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Error Estimates

for the Cardinal Spline Interpolation

Gennadi Vainikko

Abstract. For the Sobolev class W
m,∞
per (R) of 1-periodic functions, an unimprovable

error estimate for the spline interpolants of order m on the uniform grid is known.
In the present paper, this error estimate is extended to the Sobolev class V

m,∞(R)
of (nonperiodic) functions on R having bounded mth derivative. Some further error
estimates are established including the error estimates for derivatives of the spline
interpolant.
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1. Introduction

For a function f ∈ C(R) which is bounded or at most of a polynomial growth
as |x| → ∞, let Qh,mf be the cardinal interpolant [4–6] of f by splines of order
m (or of degree m − 1) with spline knots ih and interpolation knots (i + m

2
)h,

i ∈ Z, h > 0. A result of [2] tells that, for an 1-periodic function f ∈ Wm,∞
per (R)

and h = 1
n

with an even n ∈ N, it holds

‖f − Qh,mf‖∞ ≤ Φm+1π
−mhm‖f (m)‖∞ (1)

where Φm+1 is the Favard constant (see (24) below). This estimate is the best
possible for the Sobolev class Wm,∞

per (R). The main result of the present paper
states that estimate (1) with any real h > 0 holds true also for (non-periodic)
functions f ∈ V m,∞(R), i.e., for any f with bounded mth derivative. Moreover,
among all approximations using the same information as Qh,mf , the spline
interpolation yields the best result for the classes Wm,∞(R) and V m,∞(R).

The paper is organised as follows. Section 2 contains preliminaries: we
recall some properties of the cardinal father B-spline and Euler perfect splines,
and we recall a fundamental result concerning the existence, uniqueness and
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construction of bounded/polynomially growing interpolation splines. Section 3
is central in this paper. We first reprove estimate (1) in the periodic case in
a formulation slightly different from that in [2]; our proof is more simple and
more complete than the original proof but we still use the ideas of [2]. After
that we extend estimate (1) to the general (non-periodic) case. In Section 4 we
discuss the optimality of estimate (1) on the classes V m,∞(R) and Wm,∞(R).
Sections 5–7 are devoted to the error estimates of the spline interpolation in the
case of modestly smooth functions f and to error estimates for the derivatives
of the spline interpolant.

Without proofs, the results of the paper have been announced in conference
work [9]. About error estimates for quasi-interpolants based on (1) see [3].

We use the standard notations N = {1, 2, . . .}, Z = {. . . ,−2,−1, 0, 1, 2, . . .},
R = (−∞,∞); C is the set of complex numbers, Pm is the set of polynomials
of degree ≤m. As usual, C(R) is the space of continuous functions on R, and
Cm(R) is the space of functions on R that have continuous derivatives up to
the order m. By BC(R) we mean the Banach space of bounded continuous
functions f on R equipped with the norm ‖f‖∞ = supx∈R

|f(x)|, and BUC(R)
is the (closed) subspace of BC(R) consisting of bounded uniformly continuous
functions on R. The Sobolev space Wm,∞(R), m ∈ N, consists of f such that
f itself and its derivatives up to the order m are measurable and bounded
in R (actually then f, f ′, . . . , f (m−1) are continuous in R; the derivatives are
understood in the sense of distributions). Finally, the Sobolev space V m,∞(R)
consists of functions f such that f (m) is measurable and bounded in R; then
f, f ′, . . . , f (m−1) are continuous but not necessarily bounded in R. With the
help of the Taylor formula

f(x) =
m−1
∑

l=0

f (l)(0)

l!
xl +

1

(m − 1)!

∫ x

0

(x − t)m−1f (m)(t)dt, x ∈ R, (2)

we observe that for f ∈ V m,∞(R), |x| → ∞, it holds

|f (k)(x)| ≤
1

(m − k)!
‖f (m)‖∞ |x|m−k + O(|x|m−k−1), k = 0, . . . ,m − 1. (3)

Clearly, Wm,∞(R) + Pm ⊂ V m,∞(R); this inclusion is strict. We do not need
norms in Wm,∞(R) and V m,∞(R).

2. Preliminaries

2.1. The father B-spline. The father B-spline Bm of order m in the termi-
nology of [1,7], or of degree m− 1 in the terminology of [2,8,10] can be defined
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by the formula

Bm(x) =
1

(m − 1)!

m
∑

i=0

(−1)i

(

m

i

)

(x − i)m−1
+ , x ∈ R, m ∈ N, (4)

where, as usual, 0! = 1, 00 := limx↓0x
x = 1,

(

m
i

)

= m!
i! (m−i)!

,

(x − i)m−1
+ :=

{

(x − i)m−1, x − i ≥ 0

0, x − i < 0 .

Let us list some propeties of Bm for m ≥ 2:

Bm|[i,i+1] ∈ Pm−1, i ∈ Z, Bm ∈ C(m−2)(R), (5)

i.e., Bm is a spline of defect 1, degree m − 1 on the “cardinal” knot set Z,

B′
m(x) = Bm−1(x) − Bm−1(x − 1), x ∈ R (x 6= 0, 1, 2 in case m = 2) (6)

B(m−1)
m (x) = (−1)i

(

m − 1

i

)

for i < x < i + 1, i = 0, . . . ,m − 1 (7)

and

suppBm = [0,m], Bm(x) > 0 for 0 < x < m,

∫

R

Bm(x)dx = 1 (8)

Bm

(

m
2
− x
)

= Bm

(

m
2

+ x
)

, x ∈ R, Bm

(

m
2

)

= max
x∈R

Bm(x) (9)
∑

j∈Z

Bm(x − j) = 1, x ∈ R. (10)

2.2. Wiener interpolant. In this section we recall some fundamental results
[4–6], [8] concerning the existence, uniqueness and construction of the cardinal
interpolation splines. We accent the relation between the interpolation and the
Wiener theorem about Fourier/Laurent series.

