
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 28 (2009), 249–275

Generalized Rademacher-Stepanov

Type Theorem and Applications

Alireza Ranjbar-Motlagh

Abstract. The main purpose of this article is to generalize a theorem of Stepanov
which provides a necessary and sufficient condition for almost everywhere differen-
tiability of functions over Euclidean spaces. We state and prove an L

p-type gener-
alization of the Stepanov theorem and then we extend it to the context of Orlicz
spaces. Then, this generalized Rademacher–Stepanov type theorem is applied to the
Sobolev and bounded variation maps with values into a metric space. It is shown
that several generalized differentiability type theorems are valid for the Sobolev maps
from a Lipschitz manifold into a metric space. As a byproduct, it is shown that the
Sobolev spaces of Korevaar–Schoen and Reshetnyak are equivalent.

Keywords. Rademacher and Stepanov theorems, Sobolev and bounded variation
spaces, generalized differentiability, Lipschitz manifolds, Orlicz spaces

Mathematics Subject Classification (2000). Primary 58C20, 46E30, secondary
46E35

1. Introduction

In this article, we generalize a theorem of Stepanov about differentiability of
functions on the finite dimensional Euclidean spaces. Then, this generalized
Stepanov type theorem is applied to the Sobolev and bounded variation (BV)
maps. The Stepanov theorem provides a necessary and sufficient condition for
almost everywhere (a.e.) differentiability of real-valued functions on R

k. It
is a generalized version of the Rademacher theorem, namely, every Lipschitz
function over a finite dimensional Euclidean space is differentiable a.e. The
precise statement of the Stepanov theorem is as the following (see [4, p. 218], [16,
p. 250] and [17, p. 97]): Let f : R

k −→ R be a measurable function on R
k with

the standard Euclidean metric and Lebesgue measure. Suppose that

lim sup
y→x

|f(y) − f(x)|

|y − x|
<∞,

for a.e. x ∈ R
k. Then, f is differentiable a.e.
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Our generalized Stepanov type theorem is based on the following Lp-type
differentiability concept.

Definition 1.1. Let f : R
k −→ R belong to L

p
loc(R

k), for some p ≥ 1. We
say that f is Lp-differentiable at point x ∈ R

k, if there is a linear functional
Df(x) : R

k −→ R such that (see [16, p. 242])

lim
r→0

−

∫

B(x,r)

|f(y) − f(x) −Df(x) · (y − x)|p

rp
dy = 0,

where B(x, r) denotes the closed ball of radius r > 0 with center at x and

−

∫

B(x,r)

g(y) dy :=
1

vol(B(x, r))

∫

B(x,r)

g(y) dy.

We call Df(x) the Lp-differential of f at x.

Notice that if f is Lp-differentiable at x, then it is approximately differen-
tiable at x, i.e., for every ǫ > 0, we have (see [3, p. 233] and [4, p. 212])

lim
r→0

vol
(

{y ∈ B(x, r) : |f(y) − f(x) −Df(x) · (y − x)| ≥ ǫ |y − x|}
)

vol(B(x, r))
= 0.

In the first section, we state and prove the following Lp-type differentiability
theorem which can be interpreted as an Lp-type generalization of the Stepanov
(and Rademacher) theorem (compare [18, Theorems 2.1.6, 3.5.7]):

Theorem 1.2. Let f : R
k −→ R belong to Lploc(R

k), for some p ≥ 1. Suppose
that

lim sup
ǫ→0

−

∫

B(x,ǫ)

|f(y) − f(x)|p

ǫp
dy <∞,

for a.e. x ∈ R
k. Then, f is Lp-differentiable a.e.

Notice that if a function f : R
k −→ R, for some positive numbers M and

p ≥ 1, satisfies the condition

−

∫

B(x,r)

|f(y) − f(x)|p

rp
dy ≤M,

for a.e. x ∈ R
k and all r > 0, then by Campanato’s theorem (see for example [10,

p. 31]), f is Lipschitz and therefore f is differentiable a.e.

In the second section, a Rademacher differentiability type theorem is proved
for Lipschitz maps into a Banach space. It is shown that if f : R

k −→ Y is a
map into a metric space such that

lim sup
ǫ→0

−

∫

B(x,ǫ)

dp(f(y), f(x))

ǫp
dy <∞,
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for a.e. x ∈ R
k, then limǫ→0 −

∫

B(x,ǫ)
dp(f(y),f(x))

ǫp
dy exists, for a.e. x ∈ R

k (see

Theorem 3.5). This can be interpreted as a generalized Lp-type differentiability
theorem for maps with values into a metric space.

In the third section, these generalized differentiability concepts are applied
to the Sobolev and BV type maps with values in a metric space. As a byproduct,
it is shown that the Sobolev type spaces of Korevaar–Schoen and Reshetnyak
are equivalent (this has been proved in [7, Theorem 5.1] with an additional as-
sumption that ∂Ω is smooth, see also [14]). In fact, when the range of maps
is into ℓ∞(N), we compute the energy norms for the Sobolev type maps by the
definitions of Korevaar–Schoen and Reshetnyak (see Theorem 4.2, Remark 4.3
and Corollary 4.4). These computations provide the best estimate of the en-
ergy norms for the Sobolev type maps in the sense of Korevaar–Schoen and
Reshetnyak with general metric space targets (compare with [7, Theorem 5.1]).

In the fourth section, the main result of Gregori [6] for the Sobolev type
maps over Lipschitz manifolds (that is an extension of the Korevaar–Schoen
result in [9]) is improved, see Corollary 5.2. It is shown that, in the convergence
of the family of the approximate energy density functions to the energy density
function, in fact, the (strong) limit exists (see [9] or [6] for definitions). There-
fore, we are able to obtain another generalized differentiability type theorem.

Finally, in the last section, a generalized differentiability theorem is intro-
duced in the context of Orlicz’s spaces.

2. Generalized differentiability for real-valued maps

In this section, we prove Theorem 1.2 and then this theorem is applied to the
Sobolev and bounded variation (BV) functions in order to show the generalized
differentiability for such functions.

First, we recall the concept of density in measure theory which has a crucial
role in the proofs. Let G be a subset of R

k. It is said that x ∈ R
k is a point of

density one for G, if

lim
r→0

vol(B(x, r) ∩G)

vol(B(x, r))
= 1.

By the Lebesgue differetiation theorem, almost every x ∈ G is a point of density
one for G.

The proof of Theorem 1.2 is based on the following lemma which is a com-
bination of the proofs of Campanato and Stepanov theorems; compare with [4,
Lemma 3.1.5].

Lemma 2.1. Let f : R
k −→ R belong to Lploc(R

k), for some p ≥ 1. For positive
numbers α, M , R and T , we define the set E as the following:

E :=

{

x ∈ B(0, T ) : sup
0<r≤R

−

∫

B(x,r)

|f(y) − f(x)|p

rαp
dy ≤Mp

}

.
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Then, we have:

(i) The restriction of f to E is α-Hölder, except on a set of measure zero.

(ii) The restriction of f to E is equal to an α-Hölder function whose domain
is entire R

k, except on a set of measure zero.

(iii) Let α = 1, then f is Lp-differentiable, for a.e. x ∈ E.

Proof. (i) Let Qr(w) denote −
∫

B(w,r)
f(z) dz, where w ∈ R

k and r > 0. Set

ri := R
2i , for non-negative integer i. Suppose that x ∈ E, then we have

∣

∣Qri(x) −Qri+1
(x)

∣

∣ ≤ C−

∫

B(x,ri)

−

∫

B(x,ri)

∣

∣f(z) − f(w)
∣

∣ dz dw

≤ C−

∫

B(x,ri)

−

∫

B(x,ri)

∣

∣(f(z) − f(x)) − (f(w) − f(x))
∣

∣ dz dw

≤ 2C−

∫

B(x,ri)

∣

∣f(z) − f(x)
∣

∣ dz

≤ 2C

(

−

∫

B(x,ri)

∣

∣f(z) − f(x)
∣

∣

p
dz

)
1
p

≤ CMrαi ,

for every non-negative integer i and some (universal) constant C which depends
on k. Then, for all j > i ≥ 0, we have

∣

∣Qrj(x) −Qri(x)
∣

∣ ≤

j−1
∑

m=i

∣

∣Qrm(x) −Qrm+1(x)
∣

∣ ≤ CM

j−1
∑

m=i

rαm. (2.1)

This implies that
{

Qri(x)
}

i≥1
is a Cauchy sequence. Hence, there exists a real

number, say f0(x), such that f0(x) := limi→∞Qri(x). Moreover, from (2.1) we
get

∣

∣Qri(x) − f0(x)
∣

∣ ≤ CM

∞
∑

m=i

rαm, (2.2)

for non-negative integer i. Suppose that ri0+1 ≤ |x − y| ≤ ri0 , where x, y ∈ E

and i0 ≥ 1 is an integer. Then, we have

∣

∣Qri0
(x) −Qri0

(y)
∣

∣ ≤ C−

∫

B(x,2ri0 )

−

∫

B(x,2ri0 )

∣

∣f(z) − f(w)
∣

∣ dz dw

≤ 2C−

∫

B(x,2ri0 )

∣

∣f(z) − f(x)
∣

∣ dz

≤ 2C

(

−

∫

B(x,2ri0 )

∣

∣f(z) − f(x)
∣

∣

p
dz

)
1
p

.
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Hence
∣

∣Qri0
(x) −Qri0

(y)
∣

∣ ≤ CMrαi0 . (2.3)

Therefore, from (2.2) and (2.3), we see that
∣

∣f0(x) − f0(y)
∣

∣ ≤ CM
∑∞

m=i0
rαm.

