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On the Mathematical Analysis and

Numerical Approximation of a

System of Nonlinear Parabolic PDEs

J. Kačur, B. Malengier and R. Van Keer

Abstract. In this paper we consider a boundary value problem for a system of 2
nonlinear parabolic PDEs e.g. arising in the context of flow and transport in porous
media. The flow model is based on tho nonlinear Richard’s equation problem and
is combined with the transport equation through saturation and Darcy’s velocity
(discharge) terms. The convective terms are approximated by means of the method
of characteristics initiated by P. Pironneau [Num. Math. 38 (1982), 871–885] and
R. Douglas and T. F. Russel [SIAM J. Num. Anal. 19 (1982), 309–332]. The nonlinear
terms in Richard’s equation are approximated by means of a relaxation scheme applied
by W. Jäger and J. Kačur [RAIRO Model. Math. Anal. Num. 29 (1995), 605–627] and
J. Kačur [IMA J. Num. Anal. 19 (1999), 119–154; SIAM J. Num. Anal. 39 (1999),
290–316]. The convergence of the approximation method is proved.

Keywords. Relaxation method, method of characteristics, contaminant transport,
convection-diffusion with adsorption

Mathematics Subject Classification (2000). 65M25,65M12

1. Introduction

1.1. The mathematical model. In this paper we deal with the mathematical
analysis and with a new numerical approximation scheme of a coupled system
of nonlinear parabolic PDEs for a couple of space and time dependent functions
[u,w], viz

∂tb(u) − div(F̄ (x, u) + Ā(x)∇u) = f(t, x) (1.1)

b(u)∂tw + v̄(u,∇u).∇w − div(D(u,∇u)∇w) = G(t, x, w), (1.2)

in (t, x) ∈ I × Ω ≡ QT , I = (0, T ), T <∞,
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along with the boundary conditions

u = uD on I × ∂Ω (1.3)

w = wD on I × Γ1, −D(u,∇u)∇w · ν̄ = 0 on I × Γ2, (1.4)

(ν̄ is the unit outward normal vector to ∂Ω) and along with the initial conditions

u = u0 on {0} × Ω , w = w0 on {0} × Ω. (1.5)

Here, Ω ⊂ R
3 is a bounded domain with Lipschitz continuous boundary ∂Ω,

Γ1 and Γ2 are open parts of ∂Ω with Γ1 ∩ Γ2 = ∅ and meas Γ1 + meas Γ2 =
meas ∂Ω. We assume that the scalar function b is positive and satisfies 0 <

δ ≤ b′(s) ≤ M < ∞ for some M > δ > 0, for all s ∈ R. Furthermore,
we assume that D ≡ D(u,∇u) is a symmetric positive definite matrix with
‖D(η, ξ)‖ ≤ C(1 + |η|+ |ξ|), for all η ∈ R, for all ξ ∈ R

3. Moreover, we assume
that the vector functions v̄ and F̄ in R

3 obey |v̄(η, ξ)| ≤ C(1 + |η| + |ξ|), for
all η ∈ R, for all ξ ∈ R

3 and |∂sF̄ (x, s)| ≤ C, for all x ∈ Ω and for all s ∈ R.
Furthermore, we let |G(t, x, s)| ≤ C(1 + |s|) for all t ∈ I, for all x ∈ Ω and for
all s ∈ R. Here C is a generic constant. Next, the matrix A(x) ∈ R

3×3 is only
space dependent. By means of uD and wD we prescribe the Dirichlet boundary
conditions and we assume that these functions are defined on QT .

1.2. A motivating physical example. The mathematical model (1.1)–(1.5)
arises e.g. in the modeling of contaminant transport in porous media with
unsaturated-saturated flow. In the terminology used further we will stick to
this physical context throughout the paper. The flow in an unsaturated porous
media Ω is governed by Richard’s equation – see [6, 12,20] etc.:

∂tθ = div(k(h)Ā(x)∇(h+ Z)), x = (X,Y, Z), (1.6)

where θ is the volumetric water content, h is the pressure head, k(h) is the
hydraulic permeability, Ā(x) is the permeability in saturated porous media and
the gravitation is in the direction of the Z-axis. We can use the Van Genuchten–
Mualem model for the retention and permeability curves:

θ = θ(h) = θr +
θs − θr

(1 + (αh)n)m

k̃(S) = S
1

2

(
1 −

(
1 − S

1

m

)m
)2

, S =
θ − θr

θs − θr

,

where S is the effective saturation and k(h) = k̃(θ(h)) for h < 0, k(h) = 1 for
h ≥ 0 . Here, 0 < θr, θs < 1, 1 < n, m = 1 − 1

n
, α < 0 are so called soil

parameters. The flow in the saturated region h ≥ 0 is governed by Darcy’s law
– see [6]:

Se∂th− div(Ā(x)∇(h+ Z)) = 0,
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where Se is the specific (elastic) storativity coefficient and θ = Seh . Thus,
we can extend (1.6) from the unsaturated to the saturated zone. The Van
Genuchten model reflects two fronts (free boundaries) of degeneracy. The first
front occurs at the interface between dry (S = 0) and wet (S > 0) zones. The
second front occurs at the boundary between saturated (h ≥ 0) and unsaturated
(−∞ < h < 0) zones.

Using Kirchoff’s transformation we can transfer all nonlinearities to the
parabolic term θ in (1.6). We introduce the new unknown u and the function

b(u) by u := β(h) =
∫ h

0
k(s)ds, b(u) := θ(β−1(u)). Then, we can rewrite (1.6)

into the form
∂tb(u) − div(Ā(x)∇u) − divK̄(x, b(u)) = 0, (1.7)

where K̄(x, b(u)) = Ā(x)k̃(b(u)).ēZ , ēZ being the unit vector in direction Z.
The unknown u varies in (u⋆, 0) with u⋆ > −∞. The same transformation
can be used for h > 0. We obtain u = h, b(u) = Seu. Then, (1.7) is of
the form (1.1). We can verify that |∂sK̄(x, b(s))| ≤ C for n ≥ 2 (in Van
Genuchten’s model) and b′(u⋆) = ∞, b′(0) = 0 so that b is not globally Lipschitz
continuous. If the data’s (initial wetness, boundary conditions) guarantee that
h ≥ h0 > −∞, i.e., u ≥ u⋆ + ε for some ε > 0, then we can assume that b is
Lipschitz continuous, since b′(s) is decreasing for 0 ≥ u ≥ u⋆. This assumption
is based on the comparison principle for the problem (1.1),(1.3),(1.5)1, proved
in [1, Theorem 2.2]. To guarantee that 0 < δ ≤ b′(s) we have to regularize θ(h)

and k̃(S) in a small neighbourhood of h = 0 and S = 1, respectively. In that case

we can take θη(h) = θ(h) and k̃η(S) = k̃(S) for h ∈ (−∞,−η) and S ∈ (0, 1−η).