Introduce in R the uniform grid hZ = {ih : i ∈ Z} of the step size h > 0.
Denote by Sh,m, m ∈ N, the space of splines of order m (of degree m − 1)
and defect 1 with the knot set hZ. The dilated-shifted B-splines Bm(h−1x− j),
j ∈ Z, cf. (4), (5), belong to Sh,m, and the same is true for

∑

j∈Z
djBm(h−1x−j)

with arbitrary coefficients dj; this series is locally finite: due to (8),

∑

j∈Z

djBm(h−1x−j) =
i
∑

j=i−m+1

djBm(h−1x−j) for x ∈ [ih, (i+1)h), i ∈ Z. (11)

Given a function f ∈ C(R), let us look for the interpolant

fh,m(x) =
∑

j∈Z

djBm(h−1x − j), x ∈ R, (12)
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determining the coefficients dj by the interpolation conditions

fh

((

k + m
2

)

h
)

= f
((

k + m
2

)

h
)

, k ∈ Z. (13)

This leads to the bi-infinite system of linear equations
∑

j∈Z

bk−j,mdj = fk, k ∈ Z, (14)

where

bk,m = Bm

(

k + m
2

)

, fk = fk,h,m = f
((

k + m
2

)

h
)

, k ∈ Z. (15)

Denote also

µ := int (m−1
2

) =

{

m−2
2

, m even
m−1

2
, m odd.

It follows by (8)–(10) that

bk,m =

{

b−k,m > 0 for |k| ≤ µ

0 for |k| > µ ,

∑

|k|≤µ

bk,m = 1.

Thus (14) is a system with the Toeplitz band matrix Bm = (bk−j,m)k,j∈Z of the
band width 2µ+1 ≤ m. The solution of system (14) exists for any m ∈ N but is
nonunique for m ≥ 3. A reasonable solution of system (14) can be determined
with the help of the Wiener inversion of Bm. The Wiener theorem in the
Laurent series formulation states the following (see [11]): if bk ∈ C, k ∈ Z,
satisfy

∑

k∈Z

|bk| < ∞, b(z) :=
∑

k∈Z

bkz
k 6= 0 for all z ∈ C with |z| = 1, (16)

then also the function a(z) := 1
b(z)

has an expansion a(z) =
∑

k∈Z
akz

k with
∑

k∈Z
|ak| < ∞. The Toeplitz matrix A = (ak−j)k,j∈Z is the (Wiener) inverse to

B = (bk−j)k,j∈Z, namely, BAf = ABf = f for any bounded bisequence f = (fj).

It is possible to find the Wiener inverse Am = (ak−j,m) of Bm = (bk−j,m)
defined in (15), and then (12) with dk =

∑

j∈Z
ak−j,mfj, k ∈ Z, determines an

interpolant that we denote by Qh,mf and call the Wiener interpolant. Namely,
introducing the polynomial Pm ∈ P2µ by

Pm(z) =
∑

|k|≤µ

bk,mzk+µ, (17)

it occurs [8] that Pm has µ simple roots zν,m, ν = 1, . . . , µ, in the interval
(−1, 0), and the remaining µ roots are of the form 1

zν,m
∈ (−∞,−1). Hence for

bm(z) =
∑

k bk,mzk, conditions (16) are satisfied. Moreover, it occurs that

ak,m =

µ
∑

ν=1

zµ−1
ν,m

P ′
m(zν,m)

z|k|ν,m, k ∈ Z, (18)
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and
∑

k∈Z
ak,m = 1,

∑

k∈Z
|ak,m| = (−1)µ

Pm(−1)
, ak,m = (−1)k|ak,m|, k ∈ Z. We see

that ak,m, k ∈ Z, decay exponentially as |k| → ∞ and are of alternating sign.
Thus the cardinal interpolation process is reduced to the finding of the roots of
the (characteristic) polynomial Pm ∈ P2µ defined in (17).

The following fundamental result holds true.

Theorem 2.1 ( [4–6,8]). For f ∈ BC(R), the Wiener interpolant

(Qh,mf)(x) =
∑

k∈Z

(

∑

j∈Z

ak−j,mf((j + m
2
)h)

)

Bm(h−1x − k), x ∈ R, (19)

with ak,m defined in (18) is the only bounded interpolant (12)–(13); Qh,mf is

well defined also for any f ∈ C(R) of at most polynomial growth as |x| → ∞,

and it is the only at most polynomially growing interpolant (12)–(13).

In the vector space of all bisequences (dj)j∈Z, the null space N (Bm) of Bm =
(bk−j,m)k,j∈Z is of dimension 2µ being spanned by the bisequences (zj

ν,m)j∈Z,

(z−j
ν,m)j∈Z, ν = 1, . . . , µ. Thus,

∣

∣d
(0)
j

∣

∣→ ∞ exponentially as j → ∞ or j → −∞

for any nontrivial (d
(0)
j ) ∈ N (Bm).

It holds (Qh,mf)(x) =
∑

j∈Z
f((j + m

2
)h)Fm(h−1x + j), where Fm(x) :=

∑

k∈Z
ak,mBm(x−k), x ∈ R, is the fundamental spline, Fm(j + m

2
) = δj,0, j ∈ Z,

δj,k is the Kronecker symbol. This representation form of Qh,mf implies the
equality

‖Qh,m‖BC(R)→BC(R) = sup
x∈R

∑

j∈Z

|Fm(x + j)| = max
x∈[m

2
, m+1

2
]

∑

j∈Z

|Fm(x + j)|

where we took into account that the function ϕm(x) :=
∑

j∈Z
|Fm(x + j)| is

1-periodic, and due to (9) ϕm

(

m
2
− x
)

= ϕm

(

m
2

+ x
)

, x ∈ R. The numerical
values of qm := ‖Qh,m‖BC(R)→BC(R) and αm :=

∑

k∈Z
|ak,m| for some m are

presented in the following table originating from [3]:

m 3 4 5 6 7 8 9 10 20

qm 1.414 1.549 1.706 1.816 1.916 2.000 2.075 2.142 2.583
αm 2.000 3.000 4.800 7.500 11.80 18.53 29.11 45.73 4182

We can observe that αm+1

αm
→ π

2
= 1.5707963268 . . . as m → ∞; for m = 20

this ratio is 1.570796327. For 4 ≤ m ≤ 20, the computed values of qm fit into
the model qm ≤ e

4
+ 2

π
log m, and possibly qm − ( e

4
+ 2

π
log m) → 0 as m → ∞;

for m = 20 this difference is of order 0.003. It is challenging to confirm these
empiric guesses analytically (or disprove them).
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2.3. Euler perfect splines. A spline E ∈ Sh,m is called perfect if E(m−1)(x) =
(−1)i for h < x < (i + 1)h, i ∈ Z. Elementary claims listed below are often
used in the theory of splines, see [2, 4–6].