Since R
2i0+1 = ri0+1 ≤ |x− y| ≤ ri0 = R

2i0
, we obtain

∣

∣f0(x) − f0(y)
∣

∣ ≤ CKαM |x− y|α, (2.4)

where Kα is a constant which depends on α. Let x and y be two Lebesgue
points of f , then, by the Lebesgue differentiation theorem, we have

∣

∣f(x) − f(y)
∣

∣ ≤ CKαM |x− y|α, (2.5)

for a.e. x, y ∈ E whenever |x− y| ≤ R
2
. This completes the proof of part (i).

(ii) It is a straightforward generalization of Theorem 1 in [3, p. 80]; see
also [4, p. 201].

(iii) By part (ii), we know that the restriction of f to E, except for a set
of measure zero, is equal to a Lipschitz function g whose domain is entire R

k.
Then, by the Rademacher theorem, g is differentiable a.e.

Let x ∈ E be a point of density one for E, suppose that g is differentiable
at x and f(x) = g(x). We show that f is Lp-differentiable at point x. Let
0 < ǫ < 1

4
. Since x is a point of density one for E, there is 0 < δ < R, depending

on ǫ, such that vol(B(x,r)∩Ec)
vol(B(x,r))

< ǫ, for all 0 < r ≤ δ, where Ec := R
k\E, and also

|g(w) − g(x) −Dg(x) · (w − x)| ≤ ǫ |w − x|, for all w ∈ B(x, δ). Set δ1 := ǫ
1
k δ,

δ2 := δ − δ1 and δ3 := δ − 2δ1. Then, for every y ∈ B(x, δ2), we show that

B(y, δ1) ∩ E 6= ∅. (2.6)

By contradiction, suppose that B(y, δ1) ∩ E = ∅. Then, we have

ǫ >
vol(B(x, δ) ∩ Ec)

vol(B(x, δ))
≥

vol(B(y, δ1))

vol(B(x, δ))
=
δk1
δk

= ǫ.

It is a contradiction. Therefore, for every y ∈ B(x, δ2), there exists some z =
zy ∈ B(y, δ1) ∩ E. This implies (2.6). On the other hand, we have

|f(y)−f(x) −Dg(x) · (y−x)| ≤ |f(y) − g(z)| + |g(z) − g(x) −Dg(x) · (z − x)|

+ |Dg(x) · (z − x) −Dg(x) · (y − x)|

≤ |f(y) − g(z)| + ǫ |z − x| + L |z − y|

≤ |f(y) − g(z)| + ǫ δ + L δ1

≤ |f(y) − g(z)| + ǫ δ + L ǫ
1
k δ

≤ |f(y) − g(zy)| + (1 + L) ǫ
1
k δ,
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where L is a constant which depends on the Lipschitz constant of g. Suppose
that z′ ∈ B(x, δ3) ∩ E, f(z′) = g(z′) and y ∈ B(z′, δ1). Then, we have

|f(y)−f(x)−Dg(x) · (y−x)| ≤ |f(y) − g(zy)| + (1+L) ǫ
1
k δ

≤ |f(y) − g(z′)| + |g(zy) − g(z′)| + (1+L) ǫ
1
k δ

≤ |f(y) − g(z′)| +L (|zy−y|+|y−z′|)+(1+L) ǫ
1
k δ

≤ |f(y) − g(z′)| + 2 δ1 L+ (1+L) ǫ
1
k δ

≤ |f(y) − g(z′)| + (1+3L) ǫ
1
k δ.

Therefore, we obtain

−

∫

B(z′,δ1)

|f(y) − f(x) −Dg(x) · (y − x)|p dy

≤ 2p−

∫

B(z′,δ1)

|f(y) − g(z′)|p dy + (1 + 3L)p ǫ
p

k δp

= 2p−

∫

B(z′,δ1)

|f(y) − f(z′)|p dy + (1 + 3L)p ǫ
p

k δp

≤ 2p
[

Mpδ
p
1 + (1 + 3L)p ǫ

p

k δp
]

≤ 2p
[

Mpǫ
p

k + (1 + 3L)p ǫ
p

k

]

δp

= λ(ǫ) δp3 ,

where λ is a function such that lims→0 λ(s) = 0. Since we can cover B(x, δ3)
by a minimum number of balls whose centers are in E and their radii are equal
to δ1 (f and g are equal at such points), we get

−

∫

B(x,δ3)

|f(y) − f(x) −Dg(x) · (y − x)|p dy ≤ C λ(ǫ) δp3,

where C is a (universal) constant which depends on k. Letting ǫ → 0, this
completes the proof of Lemma 2.1.

Proof of Theorem 1.2:. Letm and n be two positive integer numbers. We define
the set Em,n as the following:

Em,n :=

{

x ∈ B(0,m) : sup
0<r≤ 1

n

−

∫

B(x,r)

|f(y) − f(x)|p

rp
dy ≤ m

}

.

It is clear that R
k =

⋃

m,nEm,n, except for a set of measure zero. Now, the
assertion follows from Lemma 2.1.
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Remark 2.2. We can show that Theorem 1.2 (and Definition 1.1) is valid (and
meaningful) for p = ∞, if the average integral −

∫

is replaced by the essential
supremum or supremum norm. So, the proof of Theorem 1.2 provides a proof
for the Stepanov theorem (using the Rademacher theorem), as well. Moreover,
we can obtain [4, Theorem 3.1.8]; see also [16, p. 250].

Corollary 2.3. Let f : R
k −→ R belong to Lploc(R

k), for some p ≥ 1. Suppose

that lim supǫ→0 −
∫

B(x,ǫ)
|f(y)−f(x)|p

ǫp
dy <∞, for a.e. x ∈ R

k. Then

lim
ǫ→0

−

∫

B(x,ǫ)

|f(y) − f(x)|p

ǫp
dy = −

∫

B(0,1)

|Df(x) · v|p dv,

for a.e. x ∈ R
k, where Df(x) is the Lp-differential of f at x.

Proof. Since Lp is a norm space, then by the triangle inequality, we have

∣

∣

∣

∣

(

−

∫

B(x,ǫ)

|f(y) − f(x)|p dy

)
1
p

−

(

−

∫

B(x,ǫ)

|Df(x) · (y − x)|p dy

)
1
p
∣

∣

∣

∣

≤

(

−

∫

B(x,ǫ)

|f(y) − f(x) −Df(x) · (y − x)|p dy

)
1
p

,

for a.e. x ∈ R
k and all ǫ > 0, where Df(x) is the Lp-differential of f at x (using

Theorem 1.2). Since Df(x) is linear, by the change of variables formula, we
have

−

∫

B(x,r)

|Df(x) · (y − x)|p

rp
dy = −

∫

B(0,s)

|Df(x) · v|p

sp
dv,

for all positive numbers r and s. This implies that

lim
ǫ→0

−

∫

B(x,ǫ)

|f(x) − f(y)|p

ǫp
dy = −

∫

B(0,1)

|Df(x) · v|p dv,

for a.e. x ∈ R
k. This completes the proof of Corollary 2.3.

Remark 2.4. Notice that if f is differentiable at point x, then we immediately
obtain the conclusion of Corollary 2.3 at such a point. Also, the function f

(under the assumptions of Corollary 2.3 ) is not necessarily differentiable a.e.
(in the usual sense).