We extend the graphs of θη and k̃η by lines connecting the points (−η, θ(−η))

and (0, θs) and (−η, k̃(−η)) and (0, 1), respectively. This regularization (for any
small η) will guarantee that b′(s) ≥ δ > 0 and |∂sK̄(x, b(s))| ≤ C <∞. We can
expect the solution uη to this regularized problem to converge to u as η → 0.
This has been discussed (with a similar regularization) in [2]. The transport
equation for the contaminant is considered in the form – see e.g. [6, 20,24]:

∂t(θw) + div(v̄w −D∇w) = G(t, x, w),

where v̄ = −(Ā∇u + K̄(x, b(u)) is Darcy’s velocity . The matrix D is of the
form – see [6]:

Dij = {Dmol + αT |v̄|}δij + (αL − αT )
vivj

|v̄|
}, i, j = 1, . . . , 3,

where Dmol is the molecular diffusivity of the contaminant in the fluid and αT

and αL are the transversal and longitudinal length’s, respectively. On account
of Richard’s equation , we can rewrite the transport equation in the form

θ∂tw + v̄∇w − div(D∇w) = G(t, x, w),

which is of the type (1.2).
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1.3. Basic ideas of a new method of discretization in time. Evidently,
the problem (1.1)–(1.5) cannot be solved exactly. So far, the convergence of a
semi-discrete numerical method, viz a method of discretization in time, has been
studied separately for the flow and for the transport problems. The convergence
of the numerical solution for the flow problem has been discussed in [12], where
Lipschitz continuity of b(u) has been assumed. The convergence of the nu-
merical solution of the contaminant transport (even with adsorption) has been
discussed in [4, 5, 8, 9, 19, 24], among others. In the papers mentioned it was
substantially assumed that the flow velocity v̄ and the saturation θ ≥ θ0 > 0
are Lipschitz continuous. However, this assumption cannot be guaranteed for θ
and v̄ generated by the solution u of Richard’s equation. Moreover, in order to
establish a practical numerical approximation, the coupled flow-transport prob-
lem is not splitted into the flow and next into the transport problem, but we
solve them simultaneously using a time stepping procedure. The exact mathe-
matical proof of the convergence of such numerical approximation is discussed
in the present paper. This proof is not a straightforward combination of the
technical tools which we have developed in [18, 19]. Indeed, we do not a priori
assume regularity of the velocity field governed by the flow problem. In our con-
cept of numerical approximation of (1.1)–(1.5) we control the convective terms
by the method of characteristics, initiated in [23] and [10] and dynamically de-
veloped in the last decade in [4, 7, 9, 11, 18], among others. We follow the idea
of [18] using a regularization of the approximated characteristics. The nonlin-
ear parabolic term in (1.1) is controlled by the relaxation method developed
in [14, 16, 17]. Let ui ≈ u(x, ti), wi ≈ w(x, ti) be approximations on the time
level t = ti = iτ , where τ = T

n
is the time step and i = 1, . . . , n (n ∈ N). If

V̄ (x, t) is a velocity field, then the characteristics (in the time interval (ti−1, ti))
are the curves governed by the ode

dH(s; ti, x)

ds
= V̄ (H(s; ti, x), s),

with the initial condition H(ti; ti, x) = x. Then, we denote ϕ̃i(x) ≡ H(ti−1; ti, x).
Let ϕ̄i be the (backward Euler) approximation of ϕ̃i(x) expressed in the form
ϕ̄i(x) := x− τ V̄ (x, ti). The convection-diffusion process described by (1.1) and
(1.2) is approximated in the time interval (ti−1, ti) by superposition of the trans-
port (convection) and the diffusion (without convection). The transport part
can be realized by shifting of ui−1 and wi−1 along the corresponding characteris-
tic, respectively. For this purpose it is crucial that the characteristics (which are
also approximated) are not intersecting along t ∈ (ti−1, ti) for all i = 1, . . . , n.
This in turn requires that the maps ϕ̄i and their inverse functions are Lipschitz
continuous. To guarantee this, we introduce the regularized velocity field

V̄h,i := ωh ∗ V̄i (t = ti)
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and put ϕi(x) := x − τ V̄h,i(x), where ωh is the mollifier. We can take ωh(x) =
1
h3ω1

(
x
h

)
, with

ω1(x) =
1

κ

{
exp

(
|x|2

|x|2−1

)
|x| ≤ 1

0, |x| ≥ 1,

where κ is a scaling parameter such that
∫

R3 ω1(x) dx = 1. Recall that the
convolution is defined by g ∗ z(x) =

∫
R3 g(x − ξ)z(ξ) dξ. We will take h = τ ρ

with a fixed parameter ρ ∈ (0, 2
3
). Then, if the L2(Ω)-norm of V̄ is bounded

(uniformly for t ∈ I) we will prove that the maps ϕi and their inverse are one
to one and Lipschitz continuous maps for all i = 1, . . . , n, provided τ ≤ τ0.
The transport parts (without diffusion) in (1.1)–(1.2) can be approximated by
ui−1◦ϕ

i
1 ≡ ui−1(ϕ

i
1(x)) and wi−1◦ϕ

i
2, respectively, where ϕi

1 and ϕi
2 correspond

to

V̄1,i ≡
∂sF̄ (x, s)

b′(s)

∣∣∣∣
s=ui−1

and V̄2,i ≡
v̄(ui,∇ui)

b(ui)
.

Then we introduce new approximate solutions ui and wi on the time level t = ti
by means of the elliptic equations

λi

ui − ui−1 ◦ ϕ
i
1

τ
− div(Ā∇ui) = fi − divxF̄ (x, ui−1) (1.8)

and

b(ui)
wi − wi−1 ◦ ϕ

i
2

τ
− div(DL

i ∇wi) = G(ti, x, wi−1). (1.9)

Here, 0 ≤ λi ∈ L∞(Ω) is a relaxation function which has to satisfy the “conver-
gence condition” ∣∣∣∣λi −

b(ui) − b(ui−1 ◦ ϕ
i
1)

ui − ui−1 ◦ ϕi
1

∣∣∣∣ ≤ τ. (1.10)

Moreover, let L > 0 be a truncation parameter. We define a truncation func-
tion σL

DL
i := D(σL(ui), σL(∇ui)), σL(s) := min

{
1, L

|s|

}
s (1.11)

Along with (1.8)–(1.9) we consider the boundary conditions

ui = uD
i on ∂Ω (1.12)

wi = wD
i on Γ1, DL

i ∇wi · ν = 0 on Γ2. (1.13)

The approximation scheme (1.8)–(1.13) is implicit, since λi is related to the
unknown function ui in (1.10). We can determine ui and wi from (1.8)–(1.13) by
using relaxation iterations in (1.8)–(1.10) as follows. We define ui,k, (k = 1, . . .),
by means of the elliptic equation

λi,k−1
ui,k − ui−1 ◦ ϕ

i
1

τ
− div(Ā∇ui,k) = fi − divxF̄ (x, ui−1), (1.14)
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along with the boundary condition (1.12) where we put ui,k instead of ui. Next,
we take

λi,k :=
b(ui,k) − b(ui−1 ◦ ϕ

i
1)

ui,k − ui−1 ◦ ϕi
1

.

If |λi,k0
− λi,k0−1| < τ , we put λi := λi,k0−1 and ui := ui,k0

. The efficiency of the
relaxation method has been discussed in [3, 13,14,17] among others.

1.4. Outline of the paper. In Section 2 we first state the precise assumptions
on the data. Next, we introduce a truncated problem PL related to the original
problem (1.1)–(1.5), denoted by problem P . We then show the existence and
uniqueness of a suitably introduced variational solution. In Section 3 some
auxiliary results are proved, such as the bijective property of the characteristic
map ϕi introduced in Section 1.3. We also prove the L∞-boundedness of the
sequences {ui} and {wi} obtained from (1.8)–(1.13) by means of the relaxation
iterations based on (1.14). In Section 4 we prove the convergence of the semi-
discrete method, described in Section 1.3. In Section 5 we briefly discuss a fully
discrete approximation method, which is obtained when the elliptic boundary
value problems, that arise at each time point t = ti from the discretization in
time, are approximated by passing to suitable finite dimensional spaces, such
as finite element spaces, in the variational formulation.