For m = 1, the Euler perfect spline Eh,1 ∈ Sh,1 is given by the formula

Eh,1(x) = sign sin(h−1πx) =
4

π

∞
∑

k=0

sin((2k+1)h−1πx)

2k+1
; (20)

it is a piecewise constant 2h-periodic function and
∫ 2h

0
Eh,1(x)dx = 0. For

m ≥ 2, the Euler perfect spline Eh,m ∈ Sh,m is determined recursively as

Eh,m(x) =















∫ x

h
2

Eh,m−1(y)dy, m = 2l

∫ x

0

Eh,m−1(y)dy, m = 2l+1 ;

the lower bounds of integration are chosen so that the 2h-periodicity and the
zero mean value of Eh,m−1 over the period are inherited to Eh,m. Starting
from (20), this recursively implies that, for m ≥ 2,

Eh,m(x)=























4

π

(−1)lhm−1

πm−1

∞
∑

k=0

cos((2k+1)h−1πx)

(2k+1)m
, m = 2l

4

π

(−1)lhm−1

πm−1

∞
∑

k=0

sin((2k+1)h−1πx)

(2k+1)m
, m = 2l+1 .

(21)

In particular, Eh,2 is a continuous piecewise linear function with the knot values
Eh,2(ih) = (−1)i+1 h

2
, i ∈ Z; a consequence used in Section 3 is that

Eh,2(x1) − Eh,2(x2) = (−1)i(x1 − x2), for x1, x2 ∈ (ih, (i + 1)h), i ∈ Z. (22)

By construction, E ′
h,m = Eh,m−1 for m ≥ 2. It follows from (21) that

x = (i + 1
2
)h, i ∈ Z, are the zeroes of Eh,m for even m, and x = ih, i ∈ Z, are

the zeroes of Eh,m for odd m. A unified formulation is that x = (i + m−1
2

)h,
i ∈ Z, are the zeroes of Eh,m and x = (i + m

2
)h, i ∈ Z, are the local extrema of

Eh,m (the zeroes of E ′
h,m = Eh,m−1). There are no other zeroes and extrema of

Eh,m – this can be seen recursively using Rolle’s theorem. It is clear also that
the zeroes of Eh,m are simple. Further,

‖Eh,m‖∞ = Φmπ−(m−1)hm−1, m ∈ N, (23)

where

Φm =
4

π























∞
∑

k=0

1

(2k + 1)m
, m = 2l

∞
∑

k=0

(−1)k

(2k + 1)m
, m = 2l + 1























=
4

π

∞
∑

k=0

(−1)km

(2k + 1)m
, m ∈ N, (24)
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is known as the Favard constant. In particular, Φ1 = 1, Φ2 = π
2
, Φ3 = π2

8
,

Φ4 = π3

24
, and it holds limm→∞ Φm = 4

π
, Φ1 < Φ3 < Φ5 < · · · < 4

π
< · · · < Φ6 <

Φ4 < Φ2.

3. The main result

Due to (3), a function f ∈V m,∞(R) is at most polynomially growing as |x| → ∞,
hence the Wiener interpolant Qh,mf is well defined for it. For f ∈ V m,∞(R), it
holds

|f (m−1)(x1) − f (m−1)(x2)| ≤ ‖f (m)‖∞ |x1 − x2|, x1, x2 ∈ R. (25)

We are ready to prove the main result of the paper.

Theorem 3.1. For f ∈ V m,∞(R), m ∈ N, there hold the pointwise estimate

|f(x) − (Qh,mf)(x)| ≤ ‖f (m)‖∞ |Eh,m+1(x)|, x ∈ R, (26)

and the uniform estimate

‖f − Qh,mf‖∞ ≤ Φm+1π
−mhm‖f (m)‖∞. (27)

For f = Eh,m+1 ∈ Wm,∞(R), inequalities (26) and (27) turn into equalities.

Proof. (i) Proof scheme. First of all we note that the last assertion concerning
the sharpness of estimates (26) and (27) is elementary. Indeed, Eh,m+1 van-
ishes at (i + m

2
)h, i ∈ Z, which are the interpolation points for Qh,m, hence

Qh,mEh,m+1 = 0; further, ‖E(m)
h,m+1‖∞ = ‖Eh,1‖∞ = 1. Thus for f = Eh,m+1

(26) turns into the equality |Eh,m+1(x)| = |Eh,m+1(x)|, whereas (27) turns into
the equality ‖Eh,m+1‖∞ = Φm+1π

−mhm, cf. (23).

Estimate (27) immediately follows from (26) and (23). So it remains to
establish (26) only. For m = 1 and m = 2, usual local estimates of piecewise
constant and piecewise linear interpolant can be presented in the form (26)
remembering that Φ2 = π

2
, Φ3 = π2

8
. So we may assume that m ≥ 3. We

prove (26) during four stages: in (ii) for periodic f ∈ Wm,∞(R), in (iii) for
compactly supported f ∈ Wm,∞(R), in (iv) for f ∈ V m,∞(R) with a special
growth estimate, and in (v) for arbitrary f ∈ V m,∞(R). Technically, the proof
parts (iii)–(v) are based on Lemma 3.2 formulated and proved after the proof
part (ii).

