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Asymptotic Behavior of Approximate Solutions

to Evolution Equations in Banach Spaces

Sergiu Aizicovici, Simeon Reich and Alexander J. Zaslavski

Abstract. We study evolution equations in Banach spaces governed by a class of
mappings associated with continuous descent methods for the minimization of convex
functions. In our previous work we showed that for most of these mappings (in the
sense of Baire category) the corresponding solutions converged. In the present paper
we show that this remains true even for approximate solutions.
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1. Introduction

Discrete and continuous descent methods are two important topics in optimiza-
tion theory and in the study of dynamical systems. See, for example, [1–6,8–13].
Given a continuous convex function f on a Banach space X, we associate
with f a complete metric space, say A, of vector fields V : X → X such
that f 0(x, V x) ≤ 0 for all x ∈ X. Here f 0(x, u) is the right-hand derivative
of f at x in the direction of u ∈ X (see (1) below). To each such vector field
there correspond two gradient-like iterative processes. In the papers [10, 11],
it is shown that for most of these vector fields, both iterative processes gen-
erate sequences {xn}

∞
n=1

such that the sequences {f(xn)}∞n=1
tend to inf(f) as

n → ∞. Here by “most” we mean an everywhere dense Gδ subset of the space
of vector fields A (cf., for example, [7, 10, 14]). In the paper [2], we studied
the convergence of the trajectories of an analogous continuous dynamical sys-
tem governed by such vector fields to the point where the function f attains
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its infimum. The first attempt to examine such continuous descent methods
was made in [13]. However, it is assumed there that the convex function f is
Lipschitz on all bounded subsets of X. No such assumption was made in [2]. In
the more recent paper [3], we show that convergent continuous descent methods
are stable under small perturbations (see Theorem 1.3 below). We remark in
passing that continuous descent methods for the minimization of Lipschitz (not
necessarily convex) functions are studied in [1].

It should be mentioned that in [3] we obtain stability results for small
perturbations such that the perturbed vector fields still belong to the space A.
This implies that the function f decreases along all the trajectories of the corre-
sponding dynamical system. In the present paper we improve upon the stability
results of [3] by allowing any small perturbations (see Theorem 1.4 below).

More precisely, let (X, ‖ · ‖) be a real Banach space and let f : X → R1 be
a convex continuous function which satisfies the following conditions:

C(i) lim‖x‖→∞ f(x) = ∞;

C(ii) there is x̄ ∈ X such that f(x̄) ≤ f(x) for all x ∈ X;

C(iii) if {xn}
∞
n=1

⊂ X and limn→∞ f(xn) = f(x̄), then limn→∞ ‖xn − x̄‖ = 0.

By C(iii), the point x̄, where the minimum of f is attained, is unique. For each
x ∈ X, let

f 0(x, u) = lim
t→0+

f(x + tu) − f(x)

t
, u ∈ X. (1)

Let (X∗, ‖ · ‖∗) be the dual space of (X, ‖ · ‖). For each x ∈ X and r > 0, set

B(x, r) = {z ∈ X : ‖z − x‖ ≤ r} and B(r) = B(0, r). (2)

For each mapping A : X → X and each r > 0, put

Lip(A, r) = sup

{

‖Ax − Ay‖

‖x − y‖
: x, y ∈ B(r) and x 6= y

}

. (3)

Denote by Al the set of all mappings V : X → X such that Lip(V, r) < ∞
for all r > 0 (this means that the restriction of V to any bounded subset of X

is Lipschitz) and f 0(x, V x) ≤ 0 for all x ∈ X. For the set Al we consider the
uniformity determined by the base

Es(n, ǫ) =

{

(V1, V2) ∈ Al ×Al :
Lip(V1 − V2, n) ≤ ǫ and

‖V1x − V2x‖ ≤ ǫ ∀x ∈ B(n)

}

. (4)

Clearly, this uniform space Al is metrizable and complete. The topology induced
by this uniformity in Al will be called the strong topology. We also equip the
space Al with the uniformity determined by the base

Ew(n, ǫ) =
{

(V1, V2) ∈ Al ×Al : ‖V1x − V2x‖ ≤ ǫ ∀x ∈ B(n)
}

, (5)

where n, ǫ > 0. The topology induced by this uniformity will be called the weak
topology.
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The following existence result was proved in Section 3 of [2].