2. Variational formulation, existence and uniqueness

2.1. Assumption, notations and definitions. Let C denotes a generic pos-
itive constant. We shall assume:

H1) b(s) ≥ δ > 0 is Lipschitz continuous, satisfying 0 < δ < b′(s) ≤ M < ∞
for small δ;

H2) F̄ (x, s) is continuous and satisfies |∂sF̄ (x, s)| ≤ C and |divxF (x, s)| ≤
C(1 + |s|) in Ω × R;

H3) v̄(η, ξ) is continuous and satisfies |v̄(η, ξ)| ≤ C(1 + |η| + |ξ|) on R ×
R

3; D(x, ζ, ξ) is continuous, it is a symmetric 3 × 3 matrix and satisfies
‖D(x, η, ξ)‖ ≤ C(1 + |η| + |ξ|) in Ω × R × R

3;

H4) (Ā(x)ξ, ξ) ≥ CA|ξ|
2; (D(x, ζ, ξ)η, η) ≥ CD|η|

2 for all ζ ∈ R, for all η,
ξ ∈ R

3 and for all x ∈ Ω;

H5) G and f are continuous functions in their variables and |∂sG(t, x, s)| ≤ C;
f , ∂tf ∈ L2(I, L2);

H6) u0, w0 ∈ L∞(Ω)∩W 1
2 (Ω); uD, wD ∈ L∞(I,W 1

∞); ∂tu
D, ∂tw

D ∈ L2(I,W
1
2 ).

We introduce the following subspaces of the Sobolev space W 1
2 : V1 = {v ∈ W 1

2 :
v = 0 on ∂Ω}, V2 = {v ∈ W 1

2 : v = 0 on Γ1}. By L∞, L2,W
1
2 , L2(I, L2) ≡
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L2(I × Ω) and L2(I, Vl), (l = 1, 2), we denote standard functional spaces –
see [21]. We denote (u, v) =

∫
Ω
uv dx, (u, v)Γ =

∫
Γ
uv dx (Γ ⊂ ∂Ω). By

‖ · ‖∞, ‖ · ‖0, ‖ · ‖, ‖ · ‖Γ and ‖ · ‖∗ we denote the norms in L∞(Ω), L2(Ω),W 1
2 (Ω),

L2(Γ) and V ∗
l , respectively. Here V ∗

l is the dual space to Vl, (l = 1, 2), and
〈w, v〉 is the duality pairing between V ∗

2 and V2. The model problem (1.1)–(1.5)
is called Problem P , while Problem PL will denote the truncated problem, where
the matrix D is replaced by the truncated matrix DL, as defined in Section 1.3.

Definition 2.1. {u,wL} is a variational solution to Problem PL, iff

i) u− uD ∈ L∞(I, V1), u ∈ L∞(QT ), ∂tb(u) ∈ L2(I, L2),
w − wD ∈ L2(I, V2), w ∈ L∞(QT ), ∂t(b(u)w) ∈ L2(I, V

∗
2 );

ii) the following identities hold:∫

I

(
∂tb(u), ξ

)
dt+

∫

I

(
Ā∇u+ F̄ (t, u),∇ξ

)
dt

=

∫

I

(f, ξ)dt, ∀ξ ∈ L2(I, V1)

(2.1)

∫

I

〈∂t(b(u)w), η〉dt−

∫

I

(
∂tb(u)w, η

)
dt

+

∫

I

(
v̄(u,∇u)∇w, η

)
dt+

∫

I

(
DL(u,∇u)∇w,∇η

)
dt

=

∫

I

(
G(t, x, w), η

)
dt, ∀η ∈ L2(I, V2) ∩ L∞(QT )

(2.2)

iii) u(0) = u0 in L2 and∫

I

〈∂t(b(u)w), ζ〉dt = −

∫

I

∫

Ω

(b(u)w − b(u0)w0)∂tζdx dt

∀ξ ∈ L2(I, V2) with ∂tζ ∈ L∞(QT ), ζ(x, T ) = 0 .
(2.3)

Definition 2.2. {u, v} is a variational solution to Problem P , iff

i) condition i) and identity (2.1) from Definition 2.1 are satisfied;

ii) the following identity holds:

−
(
b(u0)w0, η(0)

)
−

∫

I

(
∂tb(u)w, η

)
−

∫

I

(
b(u)w, ∂tη

)
dt

+

∫

I

(
v̄(u,∇u)∇w, η

)
dt+

∫

I

(
D(u,∇u)∇w,∇η

)
dt

=

∫

I

(
G(t, x, w), η

)
dt

∀η ∈ L∞(I, V2) ∩ L∞(QT ) with ∂tη ∈ L2(I, L2), η(x, T ) = 0.

(2.4)

Remark 2.3. Existence and uniqueness of the solution to the flow problem
(1.1), (1.3) and (1.5) is guaranteed by [1]. The uniqueness of the solution to
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the transport problem has been analysed in [20] under the assumption that D
is a time independent matrix. On the other hand a more general structure of
the adsorption term has been considered there.

We shall prove the uniqueness of the variational solution (in the sense of
Definition 2.1) to the Problem PL. We need an integration by parts formula.

Lemma 2.4. If {u,w} are as in Definition 2.1, then
∫ t

0

〈∂t(b(u)w), w〉dt

=
1

2

∫

Ω

b(u(t))w2(t) dx−
1

2

∫

Ω

b(u0)w
2
0 dx+

1

2

∫ t

0

∫

Ω

∂tb(u)w
2 dx dt.

(2.5)

Proof. Since ∂t(b(u)w) ∈ L2(I, V
∗
2 ) we have (see, e.g., [15])

b(u(· + h))w(· + h) − b(u(·))w(·)

h
→ ∂t(b(u)w) in L2(I, V

∗
2 ) for h→ 0.

Moreover, from ∂tb(u) ∈ L2(I, L2) and w ∈ L∞(QT ) we obtain also

b(u(· + h))w(·) − b(u(·))w(· − h)

h
→ ∂t(b(u)w) in L2(I, V

∗
2 ), (2.6)

since b(u(·+h))−b(u(·))
h

w(·)− b(u(·))−b(u(·−h))
h

w(· −h) → 0 for h→ 0 in L2(I, L2) and
hence also in L2(I, V

∗
2 ). Introduce

Jh =

∫ t

0

∫

Ω

b(u(t+ h))w(t+ h) − b(u(t))w(t)

h
w(t)dx dt.

We have

Jh := −

∫ t

0

(
b(u(t))w(t),

w(t) − w(t− h)

h

)
dt

−
1

h

∫ h

0

∫

Ω

b(u(t))w(t)w(t− h)
)
dx dt

+
1

h

∫ t+h

t

∫

Ω

b(u(t))w(t)w(t− h) dx dt ,

(2.7)

where we used the extensions u(s) = u0 and w(s) = w0 for s ∈ (−h, 0). For the
first term we have

J̃h := −

∫ t

0

∫

Ω

w2(t) − w(t)w(t− h)

h
b(u(t)) dx dt

= −

∫ t

0

∫

Ω

w2(t) − w2(t− h)

h
b(u(t)) dx dt

+

∫ t

0

∫

Ω

w(t) − w(t− h)

h
b(u(t))w(t− h) dx dt

≡ J1,h + J2,h .

(2.8)
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Similarly as Jh we may rearrange J1,h and J2,h in the forms

J1,h =

∫ t

0

∫

Ω

b(u(t+ h)) − b(u(t))

h
w2(t) dx dt

−
1

h

∫ t

t−h

∫

Ω

b(u(t+ h))w2(t) dx dt+
1

h

∫ 0

−h

∫

Ω

b(u(t+ h))w2(t) dx dt,

and

J2,h = −

∫ t

0

∫

Ω

b(u(t+ h))w(t) − b(u(t))w(t− h)

h
w(t) dx dt

+
1

h

∫ t

t−h

∫

Ω

b(u(t+ h))w2(t) dx dt+
1

h

∫ −h

0

∫

Ω

b(u(t+ h))w2(t) dx dt.