(ii) Periodic case (cf. [2]). Here we prove (26) for f ∈ Wm,∞(R) which
is periodic with a period p = 2nh, n ∈ N, p ∈ R. Then also Qh,mf is p-
periodic, and so is Eh,m+1 (recall that Eh,m+1 has the period 2h). We show
that the violation of (26) for such f involves a contradiction. Let ξ ∈ [0, p) be a
point where (26) is violated: |f(ξ)−(Qh,mf)(ξ)| > ‖f (m)‖∞ |Eh,m+1(ξ)|; clearly
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ξ 6= (i + m
2
)h, i ∈ Z, since f − Qh,mf vanishes at those points. Take θ ∈ R,

|θ| < 1, such that θ(f(ξ)− (Qh,mf)(ξ)) = ‖f (m)‖∞Eh,m+1(ξ), and introduce the
p-periodic function

g = ‖f (m)‖∞Eh,m+1 − θ(f − Qh,mf) ∈ Cm−2(R).

In the period interval [0, p), g has at least 2n + 1 zeroes, namely ξ and 2n
interpolation points (i + m

2
)h, 0 ≤ i + m

2
< 2n. It is easily seen that if a

continuous p-periodic function u has l zeroes in [0, p), then it has at least l
local extreme points in [0, p) (claim 1); of course, those are zeroes of u′ if u is
differentiable. Applying claim 1 recursively to g and its derivatives we conclude
that v := g(m−2) ∈ C(R) has at least 2n+1 (local) extreme points in [0, p). But
next we show that actually v has at most 2n extreme points in [0, p) (claim 2)
and thus we have the desired contradiction. Indeed, for x1, x2 ∈ (ih, (i + 1)h),

v′(x1) − v′(x2) = ‖f (m)‖∞(Eh,2(x1) − Eh,2(x2)) − θ(f (m−1(x1) − f (m−1)(x2))

since (Qh,mf)(m−1)(x) is a constant for x ∈ (ih, (i + 1)h). Due to (22) and (25),
for x1, x2 ∈ (ih, (i + 1)h),

v′(x1) − v′(x2)

{

≥ (1 − |θ|)‖f (m)‖∞(x1 − x2) if i is even

≤ (−1 + |θ|)‖f (m)‖∞(x1 − x2) if i is odd.

We may assume that f is not identically constant since in the case of constant f
(26) holds trivially. Then due to periodicity, ‖f (m)‖∞ > 0, and v′ is in the
interval (ih, (i + 1)h) strictly increasing for even i and strictly decreasing for
odd i. Hence, inside an interval (ih, (i + 1)h), v may have at most one extreme
point. Clearly, v has the following further properties (claim 3):

⋆ if a knot ih, i ∈ Z, is a minimum (respectively, maximum) point of v then
this one of the adjacent intervals ((i− 1)h, ih) and (ih, (i + 1)h) on which
v′ increases (respectively, decreases), is free from extreme points of v;

⋆ for an interval (jh, (j + 1)h), j ∈ Z, on which v′ increases (respectively,
decreases), at least one of the end points jh and (j+1)h is not a minimum
point (respectively, a maximum point) of v.

Denote by E the set of extreme points of v in the period interval [0, p) and
by G the set of intervals (ih, (i + 1)h), i = 0, . . . , 2n − 1. Define a mapping
µ : E → G by the following rules:

⋆ if x ∈ E belongs to an interval (ih, (i + 1)h), then µ(x) = (ih, (i + 1)h);

⋆ if x = ih ∈ E , 1 ≤ i ≤ 2n − 1, and x is a minimum (respectively,
maximum) point of v, then µ(x) is either ((i − 1)h, ih) or (ih, (i + 1)h),
namely, µ(x) is this one of these two candidates-intervals on which v′ is
increasing (respectively, decreasing);



Error Estimates 213

⋆ if 0 ∈ E (by periodicity, then also p = 2nh is an extreme point of v but
not in E), the choice is made by the same rule between the candidates
((2n − 1)h, 2nh) and (0, h).

Due to claim 3, the mapping µ : E → G is injective, i.e., for x, x′ ∈ E ,
x 6= x′, there holds µ(x) 6= µ(x′). Hence, for the cardinalities of sets E and G
we have card(E) ≤ card(G) = 2n. This proves claim 2 and completes the proof
of Theorem 3.1 in the periodic case.

Now we interrupt the proof of Theorem 3.1 in order to establish an auxiliary
result that we need to continue the proof. It concerns the pointwise convergence
of interpolants for functions depending on a parameter.

Lemma 3.2. Suppose that for functions gδ ∈ C(R), δ > 0, we have

gδ(x) → 0 as δ → 0 for every x ∈ R (28)

|gδ(x)| ≤ c(1 + |x|r), x ∈ R, (29)

where c ≥ 0 and r ≥ 0 are independent of δ. Then also

(Qh,mgδ)(x) → 0 as δ → 0 for every x ∈ R. (30)

Proof. Fix an arbitrary x ∈ R and take i ∈ Z such that x ∈ [ih, (i+1)h). Then
(see (19) and (11))

(Qh,mgδ)(x) =
i
∑

k=i−m+1

(

∑

j∈Z

aj,mgδ((k − j + m
2
)h)

)

Bm(h−1x − k)

|(Qh,mgδ)(x)| ≤ max
i−m+1≤k≤i

∑

j∈Z

|aj,m|
∣

∣gδ((k − j + m
2
)h)
∣

∣.

It is sufficient to show that
∑

j∈Z
|aj,m||gδ((k− j + m

2
)h)| → 0 as δ → 0 for fixed

k ∈ Z. Fixing an ε > 0, represent
∑

j∈Z
=
∑

|j|≤N +
∑

|j|>N with N = N(ε, k)

so large that
∑

|j|>N |aj,m|(1 + (|j − k| + m
2
)rhr) ≤ ε; such N exists since aj,m

decays exponentially as |j| → ∞. Using (29) we obtain

∑

|j|>N

|aj,m|
∣

∣gδ((k − j + m
2
)h)
∣

∣ ≤ c
∑

|j|>N

|aj,m|(1 + (|j − k| + m
2
)rhr) ≤ cε.