Proposition 1.1. Let x0 ∈ X and V ∈ Al. Then there exists a unique contin-
uously differentiable mapping x : [0,∞) → X such that

x′(t) = V x(t), t ∈ [0,∞), x(0) = x0.

We now recall the main result of [2].

Theorem 1.2. There exists a set F ⊂ Al which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) subsets of
Al such that for each V ∈ F the following property holds:

For each ǫ > 0 and each n > 0, there exist Tǫ,n > 0 and a neighborhood U
of V in Al with the weak topology such that for each W ∈ U and each differen-
tiable mapping y : [0,∞) → X satisfying

|f(y(0))| ≤ n and y′(t) = Wy(t) for all t ≥ 0,

the inequality ‖y(t) − x̄‖| ≤ ǫ holds for all t ≥ Tǫ,n.

Denote by F∗ the set of all V ∈ Al which have the following property:

(P1) For each ǫ > 0 and each n > 0, there exists Tǫ,n > 0 such that for
each differentiable mapping y : [0,∞) → X satisfying |f(y(0))| ≤ n and
y′(t) = V y(t) for all t ≥ 0, the inequality ‖y(t) − x̄‖ ≤ ǫ holds for some
t ∈ [0, Tǫ,n].

By Theorem 1.2, F∗ contains a subset which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of Al.
Denote by A the set of all mappings V : X → X which are bounded on bounded
subsets of X and satisfy f 0(x, V x) ≤ 0 for all x ∈ X. Clearly, Al ⊂ A. For the
set A we consider the uniformity determined by the base

Gw(n, ǫ) =
{

(V1, V2) ∈ A×A : ‖V1x − V2x‖ ≤ ǫ ∀x ∈ B(n)
}

,

where n, ǫ > 0. Clearly, the space A with this uniformity is metrizable. In [3]
we established the following result.

Theorem 1.3. Let V ∈ F∗ and n, ǫ > 0. Then there exist Tǫ,n > 0 and a
neighborhood U of V in A such that for each W ∈ U , each T ≥ Tǫ,n and each
x ∈ W 1,1(0, T ; X) satisfying

|f(x(0))| ≤ n, x′(t) = Wx(t), t ∈ [0, T ] (a.e.),

the inequality ‖x(t) − x̄‖ ≤ ǫ holds for all t ∈ [Tǫ,n, T ].

The following theorem is the main result of the present paper.
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Theorem 1.4. Let V ∈ F∗ and n, ǫ > 0. Then there exist δ > 0 and τ > 0
such that for each T ≥ τ and each x ∈ W 1,1(0, T ; X) satisfying

|f(x(0))| ≤ n, ‖x′(t) − V x(t)‖ ≤ δ, t ∈ [0, T ] a.e.,

the inequality ‖x(t) − x̄‖ ≤ ǫ holds for all t ∈ [τ, T ].

Our paper is organized as follows. An auxiliary result, Proposition 2.1, is
presented in Section 2. Section 3 contains a basic lemma. Our main result,
Theorem 1.4, is proved in Section 4.

2. An auxiliary result

Let x ∈ W 1,1(0, T ; X), i.e., x(t) = x0 +
∫ t

0
u(s)ds, t ∈ [0, T ], where T > 0,

x0 ∈ X and u ∈ L1(0; T ; X). Then x : [0, T ] → X is absolutely continuous and
x′(t) = u(t) for a.e. t ∈ [0, T ].

Recall that the function f : X → R1 is assumed to be convex and continu-
ous, and therefore it is, in fact, locally Lipschitz. It follows that its restriction
to the set {x(t) : t ∈ [0, T ]} is Lipschitz. Indeed, since this set is compact,
the restriction of f to it is Lipschitz. Hence the function (f ◦ x)(t) := f(x(t)),
t ∈ [0, T ], is absolutely continuous. It follows that for almost every t ∈ [0, T ],
both the derivatives x′(t) and (f ◦ x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t + h) − x(t)]

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t + h)) − f(x(t))].

We now recall Proposition 3.1 in [13].

Proposition 2.1. Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f ◦ x)′(t) exist. Then

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t) + hx′(t)) − f(x(t))].

3. A basic lemma

The following lemma plays a key role in the proof of Theorem 1.4.