Question 2.5. Is there any direct proof for Corollary 2.3, without using The-
orem 1.2 or Lemma 2.1? Namely, is there any proof for Corollary 2.3 without
appealing to the differentiability of Lipschitz functions?

Next, we provide a few applications for this generalized Stepanov type the-
orem in the Sobolev and BV spaces. For the basic properties of the Sobolev
and BV spaces, see for example [1] and [3].
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Proposition 2.6. Suppose that f : R
k −→ R belongs to L

p
loc(R

k) and ν is a
(Radon) measure on R

k in such a way that

−

∫

B(x,r)

|f(y) − f(x)|p

rαp
dy ≤

(

ν(B(x, r))

rk

)βp

<∞,

for all 0 < r ≤ R and a.e. x ∈ R
k (with respect to the Lebesgue measure), where

p ≥ 1, R > 0, β ≥ 0 and α ≥ 1. Then:

(i) f is Lp-differentiable a.e. In particular, we have

lim
ǫ→0

−

∫

B(x,ǫ)

|f(y) − f(x)|p

ǫp
dy = −

∫

B(0,1)

|Df(x) · v|p dv,

for a.e. x ∈ R
k.

(ii) Furthermore, if α − kβ > 0, then f is L∞-differentiable a.e. (see Re-
mark 2.2).

Proof. (i) We have

−

∫

B(x,r)

|f(y) − f(x)|p

rp
dy ≤ −

∫

B(x,r)

|f(y) − f(x)|p

rαp
dy ≤

(

ν(B(x, r))

rk

)βp

,

for all 0 < r ≤ min{1, R} and a.e. x ∈ R
k. On the other hand, by [3, p. 38,

Theorem 1], we know that

lim sup
r→0

ν(B(x, r))

rk
<∞, (2.7)

for a.e. x ∈ R
k (with respect to the Lebesgue measure). Therefore, we obtain

lim supǫ→0 −
∫

B(x,ǫ)
|f(y)−f(x)|p

ǫp
dy < ∞, for a.e. x ∈ R

k. From Corollary 2.3, we

obtain the assertion of part (i).

(ii) By the assumptions, we have

−

∫

B(x,r)

|f(y) − f(x)|p dy ≤ ν(B(x, r))βp r(α−kβ)p,

for all 0 < r ≤ R and a.e. x ∈ R
k. Then, similar to the proof of Lemma 2.1 (by

inequality (2.5)), we have (or we can directly apply Campanato’s theorem [10,

p. 31]) |f(y) − f(x)| ≤ Ĉ ν(B(x, r))βrα−kβ = Ĉ
(

ν(B(x,r))
rk

)β
rα, for a.e. y ∈

B(x, r
2
), a.e. x ∈ R

k and all 0 < r ≤ R, where Ĉ is a constant which does not
depend on f and r. Therefore, by (2.7) and α ≥ 1, we obtain

lim sup
r→0

{

1

r
ess sup
y∈B(x,r)

|f(y) − f(x)|

}

<∞,

for a.e. x ∈ R
k. Therefore, the assertion of part (ii) follows from Theorem 1.2

and Remark 2.2.
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Now, we replace the boundedness condition lim supǫ→0 −
∫

B(x,ǫ)
|f(y)−f(x)|p

ǫp
dy <

∞ in Theorem 1.2, Corollary 2.3 and Proposition 2.6 by a slightly weaker as-
sumption.

Theorem 2.7. Let f : R
k −→ R belong to Lploc(R

k), for some p ≥ 1. Then:

(i) If

lim sup
ǫ→0

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

|f(z) − f(w)|p

ǫp
dz dw <∞,

for a.e. x ∈ R
k, then f is Lp-differentiable a.e. and

lim
ǫ→0

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

|f(z)−f(w)|p

ǫp
dz dw = −

∫

B(0,1)

−

∫

B(0,1)

|Df(x) · (v−u)|pdv du,

for a.e. x ∈ R
k.

(ii) If there exists a (Radon) measure ν on R
k in such a way that

−

∫

B(x,r)

−

∫

B(x,r)

|f(z) − f(w)|p

rαp
dz dw ≤

(

ν(B(x, r))

rk

)βp

<∞,

for all 0 < r ≤ R and a.e. x ∈ R
k, where p ≥ 1, R > 0, β ≥ 0 and α ≥ 1,

then f is Lp-differentiable a.e. and

lim
ǫ→0

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

|f(z)−f(w)|p

ǫp
dz dw = −

∫

B(0,1)

−

∫

B(0,1)

|Df(x) · (v−u)|pdv du,

for a.e. x ∈ R
k. Furthermore, if α − kβ > 0, then f is L∞-differentiable

a.e.

Proof. It is similar to the proofs of Theorem 1.2, Corollary 2.3 and Proposi-
tion 2.6 (with minor changes).

Corollary 2.8. Let W 1,p
loc (R

k) denote the Sobolev space, i.e., the set of all func-
tions in L

p
loc(R

k) whose (first order) weak derivatives are in L
p
loc(R

k), for some
p ≥ 1. Suppose that f ∈ W

1,p
loc (R

k). Then:

(i) f is Lp-differentiable a.e.

(ii) If p < k, then f is Lq-differentiable a.e., where q = kp

k−p
.

(iii) If k < p, then f is differentiable a.e. (after changing f on a set of measure
zero).

Proof. (i) It follows from Theorem 2.7 and the Poincaré inequality.

(ii) It follows from Theorem 2.7 and the Sobolev inequality.

(iii) It follows from Theorem 2.7 and the Poincaré inequality.
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Corollary 2.9. Let BVloc(R
k) denote the set of all locally bounded variation

functions on R
k. Suppose that f ∈ BVloc(R

k). Then f is L
k

k−1 -differentiable
a.e.

Proof. It follows from Theorem 2.7 and the Sobolev inequality.

Corollary 2.8 and Corollary 2.9 are well-known, see [16, p. 242] and [3,
Chapter 6]; compare with Theorem 6.3.

3. Generalized differentiability for maps with values
in a metric space

We extend a consequence of the main result of previous section to maps with
values into a metric space. Let ℓ∞ = ℓ∞(N) denote the Banach space of all
bounded sequences of real numbers with sup-norm ‖ · ‖∞. First, we state and
prove a Rademacher differentiability type theorem for Lipschitz maps into the
Banach space ℓ∞. Then, we generalize Corollary 2.3 to maps with range in a
metric space.

We start this section with the following lemma which has a crucial role in
order to study the generalized differentiability properties for maps with values
into a metric space. In fact, this lemma is obvious for Lipschitz maps with
values into a finite dimensional norm space. Moreover, Lemma 3.1, without
computing its limit, was proved by Kirchheim [8], see also Theorem 3.3.

Lemma 3.1. Let f : R −→ ℓ∞ be a Lipschitz map. Then

lim
t→0+

‖f(x+ t) − f(x)‖∞
t

= sup
i∈N

|f ′
i(x)|,

for a.e. x ∈ R, where f = (fi)i∈N.

Proof. Since f is a Lipschitz map, there exists M > 0 such that |fi(x)−fi(y)| ≤
M |x − y|, for all x, y ∈ R and i ∈ N (f is called M-Lipschitz). Since every
Lipschitz function on R is a.e. differentiable, there exists a subset A ⊂ R of
measure zero such that f ′

i(x) exists for all i ∈ N and x ∈ R\A. Define the
measurable function

g : R −→ R, g(x) := sup
i

|f ′
i(x)|.