We substitute J1,h and J2,h into (2.7) and make use of (2.6). Then, taking the
limit for h→ 0, we arrive at (2.5).

Theorem 2.5. If Γ1 = ∂Ω and f ∈ L∞, then there exists a unique variational
solution (in the sense of Definition 2.1) to Problem PL.

Proof. The uniqueness of the variational solution u is guaranteed by [1]. The
uniqueness of the variational solution w = wL is obtained in the following way.
Let w1 and w2 be two variational solutions. Then, for w = w1 − w2, we obtain
from (2.2)

∫ t

0

〈∂t(b(u)w), w〉 dt−

∫ t

0

(∂tb(u)w,w) dt

+

∫ t

0

(
v̄(u,∇u)∇w,w

)
dt+

∫ t

0

(
DL(u,∇u)∇w,∇w

)
dt

=

∫ t

0

(
G(t, x, w1) −G(t, x, w2), w

)
dt .

(2.9)

We use the integration by parts formula (2.5). Notice that w0 = w(0) = 0.
Invoking hypotheses H3–H5 we obtain from (2.9) and (2.1) (with ξ = w2) that

1

2

∫

Ω

b(u(t))w2(t) dx ≤

∫ t

0

∫

Ω

|G′(w1 + r(x)(w2 − w1)|w
2dx dt

+

∫ t

0

∫

Ω

|f |w2dx dt

≤ C

∫ t

0

∫

Ω

1

b(u)
b(u)w2dx dt

≤ C

∫ t

0

∫

Ω

b(u)w2dx dt,
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where we have taken into account that
∫ t

0

∫

Ω

(−∂tb(u)w
2 + v̄∇w2) dx dt =

∫ t

0

∫

Ω

fw2 dx dt.

Then, Gronwall’s argument implies that
∫
Ω
b(u(t))w2(t)dx = 0 for a.e. t ∈ I.

Since b(u) ≥ δ > 0, we obtain that w = 0 a.e. in I and the proof is complete.

3. Method of discretization in time: auxiliary results

The implementation of the method of characteristics mentioned in Section 1.3
is based on the following lemma.

Lemma 3.1. If V̄ ∈ L∞(I, L2(Ω)) and ρ ∈ (0, 2
3
), then it holds

1

2
|x− y| ≤ |ϕi(x) − ϕi(y)| ≤ 2|x− y|, ∀x, y ∈ Ω, ∀i = 1, . . . , n,

where ϕi(x) = x− τ ωh ∗ V̄i, V̄i = 1
τ

∫ ti

ti−1

V̄ (t, x)dt, h = τ ρ and τ ≤ τ0, τ0 being

sufficiently small.

Proof. We start from

ϕi(x) − ϕi(y) = x− y − τ(x− y)

∫ 1

0

∫

R3

ω′
h(y + s(x− y) − ξ)V̄i(ξ) ds dξ.

Then, from the estimate
∣∣∣∣
∫ 1

0

∫

R3

ω′
h(y + s(x− y) − ξ)V̄i(ξ) ds dξ

∣∣∣∣

≤

∫ 1

0

( ∫

R3

ω′
h(y + s(x− y) − ξ)2dξ

) 1

2

( ∫

Ω

|V̄i(ξ)|
2dξ

) 1

2

ds

≤ C

∫ 1

0

( ∫

R3

ω′
h(y + s(x− y) − ξ)2dξ

) 1

2

ds

≤ Ch−
3

2

∫ 1

0

( ∫

R3

ω′
1(z)

2dz

) 1

2

ds

≤ Ch−
3

2 ,

we obtain the desired result, since τh−
3

2 = τ 1− 3

2
ρ.

The solution to the problems (1.8), (1.12) and (1.9), (1.13) are understood
in variational sense, where
(
λi

ui − ui−1 ◦ ϕ
i
1

τ
, v

)
+(Ā∇ui,∇v) =

(
fi −divxF̄ (x, ui−1), v

)
, ∀v ∈ V1 (3.1)
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and

(
b(ui)

wi − wi−1 ◦ ϕ
i
2

τ
, ψ

)
+(DL

i ∇wi,∇ψ) = (G(ti, x, wi−1), ψ), ∀ψ ∈ V2 (3.2)

and where λi ∈ L∞(Ω) satisfies (1.10). The characteristic map ϕi maps Ω into
Ωi ⊂ Ω∗, where Ω∗ ⊃ Ω̄ is a small neighbourhood of Ω̄ provided that τ ≤ τ0.
If ϕi(x) 6∈ Ω, we prolongate ui−1 ∈ W 1

2 into ũi−1 ∈ W 1
2 (Ω∗) so that (see [22] –

prolongation of Nikolskij)

‖ũi−1‖W 1

2
(Ω∗) ≤ C‖ui−1‖W 1

2
(Ω).

Similarly we prolongate wi−1 to w̃i−1 so that w̃i−1 ◦ϕ
i
2(x) is defined for all x ∈ Ω

also in the case when ϕi
2(x) ∈ Ω∗ \ Ω̄. Then Lemma 3.1 guarantees that

‖z̃i−1 ◦ ϕ
i‖0 ≤ C‖zi−1‖0 and ‖∇z̃i−1 ◦ ϕ

i‖0 ≤ C‖∇zi−1‖0 (3.3)

for zi−1 ∈ W 1
2 (Ω). The existence of ui ∈ V1 and wi ∈ V2, (i = 1, . . . n), in

(3.1) and (3.2) is guaranteed by the Lax–Milgram argument, provided that
λi ∈ L∞(Ω) is given, on account of (3.3) where we replace z by u and w, respec-
tively. In fact, the convective parts in (1.1) and (1.2) can be approximated more
precisely, if we approximate the characteristic curves H(s; t, x) by an explicit

Euler method but with smaller time steps τl = t
(l)
i−1−t

(l−1)
i−1 , l = 1, . . . ,m, (t

(m)
i−1 =

ti, t
(0)
i−1 = ti−1), throughout the time interval (ti−1, ti). We denote

z(x) := V̄ (ti, x), zh := ωh ∗ z ≡ zh
0 , zh

1 = x− (t
(1)
i−1 − ti−1)z

h
0

and

zh
l = zh

l−1(x) − (t
(l)
i−1 − t

(l−1)
i−1 )zh(zh

l−1(x)).

Then we put

ϕ̂i := zh
m−1(x) − (ti − t

(m−1)
i−1 )zh(zh

m−1(x)). (3.4)

Here, ϕ̂i(x) represents the position of the initial point x after m smaller time
steps

∑m

l=1 τl = τ . By the same arguments as in Lemma 3.1 we can prove that
ϕ̂i(x) and its inverse are Lipschitz continuous uniformly for i = 1, . . . , n.

Lemma 3.2. If ρ ∈ (0, 2
3
), h = τ ρ then there exists τ1 such that

1

2
|x− y| ≤ |ϕ̂i(x) − ϕ̂i(y)| ≤ 2|x− y|, ∀x, y ∈ Ω, ∀i = 1, . . . , n

provided that τ ≤ τ1, where ϕ̂i is from (3.4).