Due to (28), for sufficiently small δ > 0, we have

∑

|j|≤N

|aj,m|
∣

∣gδ((i − j + m
2
)h)
∣

∣ < ε,
∑

j∈Z

|aj,m|
∣

∣gδ((i − j + m
2
)h)
∣

∣ < (c + 1)ε

that completes the proof of (30).
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Continuation of the proof of Theorem 3.1. (iii) Case of compactly supported f .
Next we prove (26) for functions f ∈ Wm,∞(R) having a compact support.
Assume that f(x) = 0 for x ≥ ρ where ρ > 0. Take a number p = 2nh with
n ∈ N such that p > 2ρ, and introduce the function fp(x) =

∑

k∈Z
f(x + kp)

(for a fixed x, this series contains at most one nonzero term). The function fp

is p-periodic and still fp ∈ Wm,∞(R), ‖f (m)
p ‖∞ = ‖f (m)‖∞. Represent

f − Qh,mf = fp − Qh,mfp + (I − Qh,m)(f − fp).

As proved in (ii), (26) holds true for fp: for any x ∈ R,

|fp(x) − (Qh,mfp)(x)| ≤ ‖f (m)
p ‖∞ |Eh,m+1(x)| = ‖f (m)‖∞ |Eh,m+1(x)|.

To establish (26) for f , it now suffices to show that for any fixed x ∈ R,
((I − Qh,m)(f − fp))(x) → 0 as p → ∞. Clearly, gp(x) := f(x) − fp(x) → 0
as p → ∞ for fixed x ∈ R (gp(x) = 0 for sufficiently large p), so it remains to
observe that by Lemma 3.2 (with δ = 1

p
) also (Qh,mgp)(x) → 0 as p → ∞.

(iv) Case of f ∈ V m,∞(R) of restricted growth. Now we extend estimate
(26) to f ∈ V m,∞(R) satisfying the condition

f (k)(x)

xm−k
→ 0 as |x| → ∞, k = 0, . . . ,m − 1, (31)

which elementarily implies that

δm−k sup
|x|≤1/δ

|f (k)(x)| → 0 as 0 < δ → 0, k = 0, . . . ,m − 1. (32)

Take a “cutting” function e ∈ Cm(R) such that 0 ≤ e(x) ≤ 1 for all x ∈ R,
e(x) = 1 for |x| ≤ 1

2
, e(x) = 0 for |x| ≥ 1. Denote fδ(x) = e(δx)f(x) and

represent

f(x) − (Qh,mf)(x) = fδ(x) − (Qh,mfδ)(x) + ((I − Qh,m)(f − fδ))(x). (33)

Clearly fδ∈Wm,∞(R) and suppfδ⊂ [−1
δ
, 1

δ
]. As proven in (iii), (26) holds for fδ:

|fδ(x) − (Qh,mfδ)(x)| ≤ ‖f (m)
δ ‖∞ |Eh,m+1(x)|, x ∈ R.

Denoting ck = maxx∈R |e(k)(x)|, we have due to (32)

‖f (m)
δ ‖∞ ≤

m
∑

k=0

(

m

k

)

δm−k sup
x∈R

|e(m−k)(δx)‖f (k)(x)|

≤ ‖f (m)‖∞ +
m−1
∑

k=0

(

m

k

)

cm−kδ
m−k sup

|x|≤ 1
δ

|f (k)(x)| → ‖f (m)‖∞ as δ → 0.



Error Estimates 215

Further, gδ(x) := f(x) − fδ(x) = 0 for a fixed x ∈ R and sufficiently small
δ > 0, and by condition (31) |gδ(x)| ≤ c(1 + |x|m), x ∈ R. Due to Lemma 3.2,
(Qh,m(f − fδ))(x) → 0 as δ → 0 for any x ∈ R. With these considerations, (26)
for f follows from (33) as δ → 0.

(v) Case of arbitrary f ∈ V m,∞(R). Starting from the Taylor formula (2),
introduce the approximation

fδ(x) :=
m−1
∑

l=0

f (l)(0)

l!
xl +

1

(m − 1)!

∫ x

0

(x − t)m−1θ(δt)f (m)(t)dt, x ∈ R, δ > 0,

where θ(x) = 1 for |x| ≤ 1 and θ(x) = 0 for |x| > 1. For any δ > 0,

fδ ∈ V m,∞(R) and fδ satisfies (31). Further, ‖f (m)
δ ‖∞ ≤ ‖f (m)‖∞ for δ > 0 and

fδ(x) = f(x) for a fixed x ∈ R if δ > 0 is sufficiently small. With this fδ, we
have the equality (33) in which, due to (iv),

|fδ(x) − (Qh,mfδ)(x)| ≤ ‖f (m)
δ ‖∞ |Eh,m+1(x)| ≤ ‖f (m)‖∞ |Eh,m+1(x)|, x ∈ R.

Clearly, |f(x)| + |fδ(x)| ≤ c(1 + |x|m) for x ∈ R. Using Lemma 3.2 we obtain
that (Qh,m(f −fδ))(x) → 0 as δ → 0, and (26) for f follows from (33) as δ → 0.
The proof of Theorem 3.1 is complete.

Remark 3.3. Using the Banach–Steinhaus theorem and Theorem 3.1, it is
easily seen that ‖f − Qh,mf‖∞ → 0 as h → 0 for any f ∈ BUC(R).

4. Optimality of the spline interpolation

Let us discuss optimality properties of the spline interpolation compared with
other approximation methods that use the same information about a given
function f as the interpolant Qh,mf – the values of f on the uniform grid
Zh,m = {(j + m

2
)h : j ∈ Z}. Such a method can be identified with a mapping

Mh : C(Zh,m) → C(R), where C(Zh,m) is the vector space of grid functions
defined on Zh.