By [3, p. 47], we know that g is approximately continuous for a.e. x ∈ R. So,
without loss of generality, we may assume that g is approximately continuous
on R\A. Let x0 ∈ R\A. We show that

lim
t→0+

supi |fi(x0 + t) − fi(x0)|

t
= g(x0).
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Let ǫ and η be arbitrary positive numbers. Since g is approximately continuous
at x0, there exists δ > 0 such that

vol
(

{y ∈ B(x0, r) : |g(x0) − g(y)| ≥ ǫ}
)

vol(B(x0, r))
≤ η, (3.1)

for all 0 < r ≤ δ. Moreover, there exists i0 ∈ N such that

g(x0) − η ≤ |f ′
i0
(x0)| ≤ g(x0). (3.2)

Since fi is Lipschitz, we have fi(y) − fi(x) =
∫ y

x
f ′
i(s) ds, for all x, y ∈ R and

i ∈ N. Then

|fi(y) − fi(x)| ≤

∫ y

x

g(s) ds, (3.3)

for all y ≥ x and i ∈ N. Since fi0 is differentiable at x0, there exists δ′ > 0 such

that
∣

∣

fi0
(x)−fi0

(x0)

x−x0
− f ′

i0
(x0)

∣

∣ ≤ η, for all x ∈ B(x0, δ
′). Hence

[

|f ′
i0
(x0)| − η

]

|x− x0| ≤ |fi0(x) − fi0(x0)| ≤
[

|f ′
i0
(x0)| + η

]

|x− x0|, (3.4)

for all x ∈ B(x0, δ0), where δ0 := min{δ, δ′}. Then, from (3.2) and (3.4), we
have

[

g(x0) − 2η
]

|x− x0| ≤ |fi0(x) − fi0(x0)| ≤ sup
i

|fi(x) − fi(x0)|, (3.5)

for all x ∈ B(x0, δ0). Also, from (3.1) and (3.3), we get

|fi(x) − fi(x0)| ≤ (g(x0) + ǫ) |x− x0|

+M vol
(

{y ∈ B(x0, r) : |g(x0) − g(y)| ≥ ǫ}
)

≤ (g(x0) + ǫ) |x− x0| +M η vol(B(x0, r)),

(3.6)

for all x ∈ B(x0, δ0) and i ∈ N, where r = |x − x0|. Therefore, from (3.5) and
(3.6), we obtain

[

g(x0) − 2η
]

|x− x0| ≤ sup
i

|fi(x) − fi(x0)| ≤
[

(g(x0) + ǫ) + 2Mη
]

|x− x0|,

for all x ∈ B(x0, δ0). Letting ǫ, η → 0, this implies the assertion.

Remark 3.2. In Lemma 3.1, the Lipschitz map f is not necessarily differen-
tiable a.e. For example, consider fi(x) := sin(ix)

i
. See also [2, Chapter 5], about

the Radon-Nikodým property (RNP) and its relation with differentiability of
Lipschitz maps with values into a Banach space.
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Next, we extend Lemma 3.1 to the Lipschitz maps from Rk into ℓ∞. In
fact, the following result can be interpreted as an extension of Rademacher’s
differentiability theorem for maps with values into a Banach space.

Theorem 3.3. Let f : R
k −→ ℓ∞ be a Lipschitz map. Then

lim
h→0

supl |fl(x+ h) − fl(x)| − supl |Dfl(x) · h|

|h|
= 0,

for a.e. x ∈ R
k, where f = (fl)l∈N.

Proof. The restriction of f to any line satisfies the assumptions of Lemma 3.1;
then for any v ∈ R

k, there exists a subset Av ⊂ R
k of measure zero such that

limt→0+{1
t
supl |fl(x+ tsv) − fl(x)|}, exists, for all s > 0 and x ∈ R

k\Av. Now,
let {vi}i∈N be a sequence of elements of Sk−1 := {z ∈ R

k : |z| = 1} which is
dense in Sk−1. Then, there is a subset A ⊂ R

k of measure zero such that

gsvi
(x) := lim

t→0+

supl |fl(x+ tsvi) − fl(x)|

t
,

exists, for all i ∈ N, s > 0 and x ∈ R
k\A. Notice that gsv(x) = sgv(x). Since f

is M -Lipschitz, for some M > 0, we have
∣

∣|fl(x+ tsv)− fl(x)| − |fl(x+ tsw)−
fl(x)|

∣

∣ ≤ M ts |v − w|, for all l ∈ N; s, t ∈]0,∞[ and x, v, w ∈ R
k. By choosing

v = vi and w = vj, we have

∣

∣

∣

∣

supl |fl(x+ tsvi) − fl(x)|

t
−

supl |fl(x+ tsvj) − fl(x)|

t

∣

∣

∣

∣

≤M s |vi − vj|, (3.7)

for all i, j ∈ N; s, t ∈]0,∞[ and x ∈ R
k\A. Letting t→ 0+, then

|gsvi
(x) − gsvj

(x)| ≤M s |vi − vj|, (3.8)

for all i, j ∈ N, s > 0 and x ∈ R
k\A. On the other hand, for every v ∈ Sk−1,

there exists a subsequence {vik} which converges to v. From (3.8), for any s > 0
and x ∈ R

k\A, the sequence {gsvik
(x)} converges to a real number, say a. Also,

(3.7) implies that limt→0+{1
t
supl |fl(x+ tsv) − fl(x)|}, exists and it is equal to

a = gsv(x), whenever x ∈ R
k\A, v ∈ Sk−1 and s > 0.

Fix ǫ > 0 and x ∈ R
k\A. There exists a finite sequence of elements {vi}i∈N

(or Sk−1), say {wi}1≤i≤N , such that {B(wi, ǫ)}1≤i≤N covers Sk−1. Also, there
exists δ > 0 such that

∣

∣

∣

∣

supl |fl(x+ tswi) − fl(x)|

t
− gswi

(x)

∣

∣

∣

∣

≤ ǫ, (3.9)
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for all 0 < t < δ, 0 ≤ s ≤ 1 and 1 ≤ i ≤ N . Let h ∈ R
k and 0 < |h| < δ. Set

w := h
|h|

and t := |h|. There is 1 ≤ i0 ≤ N such that w ∈ B(wi0 , ǫ). Hence, by

(3.7), (3.8) and 3.9, we get
∣

∣

∣

∣

supl |fl(x+ tsw) − fl(x)|

t
− gsw(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

supl |fl(x+ tsw) − fl(x)|

t
−

supl |fl(x+ tswi0) − fl(x)|

t

∣

∣

∣

∣

+

∣

∣

∣

∣

supl |fl(x+ tswi0) − fl(x)|

t
− gswi0

(x)

∣

∣

∣

∣

+ |gswi0
(x) − gsw(x)|

≤M s |w − wi0 | + ǫ+M s |w − wi0 |

≤ 2M ǫ+ ǫ,

for all w ∈ Sk−1, 0 ≤ s ≤ 1, 0 < |h| < δ and x ∈ R
k\A. By Lemma 3.1, this

implies that

lim
h→0

supl |fl(x+ h) − fl(x)| − supl |Dfl(x) · h|

|h|
= 0,

for all x ∈ R
k\A.

Corollary 3.4. Let f : R
k −→ ℓ∞ be a Lipschitz map and p ≥ 1. Then

lim
ǫ→0

−

∫

B(x,ǫ)

‖f(y) − f(x)‖p∞
ǫp

dy = −

∫

B(0,r)

supl |Dfl(x) · v|
p

rp
dv,

for a.e. x ∈ R
k and all r > 0, where f = (fl)l∈N.

Proof. It is similar to the proof of Corollary 2.3. Notice that the map v 7−→
supl |Dfl(x) ·v|, is not necessarily a linear map, but it is positively homogeneous
of degree one, i.e., supl |Dfl(x) · (ρ v)| = ρ supl |Dfl(x) · v|, for all ρ > 0.

Let (Y, d) be a metric space and let p ≥ 1. Let Lploc(R
k, Y ) denote the

set of all Borel measurable maps f : R
k −→ Y with separable (or essentially

separable) range such that
∫

B
dp(f(y), Q) dy <∞, for all (or some) Q ∈ Y and

all balls B in R
k (see [9, p. 571 ], [2, p. 100] and [7]).

Theorem 3.5. Let (Y, d) be a metric space and let f ∈ L
p
loc(R

k, Y ), for some

p ≥ 1. Suppose that lim supǫ→0 −
∫

B(x,ǫ)
dp(f(y),f(x))

ǫp
dy <∞, for a.e. x ∈ R

k. Then

limǫ→0 −
∫

B(x,ǫ)
dp(f(y),f(x))

ǫp
dy exists, for a.e. x ∈ R

k. In particular, when Y = ℓ∞,

we have

lim
ǫ→0

−

∫

B(x,ǫ)

dp(f(y), f(x))

ǫp
dy = −

∫

B(0,r)

supl |Dfl(x) · v|
p

rp
dv,

for a.e. x ∈ R
k and all r > 0, where f = (fl)l∈N.
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Proof. Since the image of f , say Im(f), is separable (or essentially separable),
there is an isometric embedding from Im(f) into the Banach space ℓ∞ = ℓ∞(N).
So, without loss of generality, we can assume that Y = ℓ∞. On the other hand,
we know that every Lipschitz map from a subset of R

k into ℓ∞ can be extended
to a Lipschitz map whose domain is entire R

k, see [2, Lemma 1.1 (ii)]. Also,
we can easily extend Lemma 2.1 and Corollary 2.3 to maps with range in ℓ∞,
see also [11, Chapter 1]. Now, the rest of proof is similar to the proof of
Corollary 3.4.