Lemma 3.1. Let V ∈ Al and let n, ǫ, l be positive numbers. Then there exists
δ > 0 such that for each continuously differentiable mapping y : [0,∞) → X

and each x ∈ W 1,1(0, l; X) satisfying

|f(y(0))| ≤ n (6)

y′(t) = V y(t), t ∈ [0,∞), (7)
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and

y(0) = x(0), ‖x′(t) − V x(t)‖ ≤ δ, a.e. on [0, l], (8)

the following inequality holds:

‖x(t) − y(t)‖ ≤ ǫ for all t ∈ [0, l]. (9)

Proof. We may assume that ǫ < 1

2
. By C(i), there is n1 > n such that

if z ∈ X, f(z) ≤ n + 2, then ‖z‖ ≤ n1. (10)

Since V ∈ Al, there exists a constant L > 1 such that

‖V z1 − V z2‖ ≤ L‖z1 − z2‖ for all z1, z2 ∈ B(n1 + 1). (11)

Choose a positive number δ such that

δ(l + 1)eLl <
ǫ

2
. (12)

Assume that a continuously differentiable mapping y : [0,∞) → X satisfies
(6), (7), and that x ∈ W 1,1(0, l; X) satisfies (8). By Proposition 2.1, the inclu-
sion V ∈ Al and (7), the function f(y(·)) is decreasing on [0,∞). Therefore in
view of (6),

f(y(t)) ≤ f(y(0)) ≤ n for all t ∈ [0,∞). (13)

When combined with (10), inequality (13) implies that

‖y(t)‖ ≤ n1 for all t ∈ [0,∞). (14)

Set

Ω = {s ∈ [0, l] : ‖x(t)‖ ≤ n1 + 1 for all t ∈ [0, s]}. (15)

It follows from (8) and (14) that ‖x(0)‖ = ‖y(0‖ ≤ n1. We conclude that Ω 6= ∅.
Set

τ = sup Ω. (16)

It is easy to see that τ ≤ l. Since the function ‖x(·)‖ is continuous, it follows
from (15) and (16) that τ ∈ Ω. Hence

‖x(t)‖ ≤ n1 + 1 for all t ∈ [0, τ ]. (17)
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Let s ∈ [0, τ ]. It follows from (7) and (8) that

‖x(s) − y(s)‖ =

∥

∥

∥

∥

x(0) +

∫ s

0

x′(t) dt − (y(0) +

∫ s

0

y′(t) dt)

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ s

0

(x′(t) − y′(t)) dt

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ s

0

(x′(t) − V y(t)) dt

∥

∥

∥

∥

≤

∫ s

0

‖x′(t) − V y(t)‖ dt

≤

∫ s

0

‖x′(t) − V x(t)‖ dt +

∫ s

0

‖V x(t) − V y(t)‖ dt

≤ δs +

∫ s

0

‖V x(t) − V y(t)‖ dt,

so that

‖x(s) − y(s)‖ ≤ δs +

∫ s

0

‖V x(t) − V y(t)‖ dt. (18)

By (17), (14) and (11),
∫ s

0
‖V x(t) − V y(t)‖ dt ≤

∫ s

0
L‖x(t) − y(t)‖ dt. When

combined with (18), this inequality implies that

‖x(s) − y(s)‖ ≤ δs + L

∫ s

0

‖x(t) − y(t)‖ dt ≤ δl + L

∫ s

0

‖x(t) − y(t)‖ dt.

Since this inequality holds for all s ∈ [0, τ ], it follows from the Gronwall inequal-
ity that for any s ∈ [0, τ ], ‖x(s) − y(s)‖ ≤ δl exp(

∫ s

0
Ldt) = δl exp(Ls) ≤ δleLl.

Combined with (12), this implies that

‖x(s) − y(s)‖ <
ǫ

2
for all s ∈ [0, τ ]. (19)

Since ǫ < 1

2
, it follows from (19) and (14) that ‖x(τ)‖ < ‖y(τ)‖+ 1

2
≤ n1 + 1

2
. If

τ < l, then there is τ1 ∈ (τ, l) such that ‖x(t)‖ ≤ n1 +1 for all t ∈ [τ, τ1] whence
τ1 ∈ Ω, a contradiction. Therefore τ = l and by (19), ‖x(s) − y(s)‖ < ǫ

2
for all

s ∈ [0, l]. Thus (9) holds and Lemma 3.1 is proved.