Theorem 4.1. For given γ > 0, we have in accordance to Theorem 3.1

sup
f∈V m,∞(R), ‖f (m)‖∞≤γ

‖f − Qh,mf‖∞ = Φm+1π
−mhmγ,

whereas for any mapping Mh : C(Zh,m) → C(R) (linear or nonlinear, continu-

ous or discontinuous), it holds

sup
f∈W m,∞(R), ‖f (m)‖∞≤γ

‖f − Mh(f |Zh,m
)‖∞ ≥ Φm+1π

−mhmγ. (34)
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Proof. If Mh(0) /∈ BC(R), (34) is trivially fulfilled. So we may assume that
Mh(0) ∈ BC(R). Consider two functions f± = ±γEh,m+1. Clearly, f± ∈

Wm,∞(R), ‖f (m)
± ‖∞ = γ, and since Eh,m+1|Zh

= 0, we obtain (34) by the
following argument:

sup
{

‖f − Mh(f |Zh,m
)‖∞ : f ∈ Wm,∞(R), ‖f (m)‖∞ ≤ γ

}

≥ max
{

‖f+ − Mh(f+|Zh,m
)‖∞, ‖f− − Mh(f−|Zh,m

)‖∞
}

= max
{

‖f+ − Mh(0)‖∞, ‖f− − Mh(0)‖∞
}

≥
1

2

(

‖f+ − Mh(0)‖∞ + ‖f− − Mh(0)‖∞
)

≥
1

2
‖f+ − f−‖∞

and 1
2
‖f+ − f−‖∞ = ‖Eh,m+1‖∞γ = Φm+1π

−mhmγ.

Remark 4.2. For functions with compact supports, similar result as (34) holds
asymptotically as h → 0. Denote by Wm,∞

[0,1] (R) the subspace of Wm,∞(R) con-

sisting of functions f ∈ Wm,∞(R) with supports in [0, 1]. For any mapping
Mh : C(Zh,m) → C(R), it holds

lim inf
h→0

sup
f∈W m,∞

[0,1]
(R), ‖f (m)‖∞≤γ

‖f − Mh(f |Zh,m
)‖∞

Φm+1π−mhmγ
≥ 1.

This follows by a slight modification of the argument in the proof of Theo-
rem 4.1. Namely, instead of f± = ±γEh,m+1, use f± = ±γeEh,m+1 where
e ∈ Cm(R) is supported in (0, 1), 0 ≤ e(x) ≤ 1 for all x ∈ R and e(x) = 1 for 1

3
≤

x ≤ 2
3
. Then for sufficiently small h, it still holds ‖eEh,m+1‖∞ = ‖Eh,m+1‖∞ =

Φm+1π
−mhm, and the Leibniz differentiation rule yields ‖(eEh,m+1)

(m)‖∞ → 1
as h → 0.

Remark 4.3. Let n ∈ N be even and h = 1
n
. Consider the subspace Cper(R) of

C(R) consisting of 1-periodic continuous functions on R, and denoteWm,∞
per (R) =

Cper(R)∩Wm,∞(R); denote by Cper(Zh) the space of 1-periodic (grid) functions
on the grid Zh, i.e., fh((i + m

2
)h) = fh(1 + (i + m

2
)h), i ∈ Z, for fh ∈ Cper(Zh).

Then for any mapping Mh : Cper(Zh) → Cper(R), it holds

sup
f∈W m,∞

per (R), ‖f (m)‖∞≤γ

‖f − Mh(f |Zh
)‖∞ ≥ Φm+1π

−mhmγ.

The proof is same as in the case of Theorem 4.1, we only need to observe
that Eh,m+1 ∈ Wm,∞

per (R) for even n.
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5. Error estimates for derivatives

To derive error estimates for the derivatives of the spline interpolant (Theo-
rem 5.3), we first establish some technical results (Lemma 5.1 and Lemma 5.2).

Lemma 5.1. For f ∈ C(R), m ≥ 2, l = 1, . . . ,m − 1, it holds

(Qh,mf)(l)(x) =
∑

j∈Z

(

∑

k∈Z

aj−k,mh−l∆l
hfk

)

Bm−l(h
−1x − j), x ∈ R, (35)

where ∆l
h = (∆h)

l, ∆hfk := fk − fk−1 = f((k + m
2
)h) − f((k − 1 + m

2
)h) is the

backward difference of the function f , and ak,m are defined in (18).

Proof. With dj =
∑

k∈Z
aj−k,mfk, j ∈ Z, we get due to (6)

(Qh,mf)′(x) =
d

dx

∑

j∈Z

(

∑

k∈Z

aj−k,mfk

)

Bm−1(h
−1x − j)

=
d

dx

∑

j∈Z

djBm(h−1x − j)

= h−1
∑

j∈Z

dj

[

Bm−1(h
−1x − j) − Bm−1(h

−1x − j − 1)
]

= h−1
∑

j∈Z

(dj − dj−1)Bm−1(h
−1x − j)

= h−1
∑

j∈Z

(

∑

k∈Z

(aj−k,m − aj−1−k,m)fk

)

Bm−1(h
−1x − j)

= h−1
∑

j∈Z

(

∑

k∈Z

aj−k,m(fk − fk−1)

)

Bm−1(h
−1x − j)

=
∑

j∈Z

(

∑

k∈Z

aj−k,mh−1∆hfk

)

Bm−1(h
−1x − j).

Repeating the differentiations we obtain (35).

Lemma 5.2. For m ≥ 2, f ∈ V l,∞(R), l = 1, . . . ,m − 1, it holds

‖(Qh,mf)(l)‖∞ ≤ αm ‖f (l)‖∞ (36)

‖(Qh,mf)(l)‖∞ ≤ qm−lαm,l ‖f
(l)‖∞ , (37)

where (cf. (15)) qm−l = ‖Qh,m−l‖BC(R)→BC(R), bj,m−l = Bm−l(j + m−l
2

) and

αm =
∑

k∈Z

|ak,m|, αm,l :=
∑

k∈Z

∣

∣

∣

∣

∣

∑

|j|≤int{(m−l−1)/2}

ak−j,mbj,m−l

∣

∣

∣

∣

∣

< αm . (38)
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Proof. Since |h−l∆l
hfk| ≤ ‖f (l)‖∞, equality (35) implies (36):

‖(Qh,mf)(l)‖∞ ≤ sup
j∈Z

∣

∣

∣

∣

∑

k∈Z

aj−k,mh−l∆l
hfk

∣

∣

∣

∣

≤ sup
j∈Z

∑

k∈Z

|aj−k,m| sup
k∈Z

|h−l∆l
hfk|

= sup
j∈Z

∑

k∈Z

|aj−k,m|‖f
(l)‖∞

≤ αm‖f
(l)‖∞.