316 J. Kačur et al.

Proof. Start from ∇zh
l = ∇zh

l−1(1− τl∇y(z
h)), (τl ≡ |tli−1− t

l−1
i−1|, y = ∇zh

l−1(x)).
We use the estimate |∇ωh ∗ g| ≤

C
h
‖g‖∞ ≤ C

h
. Then, we obtain

|∂xj
{ϕ̃i(x)}j − 1| ≤

τ

h
C

(
1 +

τ

h
C +

(τ
h

)2

C2 + · · · +
(τ
h

)m−1

Cm−1

)

≤ C
τ

h

1

1 − τ
h
C

|∂xj
{ϕ̃i(x)}k| ≤ C

τ

h

1

1 − τ
h
C

for any j and k = 1, . . . , N, j 6= k, where we used the notation {v̄}j for the j-th
component of v̄. Hence, the required result follows.

In the next lemma we prove the uniform boundedness of {ui} and {wi}.

Lemma 3.3. The solutions ui and wi, (i = 1, . . . , n), to (3.1) and (3.2), re-
spectively, are uniformly bounded in L∞(Ω), i.e.,

‖ui‖∞ ≤ C and ‖wi‖∞ ≤ C, ∀i = 1, . . . , n, ∀n ∈ N.

Proof. For fixed i, ui is a minimizer of the functional

Φ1(u) =
1

τ

∫

Ω

λi(u− ui−1 ◦ ϕ
i
1)

2dx+ (Ā∇u,∇u) − 2

∫

Ω

(fi − divxF̄ (x, ui−1)u dx

on the set uD
i + V1. Denote by ui = zi + uD

i the unique minimizer and consider
the truncation uS

i := σS(ui), where S ≥ ‖uD
i ‖L∞(I×∂Ω). Then, uS

i ∈ uD
i + V1. In

what follows we shall construct S such that Φ1(u
S
i ) ≤ Φ1(ui), from which we

deduce (by the uniqueness argument) that ‖ui‖L∞
≤ S. Due to the symmetry

and the positive definiteness of Ā(x) we can estimate

Φ1(ui) − Φ1(u
S
i )

≥

∫

ES

(ui − uS
i )

{(
λi

τ

(
ui + uS

i − 2ui−1 ◦ ϕ
i
1

) )
− 2fi + 2 divxF̄ (x, ui−1)

}
dx,

where ES = {x ∈ Ω : |ui(x)| > S}, since
(
Ā∇ui,∇ui

)
−

(
Ā∇uS

i ,∇u
S
i

)
=

(
Ā∇(ui − uS

i ),∇(ui − uS
i )

)
≥ 0.

We have ‖ui−1 ◦ ϕ
i
1‖∞ ≤ C‖ui−1‖∞ and |fi| + |divxF̄ (ti, ui−1)| ≤ C1 +C2|ui−1|.

Then, choosing S = max{‖uD‖∞, ‖ui−1‖∞ + τC(1 + ‖ui−1‖∞)}, and noticing
that λi ≥

δ
2
, we obtain that Φ1(u

S
i ) ≤ Φ1(ui). This implies that

‖ui‖∞ ≤ max
{
‖uD‖∞, (1 + τC)‖ui−1‖∞ + Cτ

}
.

From this recurrent inequality we obtain the required result. We proceed anal-
ogously for the proof of the boundedness of {wi} in L∞.
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4. Convergence of the semi-discrete method

4.1. Rothe functions and associated step functions on the time in-

terval I. By means of {ui}
n
i=1 and {wi}

n
i=1 we construct approximate solutions

{ūn, w̄n} and {un, wn} to the problem (1.1)–(1.5) as follows.

Definition 4.1. The Rothe function un is the piecewise linear function on the
time interval I (with values taken on in appropriate function spaces on Ω)
defined by

un(t) := ui−1 + (t− ti−1)δui for t ∈ (ti−1, ti), i = 1, . . . , n, (4.1)

where δui := ui−ui−1

τ
. We introduce the associated step function on I by

ūn(t) := ui for t ∈ (ti−1, ti), i = 1, . . . , n.

We similarly define w̄n(t) and wn(t) by means of {wi}
n
i=1.

To prove the convergence of {ūn} and {w̄n} in the corresponding functional
spaces for n→ ∞, i.e. for τ → 0, we need a priori estimates for {ūn(t)}∞n=1 and
{w̄n(t)}∞n=1.

4.2. A priori estimates.

Lemma 4.2. The a priori estimates

n∑

i=1

‖δui‖
2
0τ ≤ C, ‖ui‖ ≤ C (i = 1, . . . , n),

n∑

i=1

‖∇(ui − ui−1)‖
2
0 ≤ C

hold uniformly for n.

Proof. Due to (1.10) we split the first term in (3.1)

λi(ui − ui−1 ◦ ϕ
i
1) = b(ui) − b(ui−1) + τχi(ui − ui−1 ◦ ϕ

i
1)

+ b(ui−1) − b(ui−1 ◦ ϕ
i
1),

(4.2)

where ‖χi‖∞ ≤ 1. We put v = ui − ui−1 − (uD
i − uD

i−1) into (3.1) and sum up
for i = 1, . . . , j. The resulting equation is denoted by J1 + J2 = J3. We again
split Jl = J0

l + JD
l for l = 1, 2, 3 (in J0

l we use v = ui − ui−1 and in JD
l we use

v = −(uD
i − uD

i−1)) . Let us denote

J0
1,ϕ =

j∑

i=1

(
χi

ui−1 − ui−1 ◦ ϕ
i
1

τ
,
ui − ui−1

τ

)
τ

J0
2,ϕ =

j∑

i=1

(
b(ui−1) − b(ui−1 ◦ ϕ

i
1)

τ
,
ui − ui−1

τ

)
τ.
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Then, using H1 we get

J0
1 = J0

1,ϕ + J0
2,ϕ +

j∑

i=1

(
δb(ui), δui

)
τ ≥ J0

1,ϕ + J0
2,ϕ + C

j∑

i=1

‖δui‖
2
0τ .

To estimate J0
1,ϕ we split ui − ui−1 ◦ ϕ

i
1 = ui − ui−1 + ui−1 − ui−1 ◦ ϕ

i
1, and use

the formula

ui−1 − ui−1 ◦ ϕ
i
1

τ
=

∫ 1

0

∇ũi−1

(
x+ s(ϕi

1(x) − x)
)
ds · ωh ∗

F̄ ′
u(x, ui−1)

b′(ui−1)
. (4.3)

From the estimate (3.3) (replacing zi−1 by ui−1), the inequality λi ≤M and the

fact that
∥∥ωh ∗

F̄ ′

u(x,ui−1)
b′(ui−1)

∥∥
∞

≤ C, we obtain

|J0
1,ϕ| ≤ (ε+ Cτ)

j∑

i=1

‖δui‖
2
0τ + Cε

j∑

i=1

‖∇ui‖
2
0τ

and, similarly,

|JD
1,ϕ| ≤ (ε+ Cτ)

j∑

i=1

‖δuD
i ‖

2
0τ + C1

j∑

i=1

‖∇ui‖
2
0τ + C2.

In a similar way we can estimate J0
2,ϕ and JD

2,ϕ since b is Lipschitz continuous.
Due to H6 and Lemma 3.3 we estimate

|JD
1 | =

∣∣∣∣
j∑

i=1

(
λi

ui − ui−1 ◦ ϕ
i
1

τ
,
uD

i − uD
i−1

τ

)∣∣∣∣τ

≤ C1

j∑

i=1

‖δuD
i ‖

2
0τ + C2

j∑

i=1

‖∇ui‖
2
0τ + C3

≤ C1 + C2

j∑

i=1

‖∇ui‖
2
0τ.

