
Theorem 4.7 imply that

ak(idΓ) = ak(trΓ) ∼ k
1

d
(n
2
−s)− 1

2 , k ∈ N,

where we make use of n
2
≥ s > n−d

2
. By (5.5) and the multiplication property

for approximation numbers, Lemma 4.2(iii), one obtains

a2k(T ) ≤ c ak(trΓ)ak(idΓ) ∼ k−
1

d
(2s−n+d). (5.9)

Since Proposition 4.3(ii) tells us that the approximation numbers of T coincide
with its eigenvalues, assertion (5.8) follows from (5.9).

Step 3: To obtain the converse of (5.8) we use the same argument as in Theo-
rem 4.7, Step 2, now with p = 2, see [18, 4.8]. Let J ∈ N and c > 0 be suitably
chosen numbers such that there are lattice points

γj,l = 2(−j−J)am with m ∈ Z
n, l = 1, . . . ,Mj, where Mj ∼ 2jd (5.10)

with
dist(γj,l,Γ)≤c2−j,

assuming further that the anisotropic balls Ba(γj,l, c2
−j+1) are disjoint. Let k

be a non-negative C∞ function in R
n with

supp k ⊂
{
y ∈ R

n : |y|a < 2J and yj > 0, j = 1, . . . , n
}
,
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for some J ∈ N, and
∑

m∈Zn k(x−m) = 1, x ∈ R
n. For some J ∈ N, we put for

j ∈ N0,

fa
j (x) =

Mj∑

l=1

cjl2
−j(s−n

p
)
k(2ja(x− γj,l)), cjl ∈ C, x ∈ R

n. (5.11)

Using the same argument as in Step 2 in the proof of [18, Theorem 3.7,p. 319]

we obtain that
∥∥fa

j |L2(Γ)
∥∥ ≥ c 2−j(s−n

2
) 2−j d

2 whenever ‖fa
j |Hs,a

2 (Rn)‖ ∼ 1.

By (5.6) (with T̃ replaced by T ) this can be rewritten as

‖
√
Tfa

j |Hs,a
2 (Rn)‖ ≥ c2−j(s−n

2
)2−j d

2 if ‖fa
j |Hs,a

2 (Rn)‖ ∼ 1.

On the other hand, for an arbitrary operator L with rankL ≤ Mj − 1 we
can always find some fa

j according to (5.11) such that ‖fa
j |Hs,a

2 (Rn)‖ ∼ 1 and
Lfa

j = 0. This leads to

aMj
(
√
T ) ≥ c2−j(s−n

2
)2−j d

2 ,

see also Theorem 4.7. Since ak(
√
T ) = λ

1

2

k , we obtain by (5.10) that

λk ≥ ck−
1

d
(2s−n+d), k ∈ N.

This concludes the proof.

Remark 5.3. (i) Let Γ be the anisotropic d-set considered in [6, Section 3.1].
Farkas proved in [6, Section 4] for the operator (1.4) that λk(A

−1 ◦ trΓ) ∼
ck−

1

d
(d+2t−2). If we take the case n = 2 and t = s we have the same result

λk ∼ k−
1

d
(2t−2+d).

(ii) If we restrict ourselves to the case n = 2, s1 = 1 and s2 = 2, then

Au(x) = −∂
2u(x)

∂x2
1

+
∂4u(x)

∂x4
2

+ u(x), x = (x1, x2) ∈ R
2. (5.12)

Let again Γ be the anisotropic d-set considered in [6, Section 3.1], with respect to
the anisotropy a = (4

3
, 2

3
). Farkas obtained in [5, Section 4] that λk(A

−1 ◦ trΓ) ∼
ck−

1

d
(d+ 2

3
), where trΓ is given by (1.5) and A−1 is the inverse of (5.12). For this

special case our results coincide. Operators of this type have been investigated
by Triebel in [20] and by Shevchik in [14].

(iii) In view of the isotropic results [24, Theorem 3, Remark 10] for the
operator Bs = (id − ∆)−s ◦ trΓ we have the same results like in the anisotropic
case if we restrict the outcome to the classical example of a compact d-set with
0 < d < n and n− d < 2s ≤ n, see (1.3).
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