According to (35), the spline g := (Qh,mf)(l) ∈ Sh,m−l has the knot values

g
(

(i + m−l
2

)h
)

=
∑

j∈Z

(

∑

k∈Z

aj−k,mh−l∆l
hfk

)

bi−j,m−l

=
∑

k∈Z

(

∑

j∈Z

aj−k,mbi−j,m−l

)

h−l∆l
hfk

=
∑

k∈Z

(

∑

j∈Z

ai−j−k,mbj,m−l

)

h−l∆l
hfk;

we changed the summation variable j 7→j′= i−j and wrote instead of j′ againj.
Thus,

∣

∣g((i + m−l
2

)h)
∣

∣ ≤
∑

k∈Z

∣

∣

∣

∣

∑

j∈Z

ai−j−k,mbj,m−l

∣

∣

∣

∣

‖f (l)‖∞

=
∑

k∈Z

∣

∣

∣

∣

∑

j∈Z

ak−j,mbj,m−l

∣

∣

∣

∣

‖f (l)‖∞

= αm,l‖f
(l)‖∞;

we changed the summation variable k 7→ k′ = i−k, wrote instead of k′ again k,
and we took into account that bj,m−l = 0 for |j| > int(m−l−1

2
). Since Qh,m−lg = g

for g = Qh,m−lf , we arrive at estimate (37):

‖(Qh,mf)(l)‖∞=‖g‖∞=‖Qh,m−lg‖∞≤qm−l sup
i∈Z

|g((i+ m−l
2

)h)|≤qm−lαm,l‖f
(l)‖∞.

Finally, since ak,m are of alternating signs and bj,m−l ≥ 0,
∑

j bj,m−l = 1,
we get the strict inequality occuring in (38): αm,l =

∑

k |
∑

j ak−j,mbj,m−l| <
∑

k

∑

j |ak−j,m|bj,m−l =
∑

j

∑

k |ak−j,m|bj,m−l =
∑

j

∑

k |ak,m|bj,m−l = αm.
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Theorem 5.3. For f ∈ V m,∞(R), m ≥ 2, l = 1, . . . ,m − 1, it holds

‖f (l) − (Qh,mf)(l)‖∞ ≤ Φm−l+1π
−(m−l)hm−l (1 + αm) ‖f (m)‖∞ (39)

‖f (l) − (Qh,mf)(l)‖∞ ≤ Φm−l+1π
−(m−l)hm−l (1 + qm−lαm,l) ‖f

(m)‖∞ (40)

with constants αm and αm,l defined in (38).

Proof. Introduce the operator Ph,m,l := ∂lQh,mKl where ∂l = ( d
dx

)l whereas
Kl : C(R) → C(R) is the integral operator defined by

(Klu)(x) =
1

(l − 1)!

∫ x

0

(x − t)l−1u(t)dt, x ∈ R.

Note that f −Kl∂
lf ∈ Pl−1 (it is the Taylor polynomial of f), hence Qh,m(f −

Kl∂
lf) = f − Kl∂

lf , ∂lQh,m(f − Kl∂
lf) = 0 and

f (l) − (Qh,mf)(l) = f (l) − ∂lQh,mKlf
(l) = (I − Ph,m,l)f

(l).

Further, g ∈ Sh,m−l implies Klg ∈ Sh,m and Ph,m,lg = ∂lQh,mKlg = ∂lKlg = g.
We can continue f (l) − (Qh,mf)(l) = (I − Ph,m,l)(f

(l) − Qh,m−lf
(l)). Estimating

with the help of Theorem 3.1 we obtain

‖f (l) − (Qh,mf)(l)‖∞ ≤ (1 + ‖Ph,m,l‖BC(R)→BC(R))Φm−l+1π
−(m−l)hm−l‖f (m)‖∞.

For g ∈ BC(R), it holds Klg ∈ V l,∞(R), (Klg)(l) = g, and Lemma 3 implies
‖Ph,m,l‖BC(R)→BC(R) ≤ αm and ‖Ph,m,l‖BC(R)→BC(R) ≤ αm,l that completes the
proof of estimates (39) and (40).

Remark 5.4. Using Remark 3.3 we obtain that for f ∈ V l,∞(R) with f (l) ∈
BUC(R), 0 < l < m, it holds ‖f (l) − (Qh,mf)(l)‖∞ → 0 as h → 0.

6. Interpolation of modestly smooth functions

Now we discuss the error of the spline interpolant for less smooth functions
compared with the main result (Theorem 3.1).

Theorem 6.1. For m ≥ 2, f ∈ V l,∞(R), 1 ≤ l ≤ m − 1, it holds

‖f − Qh,mf‖∞ ≤ Φl+1π
−lhl (1 + αm) ‖f (l)‖∞ (41)

‖f − Qh,mf‖∞ ≤ Φl+1π
−lhl (1 + qm−lαm,l) ‖f

(l)‖∞; (42)

for constants αm and αm,l see (38). If, in addition, f (l) ∈ BUC(R), then

‖f − Qh,mf‖∞ = o(hl) as h → 0. (43)
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Proof. Since (Qh,mf)((i + m
2
)h) = f((i + m

2
)h), i ∈ Z, we have

f − Qh,mf = (I − Qh,l)(f − Qh,mf) for even m − l

Sh/2(f − Qh,mf) = (I − Qh,l)Sh/2(f − Qh,mf) for odd m − l ,

where the shift operator Sh/2 is defined by (Sh/2f)(x) = f(x − h
2
). By Theo-

rem 3.1, ‖f −Qh,mf‖∞ ≤ Φl+1π
−lhl(‖f (l)‖∞ + ‖(Qh,mf)(l)‖∞), and Lemma 5.2

completes the proof of estimates (41) and (42).