Combining this estimate with the one for J0
1 , obtained above, we conclude

J1 ≥ C1

j∑

i=1

‖δuj‖
2
0τ − C2

j∑

i=1

‖ui‖
2τ − C3. (4.4)

Due to the symmetry and the positive definiteness of Ā we have

J2 ≥
1

2
CA‖∇uj‖

2
0 +

1

2
CA

j∑

i=1

‖∇(ui − ui−1)‖
2
0

− C

j∑

i=1

‖∇ui‖0‖∇δu
D
i ‖0 τ − C

≥
1

2
CA‖∇uj‖

2
0 − C1

j∑

i=1

‖∇ui‖
2
0τ − C2.

(4.5)
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Due to assumption H5 and Lemma 3.3 we obtain

|J3| ≤ ε

j∑

i=1

‖δui‖
2
0τ + Cε. (4.6)

Inserting (4.4)–(4.6) in the equality J1 +J2 = J3 and invoking Gronwall’s argu-
ment the required estimates follow.

Using the estimates of Lemma 4.2 we can derive a priori estimates for {wi}.

Lemma 4.3. The estimates
∑n

i=1 ‖∇wi‖
2τ ≤ C, uniformly for L, and

n−k∑

j=1

‖b(uj+k)wj+k − b(uj)wj‖
2
0τ ≤ Ckτ, where C = C(L),

take place uniformly for n. Here L is the truncation parameter introduced
in (1.11).

Proof. We put ψ = (wi − wD
i )τ into (3.2) and sum up for i = 1, . . . , j. The

resulting equation is denoted by J1 + J2 = J3. We split Jl = J0
l + JD

l , l = 1, 2
and 3, as in the proof of Lemma 4.2. Moreover, we split wi − wi−1 ◦ ϕi

2 =
wi−wi−1 +wi−1−wi−1 ◦ϕ

i
2 and correspondingly we write J1 = J1,1 +J1,2. First

we estimate

J0
1,1 =

j∑

i=1

(b(ui)(wi − wi−1), wi)

=
1

2

∫

Ω

b(uj)w
2
jdx−

1

2

∫

Ω

b(u0)w
2
0dx+

1

2

j∑

i=1

∫

Ω

b(ui)(wi − wi−1)
2dx

−
1

2

j∑

i=1

τ

∫

Ω

b(ui) − b(ui−1)

τ
w2

i−1dx

≥
1

2

∫

Ω

b(uj)w
2
jdx−

1

2

∫

Ω

b(u0)w
2
0dx− C

j∑

i=1

‖δb(ui)‖
2
0τ − C.

Similarly, using Lemma 3.3 and H6, we obtain

|JD
1,1| ≤

∣∣∣∣
j∑

i=1

(
b(ui)wi − b(ui−1)wi−1, w

D
i

)∣∣∣∣+
j∑

i=1

∣∣((b(ui) − b(ui−1))wi−1, w
D
i

)∣∣

≤
∣∣(b(uj)wj, w

D
j

)∣∣+
∣∣(b(u0)w0, w

D
0

)∣∣+
∣∣∣∣

j∑

i=1

(
b(ui−1)wi−1,

wD
i − wD

i−1

τ
τ

)∣∣∣∣ + C

≤ C.
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Thus we get

J1,1 ≥
1

2

∫

Ω

b(uj)w
2
jdx− C. (4.7)

To estimate J1,2 we use formula (4.3) (where we replace ui−1 by wi−1 and V̄ i
1,h

by V̄ i
2,h), together with (3.3) and Lemma 3.1. Then we have

|J0
1,2| ≤ C

j∑

i=1

τ

∫

Ω

∣∣∣∣b(ui)

∫ 1

0

∇w̃i−1

(
x+ s(ϕi

2(x) − x)
)
ds · ωh ∗

v̄(ui,∇ui)

b(ui)

∣∣∣∣dx

≤ ε

j∑

i=1

‖∇wi‖
2
0τ + Cε

j∑

i=1

‖b(ui)‖
2
0τ

≤ ε

j∑

i=1

‖∇wi‖
2
0τ + Cε,

since
∥∥ωh ∗ v̄(ui,∇ui)

b(ui)

∥∥
0
≤ C(1 + ‖ui‖) ≤ C. Similarly we estimate |JD

1,2| from

above. Combining the resulting estimate for J1,2 with (4.7) we have

J1 ≥
1

2

∫

Ω

b(uj)w
2
jdx− ε

j∑

i=1

‖∇wi‖
2
0τ − Cε. (4.8)

Using the positive definiteness of Dn
i we find

J0
2 ≥ CA

j∑

i=1

‖∇wi‖
2
0τ.

To estimate JD
2 we use H6 and the growth conditions on D in H3. We deduce

that

|JD
2 | ≤ C

j∑

i=1

∫

Ω

∣∣Dn
i ∇wi

∣∣dx

≤ ε

j∑

i=1

‖∇wi‖
2
0τ + Cε

(
1 +

j∑

i=1

‖ui‖
2
0τ +

j∑

i=1

‖∇ui‖
2
0τ

)
.

Combining this inequality with the one above for J0
2 and using Lemma 4.2 we

arrive at

J2 ≥ C1

j∑

i=1

‖∇wi‖
2
0τ − C2. (4.9)

From Lemma 3.3 and using H6 we obtain

|J3| ≤ C. (4.10)
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Inserting the estimates (4.8)–(4.10) in the equality J1 +J2 = J3 the first a priori
estimate of this Lemma follows.

To obtain the second a priori estimate we rewrite the first term in (3.2) in
the form

b(ui)
wi − wi−1 ◦ ϕ

i
2

τ
=
b(ui)wi − b(ui−1)wi−1

τ
−
b(ui) − b(ui−1)

τ
wi−1

+ b(ui)
wi−1 − wi−1 ◦ ϕ

i
2

τ
.

(4.11)

We multiply (3.2) by τ and sum up for i = j + 1, . . . , j + k. Then we put
ψ = [b(uj+k)wj+k − b(uj)wj − (b(uj+k)w

D
j+k − b(uj)w

D
j )]τ and sum up for j =

1, . . . , n− k. We denote the resulting equation by J1 + J2 = J3 and again split
Jl = J0

l + JD
l , (l = 1, 2 and 3), as in the proof of the previous lemma. We have

J1 = J1,1 + J1,2 + J1,3 due to the splitting (4.11). We first get

J0
1,1 ≥

n−k∑

j=1

‖b(uj+k)wj+k − b(uj)wj‖
2
0τ.

Due to H6 and the estimates of Lemma 3.3 and Lemma 4.2 we find

|JD
1,1| ≤ ε

n−k∑

j=1

‖b(uj+k)wj+k−b(uj)wj‖
2
0τ−Cε

n−k∑

j=1

j+k∑

i=j

‖δb(ui)w
D
i ‖0‖b(ui−1)δw

D
i ‖0τ

2

≤ ε

n−k∑

j=1

‖b(uj+k)wj+k−b(uj)wj‖
2
0τ−Cεkτ .

Due to the estimates of Lemma 4.2 and Lemma 3.3 we obtain |J1,2| ≤ Ckτ.

Using H6, formula (4.3), the estimate (3.3) and the estimates of Lemmas 3.1,
3.3 and 4.2, we get |J1,3| ≤ Ckτ. Combining this estimate with the ones for J1,1

and J1,2 we arrive at

J1 ≥

j∑

i=1

‖b(uj+k)wj+k − b(uj)wj‖
2
0τ − Ckτ. (4.12)

To estimate the term J2 we use the fact that ‖∇(b(ui)wi)‖0 ≤ C1‖∇wi‖0 +
‖C2‖ui‖ on account of the estimates of Lemma 3.3 and Lemma 4.2 and on
account of the Lipschitz continuity of b. Noticing that |(DL

i ∇wi,∇wj)| ≤
C(L)‖∇wi‖0‖∇wj‖0 and invoking the first estimate of this Lemma, we get

|J2| ≤ Ckτ, |J3| ≤ Ckτ. (4.13)

Finally, from (4.12)–(4.13) the second estimate of Lemma 4.3 follows.
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4.3. Compactness results. Next, we prove the compactness of {ūn} and
{w̄n}. By {n̄} we denote a subsequence of {n} .