4. Sobolev type spaces for maps with values
in a metric space

In this section, we apply the previous section results to the Sobolev type maps
with values into a metric space. We compute the energy norms for the Sobolev
type maps in the sense of Korevaar–Schoen and Reshetnyak. Then, it is shown
that the Sobolev type spaces with definitions of Korevaar–Schoen and Reshet-
nyak are equivalent; this fact is announced in [13] and it is also proved in [7,
Theorem 5.1] with an additional assumption that ∂Ω is smooth, see also [14].
Indeed, we find the best constants in order to compare the energy norms of
the Sobolev type maps by the definitions of Korevaar–Schoen and Reshetnyak.
Also, these computations, let us to modify Reshetnyak’s definition of the energy
norm in such a way that modified energy norm becomes equal (up to a multiple
universal constant) to Korevaar–Schoen’s definition (see Remark 4.5).

Now, we recall the definitions of Korevaar–Schoen and Reshetnyak for the
Sobolev classes maps with values into a metric space. Let (Y, d) be a met-
ric space and let Ω be an open domain (connected and bounded) in the n-
dimensional Euclidean space (or in a Riemannian manifold, see Remark 4.5).
Let u : Ω −→ Y belong to Lp(Ω, Y ), for some p ≥ 1; i.e., u is a Borel measurable
map with separable (or essentially separable) range for which

∫

Ω
dp(u(y), Q)dy <

∞, for all Q ∈ Y (see [9] and [7] for the basic concepts). Denote the set of all
compactly supported continuous functions φ : Ω −→ [0, 1] by Cc(Ω, [0, 1]). For
ǫ > 0, define

Ωǫ :=
{

x ∈ Ω : d(x, ∂Ω) > ǫ
}

Eǫ(φ) :=

∫

Ωǫ

φ(x)

(

−

∫

B(x,ǫ)

dp(u(x), u(y))

ǫp
dy

)

dx,

where φ ∈ Cc(Ω, [0, 1]). We say that u belongs to the Sobolev type (BV when
p = 1) space of Korevaar–Schoen [9], if u ∈ Lp(Ω, Y ) and also

sup
φ∈Cc(Ω,[0,1])

(

lim sup
ǫ→0

Eǫ(φ)
)

<∞.
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When p > 1, it is shown in [9] that there exists a non-negative function g ∈
Lp(Ω) such that

lim
ǫ→0

∫

Ωǫ

φ(x)

(

−

∫

B(x,ǫ)

dp(u(x), u(y))

ǫp
dy

)

dx =

∫

Ω

φ(x) gp(x) dx,

for all φ ∈ Cc(Ω, [0, 1]) and furthermore, the family of measures

(

−

∫

B(x,ǫ)

dp(u(x), u(y))

ǫp
dy

)

dx,

converges weakly to the measure gp(x) dx, as ǫ → 0. We call
∫

Ω
gp(x) dx, the

p-energy norm (energy norm) of u (over Ω).

The map u ∈ Lp(Ω, Y ), for some p ≥ 1, belongs to the Sobolev type space
in the sense of Reshetnyak, if there exists a non-negative function w ∈ Lp(Ω)
such that for any Q ∈ Y , the real-valued function

x 7−→ uQ(x) := d(u(x), Q),

belongs to the (classical) Sobolev space W 1,p(Ω), furthermore,

|DuQ(x)| ≤ w(x), (4.1)

for all Q ∈ Y and a.e. x ∈ Ω, where D denotes the differential operator.
Define the p-energy norm (energy norm) of u (over Ω) by infw

∫

Ω
wp(x) dx,

where the infimum is taken over all functions w as above. One can show that
the above infimum attains by a unique function (up to a set of measure zero).
Let EKSp [u,Ω] and ERp [u,Ω] denote the p-energy norms for the Sobolev map
u : Ω −→ Y in the sense of Korevaar–Schoen and Reshetnyak, respectively.

Theorem 4.1. Let u : R
n −→ ℓ∞ be a Lipschitz map and let p ≥ 1. Then

EKSp [u,Ω] =

∫

Ω

(

−

∫

B(0,1)

sup
i

|Dui(x)·v|
p dv

)

dx, ERp [u,Ω] =

∫

Ω

sup
i

|Dui(x)|
p dx,

where u = {ui}i∈N and Ω is an open domain in R
n. Moreover, there exists a

positive constant cn,p, depending on n and p, such that

cn,p E
R
p [u,Ω] ≤ EKSp [u,Ω] ≤ ERp [u,Ω].

Proof. Suppose that u is M -Lipschitz, for some M > 0. By Corollary 3.4, we
have

lim
ǫ→0

−

∫

B(x,ǫ)

supi |ui(y) − ui(x)|
p

ǫp
dy = −

∫

B(0,1)

sup
i

|Dui(x) · v|
p dv,
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for a.e. x ∈ R
n. Therefore, by Lebesgue’s dominated convergence theorem, we

obtain EKSp [u,Ω] =
∫

Ω

(

−
∫

B(0,1)
supi |Dui(x) · v|

p dv
)

dx.

By [13, p. 579, Theorem 5.1], for any 1-Lipschitz function ζ : ℓ∞ −→ R, we
have |D(ζ ◦ u)(z)| ≤ w(z), for a.e. z ∈ R

n, whenever w satisfies (4.1). Notice
that u has a separable range but ℓ∞ is not a separable space. Suppose that a
sequence of real numbers a = {ai} belongs to ℓ1 with norm less than or equal
to 1, i.e., ‖a‖1 :=

∑

i∈N
|ai| ≤ 1. Define the 1-Lipschitz function

ζa : ℓ∞ −→ R, ζa({xi}) :=
∑

i∈N

aixi.

Notice that ζa is a linear functional over ℓ∞ with norm ‖a‖1 ≤ 1 and |D(ζa ◦
u)(z)| ≤ w(z), for a.e. z ∈ R

n. Hence, since limj→∞

∑∞
i=j |ai| = 0, and

supi∈N
|Dui(z)| ≤M, for a.e. z ∈ R

n , we obtain
∣

∣

∣

∣

∑

i∈N

aiDui(z)

∣

∣

∣

∣

≤ w(z), (4.2)

for a.e. z ∈ R
n and all a ∈ ℓ1 with norm less than or equal to 1. From (4.2),

we get

sup
i∈N

|Dui(z)| ≤ w(z), (4.3)

for a.e. z ∈ R
n.

On the other hand, consider an arbitrary 1-Lipschitz function η : ℓ∞ −→ R.
We show that

|D(η ◦ u)(z)| ≤ sup
i∈N

|Dui(z)|, (4.4)

for a.e. z ∈ R
n. We know that

|(η ◦ u)(y) − (η ◦ u)(x)|

|y − x|
≤

‖u(y) − u(x)‖∞
|y − x|

=
supi |ui(y) − ui(x)|

|y − x|
, (4.5)

for all x, y ∈ R
n and x 6= y. Suppose that the real-valued functions η ◦ u; u1,

u2, . . . are differentiable at point z0 ∈ R
n. There is a unit vector v0 ∈ R

n such
that |D(η ◦ u)(z0)| = D(η ◦ u)(z0) · v0, and then, by (4.5) and Theorem 3.3 (or
Lemma 3.1), we have

|D(η ◦ u)(z0)| = lim
t→0+

η ◦ u(z0 + tv0) − η ◦ u(z0)

t
≤ sup

i∈N

|Dui(z0) · v0|.

By the Cauchy-Schwarz inequality, we get |D(η ◦ u)(z0)| ≤ supi∈N
|Dui(z0)| |v0|

= supi∈N
|Dui(z0)|. This proves (4.4). Therefore, by (4.3) and (4.4), we obtain

ERp [u,Ω] =
∫

Ω
supi |Dui(x)|

p dx.
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Finally, we show that cn,p E
R
p [u,Ω] ≤ EKSp [u,Ω] ≤ ERp [u,Ω], for some positive

constant cn,p which depends on n and p. To do this, for A ∈ R
n\{0}, we define

cn,p := −

∫

B(0,1)

|A · v|p

|A|p
dv, (4.6)

where cn,p is a positive constant which depends on n and p and it does not
depend on A. Then, by the Cauchy-Schwarz inequality, we have

cn,p |A|
p = −

∫

B(0,1)

|A · v|p dv ≤ −

∫

B(0,1)

(|A| |v|)p dv ≤ |A|p,

for all A ∈ R
n. Therefore, we obtain

cn,p sup
i

|Dui(x)|
p ≤ −

∫

B(0,1)

sup
i

|Dui(x) · v|
p dv ≤ sup

i

|Dui(x)|
p,

for a.e. x ∈ R
n. By taking integral with respect to x, we have

cn,p

∫

Ω

sup
i

|Dui(x)|
pdx ≤

∫

Ω

(

−

∫

B(0,1)

sup
i

|Dui(x) · v|
pdv

)

dx ≤

∫

Ω

sup
i

|Dui(x)|
pdx.