Assume that f (l) ∈ BUC(R) and estimate again with the help of Theo-
rem 3.1: ‖f −Qh,mf‖∞ ≤ Φl+1π

−lhl‖f (l) − (Qh,mf)(l)‖∞ = o(hl) as asserted in
(43). Here we took into account that by Remark 5.4 ‖f (l) − (Qh,mf)(l)‖∞ → 0
as h → 0.

Theorem 6.2. Assume that f ∈ C(R) is uniformly Hölder continuous on R:

|f(x1) − f(x2)| ≤ cf |x1 − x2|
θ ∀x1, x2 ∈ R (44)

where 0 < θ ≤ 1. Then

‖f − Qh,mf‖∞ ≤ (2−θ + 1
2
αm)cfh

θ. (45)

Proof. We have

f − Qh,mf = (I − Qh,1)(f − Qh,mf) for odd m

Sh/2(f − Qh,mf) = (I − Qh,1)Sh/2(f − Qh,mf) for even m.

For x ∈ [ih, (i + 1)h), i ∈ Z, it holds (Qh,1f)(x) = f((i + 1
2
)h) and due to (44),

|f(x)−(Qh,1f)(x)| = |f(x)−f((i+ 1
2
)h)| ≤ cf (

h
2
)θ, thus ‖f−Qh,1f‖∞ ≤ cf (

h
2
)θ.

Similarly, establishing for g := Qh,mf and for g := Sh/2Qh,mf an estimate

|g(x) − g((i + 1
2
)h)| ≤ cg(

h
2
)θ, x ∈ [ih, (i + 1)h), i ∈ Z, (46)

we have ‖g−Qh,1g‖∞ ≤ cg(
h
2
)θ, and ‖f−Qh,mf‖∞ ≤ (cf +cg)(

h
2
)θ. So it remains

to establish (46). For x ∈ [ih, (i + 1)h), i ∈ Z, it holds |g(x) − g((i + 1
2
)h)| ≤

‖g′‖∞
h
2
. By Lemma 5.1,

g′(x) =
∑

j∈Z

(

∑

k∈Z

aj−k,mh−1∆hfk

)

Bm−1(h
−1x − j), x ∈ R,

that implies ‖g′‖∞ ≤ h−1αm supk∈Z
|∆hfk| ≤ h−1αmcfh

θ. Now (46) with cg =
2θ−1αmcf and (45) follow.
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7. An extension of the main result

Introduce the space V m,∞
h (R), m ≥ 2, of functions g ∈ Cm−2(R) such that the

derivatives g(m−1), g(m) exist on every interval (ih, (i+1)h) and g(m−1)|(ih,(i+1)h) ∈
C((ih, (i + 1)h)), g(m)|(ih,(i+1)h) ∈ L∞((ih, (i + 1)h)), i ∈ Z,

σh,m(g) := sup
i∈Z

sup
ih<x<(i+1)h)

|g(m)(x)| < ∞.

Clearly, V m,∞(R) ⊂ V m,∞
h (R) and ‖f (m)‖∞ = σh,m(f) for f ∈ V m,∞(R).

Lemma 7.1. For m ≥ 2, it holds V m,∞
h (R) = V m,∞(R) + Sh,m, i.e., every

g ∈ V m,∞
h (R) has a representation

g = f + gh, f ∈ V m,∞(R), gh ∈ Sh,m. (47)

In particular, (47) holds with

f(x) =
1

(m − 1)!

∫ x

0

(x − t)m−1Gm(t)dt, x ∈ R, (48)

where Gm ∈ L∞(R) is defined by Gm(x) = g(m)(x) for x ∈ (ih, (i + 1)h), i ∈ Z

(and other f in (47) differ from (48) by an additive polynomial of degree m−1).

Proof. Let g ∈ V m,∞
h (R) and let f be defined by (48). Then f (m) = Gm ∈

L∞(R), hence f ∈ V m,∞(R) and f ′, . . . , f (m−1) are continuous in R. Together
with g, also gh := g−f ∈ Cm−2(R). Further, since g(m−1)|(ih,(i+1)h) ∈ C((ih, (i+
1)h)), g(m)|(ih,(i+1)h) = Gm ∈ L∞((ih, (i + 1)h)), we have

g
(m−1)
h (x) = g(m−1)(x) − f (m−1)(x)

= g(m−1)(i + 1
2
)h) +

∫ x

(i+ 1
2
)h

Gm(t)dt −

∫ x

0

Gm(t)dt

= g(m−1)(i + 1
2
)h) −

∫ (i+ 1
2
)h

0

Gm(t)dt, x ∈ (ih, (i + 1)h), i ∈ Z.

Thus g
(m−1)
h (x) is constant on the intervals (ih, (i+1)h), i ∈ Z, i.e., gh|(ih,(i+1)h) ∈

Pm−1, i ∈ Z, and gh ∈ Sh,m.

Theorem 7.2. Let m ≥ 2. Assume that g ∈ V m,∞
h (R) satisfies the inequality

|g(x)| ≤ c(1 + |x|r), x ∈ R, (49)

where r ≥ 0 and c ≥ 0. Then

|g(x) − (Qh,mg)(x)| ≤ σh,m(g) |Eh,m+1(x)|, x ∈ R (50)

‖g − Qh,mg‖∞ ≤ Φm+1π
−mhmσh,m(g). (51)
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Proof. Let f ∈ V m,∞(R) and gh ∈ Sh,m be defined by (47), (48). Then
|f(x)| ≤ 1

m!
‖Gm‖∞|x|m, x ∈ R, that together with (49) implies |gh(x)| ≤

c′(1 + |x|max{m,r}), x ∈ R. Hence Qh,mf , Qh,mg and Qh,mgh are well defined,
and Qh,mgh = gh. Equality (47) yields (I−Qh,m)g = (I−Qh,m)f . According to
Theorem 3.1, (I − Qh,m)f is estimated by (26), (27) which take the form (50),
(51) since ‖f (m)‖∞ = ‖Gm‖∞ = σh,m(g).

In the case of 1-periodic f and h = 1
n

with an even n ∈ N, Theorem 7.2 is
equivalent to a result of [2].
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