Lemma 4.4. There exist u ∈ L∞(QT ) ∩ L2(I,W
1
2 ) and wL ∈ L∞(QT ) ∩

L2(I,W
1
2 ) such that ūn̄ → u in Lr(QT ), for all r, 1 < r < ∞ , ūn̄ ⇀ u in

L2(I,W
1
2 ), δb(ūn̄) ⇀ ∂tb(u), δū

n̄ ⇀ ∂tu in L2(I, L2) and w̄n̄ → wL in Lr(QT ),
for all r, 1 < r < ∞, w̄n̄ ⇀ wL in L2(I,W

1
2 ), δ(b(ūn̄)w̄n̄) ⇀ ∂t(b(u)w) in

L2(I, V
∗
2 ) when n→ ∞.

Proof. From Lemma 4.2 it follows that {ūn} is compact in L2(I, L2) (see, e.g.,
[15]). The second estimate in Lemma 4.3 can be rewritten in the form

∫ T−z

0

‖b(ūn̄(t+ z))wn̄(t+ z) − b(ūn̄(t))w̄n̄(t)‖2
0 dt ≤ Cz, (4.14)

where kτ ≤ z ≤ (k + 1)τ . Due to Lemma 3.3 and Lemma 4.2 we have
b(ūn̄(t))w̄n̄(t) ∈W 1

2 (Ω), and

‖b(ūn̄)w̄n̄‖L2(I,W 1

2
) ≤ C1‖ū

n̄‖L2(I,W 1

2
) + C2‖w̄

n̄‖L2(I,W 1

2
).

Following [22] we readily find
∫

I

∫

Ω

(
b(ūn̄(t, x+ y))w̄n̄(t, x+ y) − b(ūn̄(t, x))w̄n̄(t, x)

)2
dx dt

≤ |y|
(
C1‖∇w̄

n̄‖L2(I,L2) + C2‖∇ū
n̄‖L2(I,L2)

)
.

This estimate together with (4.14) guarantees the compactness of {b(ūn̄)w̄n̄}
in L2(I, L2), because of Kolmogorov’s compactness argument – see [22]. Since
{b(ūn)} is compact in L2(I, L2) and since b(s) ≥ δ > 0 (see H1) we conclude
that w̄n̄(t, x) → wL(t, x) for a.e. (t, x) ∈ QT . This convergence and Lemma 3.3
imply Lr(QT )-convergence w̄n̄ → w (for all r > 1), where w ∈ L∞(QT ).

To prove that δ(b(ūn̄)w̄n̄) ⇀ ∂t(b(u)w) in L2(I, V
∗
2 ), we apply the duality

argument in (3.2). Using (4.11) we rewrite (3.2) in the form
(
b(ui)wi − b(ui−1)wi−1

τ
, v

)
=

(
b(ui) − b(ui−1)

τ
wi−1, v

)

− (DL
n,i∇wi,∇v) + (G(ti, x, wi−1), v)

−

(
b(ui)

wi−1 − wi−1 ◦ ϕ
i
2

τ
, v

)
.

(4.15)

Applying the a priori estimates of Lemmas 3.3, 4.2 and 4.3, using the for-
mula (4.3) and the estimates (3.3) we conclude that

‖δ(b(ui)wi)‖∗ ≤ C(L)(‖∇ui‖0 + ‖∇wi‖0 + ‖∇wi−1‖0).

Consequently, {δ(b(ūn)w̄n)} is bounded in L2(I, V
∗). There exists Φ ∈ L2(I, V

∗
2 )

so that δ(b(ūn)w̄n) ⇀ Φ in L2(I, V
∗). On the other hand, b(ūn)w̄n → b(u)w in

L2(I, L2). This implies that Φ ≡ ∂t(b(u)w). The rest of the proof follows from
Lemma 4.2 and Lemma 4.3.
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4.4. Convergence of {un} and {wn}. Now we can formulate the main result
of this section.

Theorem 4.5. Let the assumptions H1-H6 be satisfied. Then,

ūn̄ → u in L2(I, V1), w̄n̄ → wL in L2(I, V2) for n→ ∞.

Here, {ūn} and {w̄n} are defined by (4.1) and by (3.1) and (3.2), while {u,wL}
is a variational solution to Problem PL in the sense of Definition 2.1. If the
variational solution u ∈ L∞(I,W 1

∞), then {u,wL} is also a variational solution
to Problem P . If L → ∞, then wL ⇀ w where {u,w} is a variational solution
to the Problem P in the sense of Definition 2.2, provided that G(t, x, w) is linear
in w (i.e., G(t, x, w) = g1(t, x) + g2(t, x)w). If the variational solution {u,wL}
is unique (see, e.g., Theorem 2.5), then the original sequences {ūn} and {w̄n}
are convergent.

Proof. We rewrite (3.1) and (3.2) in terms of ūn, un and w̄n, defined in (4.1).
We use (4.2) and (4.11). Integrating the resulting equations over I, we obtain

∫

I

(
δb(ūn), v

)
dt+

∫

I

(
Ā∇un,∇v

)
dt

+

∫

I

(
χ̄n(ūn − ūn

τ ◦ ϕ̄n
1 ), v

)
dt+

1

τ

∫

I

(
b(ūn

τ ) − b(ūn
τ ◦ ϕ̄n

1 ), v
)
dt

=

∫

I

(
f̄n − divxF̄ (x, ūn

τ ), v
)
dt ∀v ∈ L2(I, V1)

(4.16)

and
∫

I

(
δ(b(ūn)w̄n), η

)
dt+

∫

I

(
DL

n (ūn,∇ūn)∇w̄n,∇η
)
dt

=

∫

I

(
G(t, x, w̄n

τ ), η
)
dt+

∫

I

(
δb(ūn)w̄n

τ , η
)
dt−

∫

I

(
b(ūn)

w̄n
τ −w̄

n
τ ◦ ϕ̄n

2

τ
, η

)
dt

(4.17)

for all η ∈ L2(I, V2) ∩ L∞(QT ), where ūn
τ := ūn(t− τ) and w̄n

τ := w̄n(t− τ).
We pass to the limit n→ ∞ in (4.16). We readily get

∫

I

(δb(ūn), v)dt→

∫

I

(∂tb(u), v)dt,

∫

I

(Ā∇un,∇v)dt→

∫

I

(Ā∇u,∇v)dt

and ∫

I

(f̄n + divxF̄ (x, ūn
τ ), v)dt→

∫

I

(f + divxF̄ (x, u), v)dt.

Moreover, we obtain
∫

I

(χ̄n(ūn − ūn
τ ◦ ϕ̄n

1 ), v)dt→ 0
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since ūn − ūn
τ → 0 in L2(I, L2) and since

ūn
τ − ūn

τ ◦ ϕ̄n
1 = τ

∫ 1

0

∇ūn
τ (x+ s(ϕ̄n

1 − x))ds · ωh ∗
F̄ ′

u(x, ū
n
τ )

b′(ūn
τ )

→ 0 in L2(I, L2).