This completes the proof of Theorem 4.1.

Next, we extend Theorem 4.1 to the Sobolev type maps instead of Lipschitz
maps; see also Remark 4.3.

Theorem 4.2. Suppose that u ∈ Lp(Ω, ℓ∞), for some p > 1. Then, u belongs
to the Sobolev type space in the sense of Korevaar–Schoen iff u belongs to the
Sobolev type space in the sense of Reshetnyak. Moreover, there exists a positive
constant cn,p, depending on n and p, such that

cn,p E
R
p [u,Ω] ≤ EKSp [u,Ω] ≤ ERp [u,Ω]. (4.7)

Proof. It is clear that if the image of u is included in a line, then the conclusion
of theorem is valid for such a function (in fact, u belongs to the classical Sobolev
space, see [9, Theorem 1.6.2]).

Suppose that u = {ui}i∈N belongs to the Sobolev type space in the sense
of Reshetnyak. Then, there is a non-negative function w ∈ Lp(Ω) such that
w satisfies (4.1). By [13, p. 579, Theorem 5.1], for any 1-Lipschitz function
ζ : ℓ∞ −→ R, we have |D(ζ ◦ u)(x)| ≤ w(x), for a.e. x ∈ Ω. Therefore, we
obtain supi∈N

|Dui(x)| ≤ w(x), for a.e. x ∈ Ω. For m ∈ N, define

πm : ℓ∞ −→ ℓ∞, πm({xi}i∈N) := (x1, x2, . . . , xm, 0, 0, 0, . . . ).

Since ‖πm ◦ u(y) − πm ◦ u(x)‖p∞ ≤
∑m

i=1 |ui(y) − ui(x)|
p, and each ui belongs

to the Sobolev type space in the sense of Korevaar–Schoen (or equivalently the
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classical Sobolev space), we see that πm ◦ u belongs to the Sobolev type space
in the sense of Korevaar–Schoen. Suppose that U is an open subset (ball) in Ω,
by [9], there exist ǫ0 > 0 and non-negative function gm ∈ Lp(Ω) such that

∫

Uǫ

(

−

∫

B(x,ǫ)

‖πm ◦ u(y) − πm ◦ u(x)‖p∞
ǫp

dy

)

dx ≤ (1 + Cǫ)

∫

U

gpm(x) dx, (4.8)

for all 0 < ǫ < ǫ0 and m ∈ N, where C is a constant which depends on the
dimension of domain, furthermore

lim
ǫ→0

∫

Uǫ

(

−

∫

B(x,ǫ)

‖πm ◦ u(y) − πm ◦ u(x)‖p∞
ǫp

dy

)

dx =

∫

U

gpm(x) dx.

Hence, by Corollary 2.8 (i) and Theorem 3.5, we obtain

lim
ǫ→0

−

∫

B(x,ǫ)

‖πm ◦ u(y) − πm ◦ u(x)‖p∞
ǫp

dy ≤ sup
1≤i≤m

|Dui(x)|
p ≤ wp(x), (4.9)

for a.e. x ∈ Ω. From (4.9) and this fact that the measures

(

−

∫

B(x,ǫ)

‖πm ◦ u(y) − πm ◦ u(x)‖p∞
ǫp

dy

)

dx,

converge weakly to the measure gpm(x) dx (as ǫ→ 0), we get
∫

U

gpm(x) dx ≤

∫

U

sup
1≤i≤m

|Dui(x)|
p dx ≤

∫

U

wp(x) dx.

Since ‖πm ◦ u(y)− πm ◦ u(x)‖p∞ ≤ ‖πm+1 ◦ u(y)− πm+1 ◦ u(x)‖
p
∞, for all m ∈ N,

by (4.8), (4.9) and Fatou’s lemma, we have

∫

Ωǫ

(

−

∫

B(x,ǫ)

lim
m→∞

‖πm ◦ u(y) − πm ◦ u(x)‖p∞
ǫp

dy

)

dx ≤ (1 + Cǫ)

∫

Ω

wp(x) dx,

or
∫

Ωǫ

(

−

∫

B(x,ǫ)

‖u(y) − u(x)‖p∞
ǫp

dy

)

dx ≤ (1 + Cǫ)

∫

Ω

wp(x) dx,

for all 0 < ǫ < ǫ0. Then

lim sup
ǫ→0

∫

Ωǫ

(

−

∫

B(x,ǫ)

‖u(y) − u(x)‖p∞
ǫp

dy

)

dx ≤

∫

Ω

wp(x) dx <∞.

This implies that u belongs to the Sobolev type space in the sense of Korevaar–
Schoen and EKSp [u,Ω] ≤ ERp [u,Ω].

On the other hand, suppose that u belongs to the Sobolev type space in
the sense of Korevaar–Schoen, we show that u belongs to the Sobolev type
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space in the sense of Reshetnyak. Consider an arbitrary 1-Lipschitz function
ζ : ℓ∞ −→ R, then

∫

Uǫ

(

−

∫

B(x,ǫ)

|ζ ◦ u(y) − ζ ◦ u(x)|p

ǫp
dy

)

dx ≤

∫

Uǫ

(

−

∫

B(x,ǫ)

‖u(y) − u(x)‖p∞
ǫp

dy

)

dx,

for all open subsets (balls) U ⊂ Ω and ǫ > 0 small enough. Therefore, ζ ◦ u
belongs to the Sobolev type space in the sense of Korevaar–Schoen (or equiv-
alently the classical Sobolev space). Letting ǫ → 0, by Corollary 2.8 (i) and
Fatou’s lemma (see also Proposition 2.6 (i)), we obtain

∫

U

(

−

∫

B(0,1)

|D(ζ ◦ u)(x) · v|p dv

)

dx ≤

∫

U

gp(x) dx,

and then −
∫

B(0,1)
|D(ζ ◦ u)(x) · v|p dv ≤ gp(x), for a.e. x ∈ Ω, where g is defined

by

lim
ǫ→0

∫

Uǫ

(

−

∫

B(x,ǫ)

‖u(y) − u(x)‖p∞
ǫp

dy

)

dx =

∫

U

gp(x) dx.

This implies that cn,p |D(ζ ◦ u)(x)|p ≤ gp(x), for a.e. x ∈ Ω, where the constant
cn,p is defined as in (4.6). So, u belongs to the Sobolev type space in the
sense of Reshetnyak and cn,p E

R
p [u,Ω] ≤ EKSp [u,Ω]. This completes the proof of

Theorem 4.2.

Remark 4.3. Suppose that u ∈ Lp(Ω, ℓ∞), for some p > 1. If u belongs to the
Sobolev type space (in the sense of Korevaar–Schoen or Reshetnyak), then we
can show that

EKSp [u,Ω] =

∫

Ω

(

−

∫

B(0,1)

sup
i

|Dui(x)·v|
p dv

)

dx, ERp [u,Ω] =

∫

Ω

sup
i

|Dui(x)|
p dx.

Compare with Theorem 4.1 and Theorem 5.2. Moreover, we can easily show
(by considering linear maps) that the energy norms EKSp [u,Ω] and ERp [u,Ω] are
not equal (up to a multiple universal constant) and the inequalities in (4.7) are
sharp.

Corollary 4.4. Suppose that (Y, d) is a metric space and Ω is an open domain
in R

n. Let u : Ω −→ Y belong to Lp(Ω, Y ) , for some p > 1. Then, u belongs
to the Sobolev type space in the sense of Korevaar–Schoen iff u belongs to the
Sobolev type space in the sense of Reshetnyak. Also, if u is a Sobolev type map,
then

lim
ǫ→0

∫

Ωǫ

(

−

∫

B(x,ǫ)

dp(u(y), u(x))

ǫp
dy

)

dx,

exists. Moreover, there exists a positive constant cn,p, depending on n and p,
such that cn,p E

R
p [u,Ω] ≤ EKSp [u,Ω] ≤ ERp [u,Ω].
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Proof. Since the image of u, say Im(u), is separable (or essentially separable),
there is an isometric embedding from Im(u) into ℓ∞. Therefore, without loss
of generality, we may assume that Y = ℓ∞. The existence of limit follows from
Theorem 4.2 and [9, Theorem 1.5.1]. Moreover, the rest of assertion follows
from Theorem 4.2.