4. Proof of Theorem 1.4

There is r0 > 0 such that

|f(z) − f(x̄)| < 1 for all z ∈ X satisfying ‖z − x̄‖ ≤ r0. (20)

We may assume without loss of generality that

n > |f(x̄)| + 4 and ǫ <
r0

4
. (21)

By Theorem 1.3, there exists T̄ > 0 such that the following property holds:
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(P2) For each continuously differentiable mapping y : [0,∞) → X satisfying
|f(y(0))|≤n, y′(t)=V y(t) for all t ∈ [0,∞), the inequality ‖y(t)−x̄‖ ≤ ǫ

4

holds for all t ∈ [T̄ ,∞).

By Lemma 3.1, there exists δ > 0 such that the following property holds:

(P3) For each continuously differentiable mapping y : [0,∞) → X satisfying
|f(y(0))| ≤ n, y′(t) = V y(t), t ∈ [0,∞), each s ∈ {2T̄ , 8T̄}, and each
x ∈ W 1,1(0, s; X) satisfying y(0) = x(0), ‖x′(t) − V x(t)‖ ≤ δ, a.e. on
[0, s], the inequality ‖x(t) − y(t)‖ ≤ ǫ

4
holds for all t ∈ [0, s].

Now assume that T ≥ 8T̄ , and that x ∈ W 1,1(0, T ; X) satisfies

|f(x(0))| ≤ n (22)

and
‖x′(t) − V x(t)‖ ≤ δ, a.e. on [0, T ]. (23)

By Proposition 1.1, there is a continuously differentiable mapping y : [0,∞) →
X such that

y(0) = x(0), y′(t) = V y(t), t ∈ [0,∞). (24)

By (P3) (with s = 8T̄ ) and (22)–(24),

‖x(t) − y(t)‖ ≤
ǫ

4
, t ∈ [0, 8T̄ ]. (25)

By (P2), (22) and (24),

‖y(t) − x̄‖ ≤
ǫ

4
, t ∈ [T̄ ,∞). (26)

Inequalities (25) and (26) imply that

‖x(t) − x̄‖ ≤
ǫ

2
, t ∈ [T̄ , 8T̄ ]. (27)

We will now show that

‖x(t) − x̄‖ ≤ ǫ for all t ∈ [T̄ , T ]. (28)

Assume the contrary. Then there is t ∈ [T̄ , T ] such that

‖x(t) − x̄‖ > ǫ. (29)

In view of (27),
t > 8T̄ . (30)

By (27), (29) and (30), there is a number s such that s ∈ (8T̄ , T ), ‖x(s)−x̄‖ = ǫ

and
‖x(t) − x̄‖ < ǫ for all t ∈ [T̄ , s). (31)
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Define
x1(t) = x(t + s − 2T̄ ), t ∈ [0, 2T̄ ]. (32)

By Proposition 1.1, there exists a continuously differentiable mapping y1 :
[0,∞) → X such that

y1(0) = x1(0), y′
1
(t) = V y1(t), t ∈ [0,∞). (33)

In view of (31),
s − 2T̄ > 6T̄ . (34)

By (32), (34), (31) and (21), ‖x1(0)− x̄‖ = ‖x(s− 2T̄ )− x̄‖ < ǫ < r0

4
. Together

with (20) and (21), this implies that

|f(x1(0)) − f(x̄)| < 1 and |f(x1(0))| < |f(x̄)| + 1 < n. (35)

By (P2), (35) and (33),

‖y1(t) − x̄‖ ≤
ǫ

4
for all t ≥ T̄ . (36)

In view of (32) and (23), for a.e. t ∈ [0, 2T̄ ], x′
1
(t) = x′(t + s− 2T̄ ), V x′(t + s−

2T̄ ) = V x1(t), and
‖x1(t) − V x1(t)‖ ≤ δ. (37)

By (37), (33), (35), (32) and (P3) (with s = 2T̄ ),

‖x1(t) − y1(t)‖ ≤
ǫ

4
, t ∈ [0, 2T̄ ]. (38)

By (32), (38) and (36),

‖x(s) − x̄‖ = ‖x1(2T̄ ) − x̄‖ ≤ ‖x1(2T̄ ) − y1(2T̄ )‖ + ‖y1(2T̄ ) − x̄‖ ≤
ǫ

2
.

This contradicts (31). The contradiction we have reached proves (28). Hence
the conclusion of Theorem 1.4 holds with τ = T̄ .
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