Remark 4.5. All results of this section are valid, if the domain of maps, instead
of Euclidean space, replaces by a Riemannian domain, i.e., a connected open
subset of an n-dimensional Riemannian manifold with compact closure. Also,
in Reshetnyak’s definition, suppose that the condition |DuQ(x)| ≤ w(x), for all
Q ∈ Y and a.e. x ∈ Ω, replaces by the condition

−

∫

B(0,1)

sup
ζ

|D(ζ ◦ u)(x) · v|p dv ≤ w(x),

for a.e. x ∈ Ω, where supremum is taken over all 1-Lipschitz functions ζ :
ℓ∞ −→ R. Then, we can show that the energy norm, by this definition, is equal
(up to a multiple universal constant) to the energy norm by the definition of
Korevaar–Schoen.

5. Sobolev type spaces for maps whose domain is a
Lipschitz manifold

In this section, we strengthen the main result of Gregori [6] about the Sobolev
type maps. Gregori generalized Korevaar–Schoen’s work [9] to maps whose
domain is a Lipschitz manifold. In [9] and [6], it is shown that the approximate
energy functions, for the Sobolev maps, converges weakly to the energy density.
We improve this result by showing that the (strong) convergence holds (see
Theorem 5.2). In [9], the proof of the weak convergence of the approximate
energy functions is based on the sub-partition estimate (see [9, Lemma 1.3.1]).
Also, Gregori [6] generalized the sub-partition estimate for maps whose domain
is a Lipschitz manifold. Here, in the proof of the (strong) convergence of the
approximate energy functions, we did not use the (generalized) sub-partition
estimate for maps whose domain is a Lipschitz manifold. Indeed, the proof
of the (strong) convergence of the approximate energy functions is based on
an extension of Theorem 3.5 for maps whose domain is a Lipschitz manifold
(and [6, Lemma 2], see also the proof of Theorem 5.2). Moreover, we may
interpret this result as another generalized differentiability property for the
Sobolev type maps.

It is said that a subset X of Euclidean space R
n+k is an n-dimensional

Lipschitz Manifold, if for any x ∈ X, there exists an open neighborhood Ux ⊂ X

of x such that Ux is bi-Lipschitz equivalent to an open ball in R
n, i.e., there
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exist an open ball V in R
n, positive number M and bijection ψ : Ux −→ V such

that
M−1 |z − w| ≤ |ψ(z) − ψ(w)| ≤M |z − w|,

for all z, w ∈ X (ψ is called an M -bi-Lipschitz map). We consider on X, the
induced Euclidean metric (from R

n+k) and n-dimensional Hausdorff measure
H = Hn. We denote the closed ball (in X) of radius r > 0 with center at
x ∈ X by BX(x, r). Similar to the previous section, we can define the average
integral, energy norm and other concepts for maps from a Lipschitz manifold
into a metric space, see also [11].

Lemma 5.1. Let Ω be an open domain in a Lipschitz manifold X and let (Y, d)
be a metric space. Suppose that u ∈ Lp(Ω, Y ) belongs to the Sobolev type space
in the sense of Korevaar–Schoen, for some p ≥ 1. Then

lim
ǫ→0

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y),

exists, for a.e. x ∈ Ω.

Proof. First, we assume that Y = R and also there is an M -bi-Lipschitz map
ψ from an open ball U ⊂ R

n onto Ω (i.e., M−1 |z − w| ≤ |ψ(z) − ψ(w)| ≤
M |z − w|) and u is Lipschitz. Then, v := u ◦ ψ is a Lipschitz function on an
open ball in Euclidean space. Therefore, by the Rademacher theorem, ψ and v
are differentiable a.e. (with respect to the n-dimensional Lebesgue measure).

Suppose that the derivative of ψ is approximately continuous at z0 ∈ U

(see [3, p. 47]) and also v is differentiable at z0. We show that

lim
ǫ→0

−

∫

BX(x0,ǫ)

|u(y) − u(x0)|
p

ǫp
dH(y),

exists, where x0 := ψ(z0) ∈ Ω. Without loss of generality, we may assume that
z0 = 0 ∈ R

n. There exist a linear isometry B : R
n+k −→ R

n+k and an invertible
linear (affine) map A : R

n −→ R
n such that B ◦ Dψ(z0) ◦ A(v) = (v, 0), for

all v ∈ R
n. Then, we have limz→z0

|z−z0|
|ψ◦A(z)−ψ◦A(z0)|

= 1, and furthermore, the

(absolute value of) Jacobian of ψ ◦ A is approximately continuous at z0, with

value 1. Hence limr→0
Hn(BX(x0,r))
vol(B(z0,r))

= 1. Therefore, by the change of variables

formula, z 7−→ ψ ◦ A(z), we have

lim
ǫ→0

−

∫

BX(x0,ǫ)

|u(y) − u(x0)|
p

ǫp
dH(y) = lim

ǫ→0
−

∫

B(z0,ǫ)

|v ◦ A(z) − v ◦ A(z0)|
p

ǫp
dz.

Notice that, since v ◦ A is differentiable at z0, by Corollary 2.3 and Remark
2.4, we know that limǫ→0 −

∫

B(z0,ǫ)
|v◦A(z)−v◦A(z0)|p

ǫp
dz exists. This implies that
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limǫ→0 −
∫

BX(x,ǫ)
dp(u(y),u(x))

ǫp
dH(y) exists, for a.e. x ∈ Ω, whenever u is a Lip-

schitz and real-valued function. For the map u, under the assumptions of
Lemma 5.1, the proof is similar to the proofs of Theorem 3.3, Corollary 3.4
and Theorem 3.5.

Theorem 5.2. Let Ω be an open domain in a Lipschitz manifold X and let
(Y, d) be a metric space. Suppose that u ∈ Lp(Ω, Y ) belongs to the Sobolev type
space in the sense of Korevaar–Schoen, for some p > 1. Then

g(x) := lim
ǫ→0

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

exists, for a.e. x ∈ Ω, and

lim
ǫ→0

∫

Ωǫ

∣

∣

∣

∣

(

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

)

− g(x)

∣

∣

∣

∣

dH(x) = 0.

Proof. By [6, Lemma 2] (it can be proved by Theorem 1.5.1 and Theorem 1.10
in [9]), for any η > 0 there is δ > 0 such that

lim sup
ǫ→0

∫

A

(

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

)

dH(x) ≤ η,

whenever A is a compact (measurable) subset in Ω so that H(A) ≤ δ. On the
other hand, Lemma 5.1 implies that

g(x) := lim
ǫ→0

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

exists, for a.e. x ∈ Ω. Then, by the Egorov theorem, for any δ′ > 0, there exists
measurable set B ⊂ Ω such that H(Ω\B) ≤ δ′ and

−

∫

BX(b,ǫ)

dp(u(y), u(b))

ǫp
dH(y) −→ g(b),

uniformly on b ∈ B, as ǫ → 0. Therefore, for any η > 0 and δ0 > 0, there exist
ǫ0 > 0 and a compact (measurable) subset G in Ω such that H(Ω\G) < δ0 and

∣

∣

∣

∣

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y) − g(x)

∣

∣

∣

∣

≤ η,

for all x ∈ G and 0 < ǫ < ǫ0. Furthermore, for any compact (measurable)
subset F ⊂ (Ω\G), we have

lim sup
ǫ→0

∫

F

(

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

)

dH(x) ≤ η.
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For ǫ small enough, we know that G ⊂ Ωǫ. Then

∫

Ωǫ

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y) dH(x)

=

∫

G

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y) dH(x)

+

∫

Ωǫ\G

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y) dH(x),

for ǫ > 0 small enough. Also, by choosing δ0 small enough, we have that
∫

Ω\G
g(x) dH(x) ≤ η. Finally, we obtain

∫

Ωǫ

∣

∣

∣

∣

(

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

)

− g(x)

∣

∣

∣

∣

dH(x) ≤ ηH(Ω) + 2η,

for ǫ > 0 small enough. Letting η → 0, then the assertion follows (as ǫ→ 0).

Question 5.3. Under the assumptions of Theorem 5.2, for p = 1, is it possible
to prove the existence of the following limit:

lim
ǫ→0

∫

Ωǫ

(

−

∫

BX(x,ǫ)

dp(u(y), u(x))

ǫp
dH(y)

)

dH(x)?

Remark 5.4. We can extend Theorem 4.1, Theorem 4.2 and Corollary 4.4 to
maps whose domain is a Lipschitz manifold.

6. Orlicz spaces and LΦ-differentiability

In this section, we extend the concept of Lp-differentiability to Orlicz’s spaces
context. For the basic concepts of Orlicz’s spaces, see for example [1, Chap-
ter VIII] or [12].

Definition 6.1. Let Φ : [0,∞[−→ [0,∞[ and f : R
k −→ R be (Borel) measur-

able functions. We say that f is LΦ-differentiable at point x ∈ R
k, if there exist

a linear functional Df(x) : R
k −→ R and a positive number a such that

lim
ǫ→0

−

∫

B(x,ǫ)

Φ

(

|f(y) − f(x) −Df(x) · (y − x)|

a ǫ

)

dy = 0.

Theorem 6.2. Let Φ : [0,∞[−→ [0,∞[ be a convex function with the following
properties:

– Φ is an increasing and invertible function,

– lims→0 Φ(s) = Φ(0) = 0.
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Let f : R
k −→ R be a measurable function on R

k, then f is LΦ-differentiable
a.e. iff

lim sup
ǫ→0

−

∫

B(x,ǫ)

Φ

(

|f(y) − f(x)|

ax ǫ

)

dy <∞, (6.1)

for a.e. x ∈ R
k, where ax is a positive number. Moreover, similar to Theo-

rem 2.7, we can replace the condition (6.1) with the following condition:

lim sup
ǫ→0

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

Φ

(

|f(z) − f(w)|

ax ǫ

)

dz dw <∞. (6.2)

Proof. By the convexity of Φ, it is clear that the LΦ-differentiability (a.e.) con-
dition implies (6.1). On the other hand, since Φ is a convex function by the
Jensen inequality, we have

Φ

(

−

∫

B(x,ǫ)

|f(z) − f(x)|

ax ǫ
dz

)

≤ −

∫

B(x,ǫ)

Φ

(

|f(z) − f(x)|

ax ǫ

)

dz,

for a.e. x ∈ R
k, where ax is a positive number which satisfies (6.1). Then, we get

lim supǫ→0 −
∫

B(x,ǫ)
|f(z)−f(x)|

ǫ
dz <∞, for a.e. x ∈ R

k. Therefore, by Theorem 1.2,

we know that f is L1-differentiable a.e.

Let the notations be as in the proof of Lemma 2.1, except the set E is
defined as the following:

E :=

{

x ∈ B(0, T ) : sup
0<r≤R

−

∫

B(x,r)

Φ

(

|f(y) − f(x)|

Ar

)

dy ≤ Φ(M)

}

,

where T , R, M and A are positive numbers. Then, similar to the proof of
Lemma 2.1 (iii), we obtain |f(y) − f(x) − Dg(x) · (y − x)| ≤ |f(y) − g(z′)| +

(1 + 3L) ǫ
1
k δ. Since Φ is a convex and increasing function and Φ(0) = 0, we

have

Φ

(

|f(y)−f(x)−Dg(x) · (y−x)|

2Aδ

)

≤
1

2
Φ

(

|f(y)−g(z′)|

Aδ

)

+
1

2
Φ

(

1+3L

A
ǫ

1
k

)

≤
1

2
ǫ

1
k Φ

(

|f(y)−g(z′)|

Aδ1

)

+
1

2
ǫ

1
k Φ

(

1+3L

A

)

.

Notice that Φ(λt) ≤ λΦ(t) for all 0 ≤ λ ≤ 1 and t ≥ 0. By integrating with
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respect to y , we obtain

−

∫

B(z′,δ1)

Φ

(

|f(y) − f(x) −Dg(x) · (y − x)|

2Aδ

)

dy

≤
ǫ

1
k

2

[

−

∫

B(z′,δ1)

Φ

(

|f(y) − g(z′)|

Aδ1

)

dy + Φ

(

1 + 3L

A

) ]

≤
ǫ

1
k

2

[

Φ(M) + Φ

(

1 + 3L

A

) ]

= λ(ǫ),

where λ is a function such that lims→0 λ(s) = 0. Since we can cover B(x, δ3) by
a minimum number of balls whose centers are in E and their radii are equal to
δ1 (f and g are equal at such points), we get

−

∫

B(x,δ3)

Φ

(

|f(y) − f(x) −Dg(x) · (y − x)|

2Aδ

)

dy ≤ C λ(ǫ),

where C is a constant which depends on k. Then, we have

−

∫

B(x,δ3)

Φ

(

|f(y) − f(x) −Dg(x) · (y − x)|

2(1 + A) δ3

)

dy ≤ C λ(ǫ),

for ǫ small enough (depending on k). Letting ǫ → 0, this implies that f is LΦ-
differentiable at x. Now, the rest of proof is similar to the proof of Theorem 1.2.
Also, similar to Theorem 2.7, we can replace the condition (6.1) with (6.2).

Next, we apply the previous theorem to the Sobolev functions.

Theorem 6.3. Suppose that u ∈ W
1,n
loc (Rn), for an integer number n > 1.

Then, u is LΦ-differentiable a.e., where Φ(t) := exp
(

t
n

n−1

)

− 1. In particular,
u is Lp-differentiable a.e., for all p ≥ 1.

Proof. By the Trudinger inequality (see for example [5, Theorem 7.15]), there
exist positive constants c1 and c2, depending only on n, such that

−

∫

B

Φ

(

|u(y) − uB|

c1 ‖Du‖Ln(B)

)

dy ≤ c2,

for all balls B ⊂ R
n, where uB := −

∫

B
u. Suppose that a point x ∈ R

n satisfies

lim
ǫ→0

(

−

∫

B(x,ǫ)

|Du(y)|n dy

)
1
n

= |Du(x)| <∞. (6.3)

Then, we have limǫ→0
‖Du‖Ln(B(x,ǫ))

ǫ
= ωn |Du(x)|, where ωn := [vol(B(0, 1))]

1
n .
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From the convexity of Φ, we know that

Φ

(

|u(z) − u(w)|

2c1 ‖Du‖Ln(B)

)

≤
1

2

[

Φ

(

|u(z) − uB|

c1 ‖Du‖Ln(B)

)

+ Φ

(

|u(w) − uB|

c1 ‖Du‖Ln(B)

) ]

,

for all z, w ∈ R
n and ball B ⊂ R

n. Then, by choosing B = B(x, ǫ) and taking
integral over B(x, ǫ), we obtain

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

Φ

(

|u(z) − u(w)|

2c1 ‖Du‖Ln(B(x,ǫ))

)

dz dw

≤
1

2

[

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

Φ

(

|u(z) − uB(x,ǫ)|

c1 ‖Du‖Ln(B(x,ǫ))

)

dz dw

+ −

∫

B(x,ǫ)

−

∫

B(x,ǫ)

Φ

(

|u(w) − uB(x,ǫ)|

c1 ‖Du‖Ln(B(x,ǫ))

)

dz dw

]

≤ −

∫

B(x,ǫ)

Φ

(

|u(y) − uB(x,ǫ)|

c1 ‖Du‖Ln(B(x,ǫ))

)

dy

≤ c2.

Therefore, if x ∈ R
n satisfies (6.3), we have

lim sup
ǫ→0

−

∫

B(x,ǫ)

−

∫

B(x,ǫ)

Φ

(

|u(z) − u(w)|

3 c1 ωn max{|Du(x)| , 1} ǫ

)

dz dw ≤ c2.

By Lebesgue’s differentiation theorem, we know that the condition (6.3) holds
for a.e. x ∈ R

n, then the assertion follows from Theorem 6.2.

Remark 6.4. When u ∈ W
1,n
loc (Rn) (for an integer n ≥ 1), by the John-

Nirenberg inequality [5, Theorem 7.15], we can show that u is LΨ-differentiable
a.e., where Ψ(t) := et − 1. Also, we can extend Theorem 6.2 and Theorem 6.3
to maps with values in a metric space (as before).

Question 6.5. Is it possible to extend the conclusions of Corollary 2.8 (ii) and
Theorem 6.3 to the Lp-differentiable functions instead of the Sobolev functions?
With some extra assumptions?
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