The crucial point is to prove

1

τ

∫

I

(
b(ūn

τ ) − b(ūn
τ ◦ ϕ̄n

1 ), v
)
dt→

∫

I

(
∂uF̄ (x, u) · ∇u, v

)
dt. (4.18)

For this purpose we first notice that

b(ūn) − b(ūn
τ ◦ ϕ̄n

1 )

τ
=

∫ 1

0

b′
(
ūn + s(ūn

τ ◦ ϕ̄n
1 − ūn)

)
ds
ūn

τ − ūn
τ ◦ ϕ̄n

1

τ
.

Next, we use that
∫ 1

0
b′(.)ds → b′(u) a.e. in QT , b′(s) ≤ M, as well as (4.3),

(3.3), Lemma 4.3 and Lemma 4.4. Moreover, we use
∥∥ωh ∗ F̄ ′

u(x,ūn
τ )

b′(ūn
τ )

∥∥
∞

≤ C,

ωh ∗
F̄ ′

u(x,ūn
τ )

b′(ūn
τ )

→ ∂uF̄ (x,u)
b′(u)

, for a.e (t, x) ∈ QT when n→ ∞. We denote by

Zn
τ :=

∫ 1

0

˜̄un
τ (t, x+ s(ϕ̄n

1 − x)) ds.

Then, (3.3) and Lemma 4.4 imply that ∇Zn
τ ⇀ Φ in L2(I, L2). On the other

hand, from

Zn
τ − ūn

τ = τ

∫ 1

0

∫ 1

0

s∇˜̄un
τ (t, x+ sr(ϕ̄n

1 − x)) ds dr · ωh ∗
F̄ ′

u(x, ū
n
τ )

b′(ūn
τ )

,

we get Zn
τ − ūn

τ → 0 in L2(I, L2), which implies that Zn
τ → u in L2(I, L2) for

n → ∞. Thus, Φ ≡ ∇u, from which (4.18) follows. Consequently, we obtain
that the function u from Lemma 4.4 satisfies (2.1).

To prove the convergence ūn → u in L2(I, V1) for n → ∞ we put v =
ūn − u− (ūD

n − uD) in (4.16) and use Lemma 4.4. We first have
∫

I

(
Ā∇ūn,∇(ūn − u)

)
dt ≥ CA

∫

I

‖∇(ūn − u)‖2
0dt− Cn

where Cn =
∫

I
(Ā∇u,∇(ūn − u))dt→ 0 for n→ ∞ since ūn ⇀ u in L2(I,W

1
2 ).

The remaining terms in (4.16) converge to 0. To argue this, notice that ūn →
u in L2(I, L2) and ūD

n → uD in L2(I, V1). Furthermore, use the estimate∥∥ b(ūn
τ )−b(ūn

τ ◦ϕ̄
n
1
)

τ

∥∥
0
≤ C‖∇ūn

τ ‖0 ≤ C. Next, remark that δb(ūn) ⇀ ∂tb(u) in
L2(I, L2) and consequently

∫
I
(δb(ūn), ūn − u)dt→ 0 for n→ ∞.

Now we prove that (2.2) holds. To this end we take the limit n → ∞ in
(4.17). We first have (see Lemma 4.4)

∫

I

(
δ(b(ūn)w̄n), η

)
dt→

∫

I

〈∂t(b(u)w), η〉dt,
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and ∫

I

(DL
n

(
ūn,∇ūn

)
∇w̄n,∇η)dt→

∫

I

(
DL(u,∇u)∇w,∇η)dt.

This follows from the convergences ∇w̄n ⇀ ∇w in L2(I, L2) and ūn → u and
∇ūn → ∇u a.e. in QT and from the estimate ‖DL

n (ūn,∇ūn)‖∞ ≤ C(L). Next,
from Lemma 4.4 we deduce

∫

I

(
δb(ūn)w̄n

τ , η
)
dt→

∫

I

(
∂t(b(u))w, η

)
dt

and ∫

I

(
G(t, x, w̄n

τ ), η
)
dt→

∫

I

(
G(t, x, w), η

)
dt for n→ ∞.

The crucial point is to prove
∫

I

(
b(ūn)

w̄n − w̄n
τ ◦ ϕ̄n

2

τ
, η

)
dt→

∫

I

(v̄ · ∇w, η)dt for n→ ∞.

where v̄ = −(Ā∇u+ F̄ (x, u)). We proceed analogously as in (4.18). We use the
convergence ωh ∗

1
b(ūn)

(Ā∇ūn + F̄ (x, ūn
τ )) → 1

b(u)
(Ā∇u+ F̄ (x, u)) in L2(I, L2) on

account of

1

b(ūnτ)
(Ā∇ūn + F̄ (x, ūnτ)) →

1

b(u)
(Ā∇u+ F̄ (x, u)) in L2(I, L2) for n→ ∞,

where h = τ ρ, ρ ∈ (0, 2
3
). Along the same lines as in (4.18) we prove that

∫ 1

0

∇ ˜̄wn(t, x+ s(ϕ̄n
2 (x) − x))ds ⇀ ∇w in L2(I, L2).

Inserting the obtained limit results for n→ ∞ in (4.17) we arrive at (2.2).

To prove that the identity (2.3) is satisfied, we use ∂t(b(u)w) ∈ L2(I, V
∗
2 )

and we take the limit τ → 0 in the equality
∫

I

〈
b(u(t))w(t) − b(u(t− τ))w(t− τ)

τ
, ζ

〉
dt

=
1

τ

∫

I

(
b(u(t))w(t) − b(u(t− τ))w(t− τ), ζ

)
dt

=

∫ T−τ

0

(
b(u(t)),

ζ(t− τ) − ζ(t)

τ

)
dt−

∫ T

T−τ

(
b(u(t))w(t), ζ(t)

)
dt

−
1

τ

∫ τ

0

(
b(u0)w0, ζ(t)

)
dt,

where b(u(t))w(t) ≡ b(u0)w0 for t ∈ (−τ, 0). Noticing that

b(u(t))w(t) − b(u(t− τ))w(t− τ)

τ
→ ∂t(b(u)w) in L2(I, V

∗
2 ) for τ → 0
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we get (2.3). Summarizing, we have proved that {u,wL} is a variational solution
to Problem PL. Lemma 4.3 guarantees that ‖wL‖L2(I,V2) ≤ C independently
on L. Taking the the limit L→ ∞ in (2.2) and using wL ⇀ w in L2(I, V2), we
conclude that {u,w} is a variational solution to Problem P . The uniqueness of
the variational solution to Problem PL guarantees that the original sequences
{ūn} and {w̄n} are convergent.

To prove the convergence of w̄n → wL in L2(I, V2) for n → ∞ we follow
the same idea as in the proof of the convergence ūn → u in L2(I, V1). First, we
show that

lim sup

∫ t

0

(
δ(b(ūn)w̄n), w̄n − w

)
dt ≥ 0, a.e. t ∈ I. (4.19)

For this purpose we use Abel’s summation to obtain the equality

j∑

i=1

(
b(ui)wi − b(ui−1)wi−1, wi

)
=

1

2

∫

Ω

b(uj)w
2
jdx−

1

2

∫

Ω

b(u0)w
2
0dx

+
1

2

j∑

i=1

τ

∫

Ω

δb(ui)w
2
i dx

+
1

2

j∑

i=1

∫

Ω

b(ui−1)(wi − wi−1)
2dx.

We take the limit n→ ∞ and use the convergences δb(ūn) ⇀ ∂tb(u), w̄
n, w̄n

τ →
w in L2(I, L2). We get

lim sup

∫ t

0

(
δ(b(ūn)w̄n), w̄n

)
dt

≥
1

2

∫

Ω

b(u(t))w2(t) dx−
1

2

∫

Ω

b(u0)w
2
0 dx+

1

2

∫

Ω

∂tb(u)w
2 dx dt.

(4.20)

Then, from Lemma 4.3 and Lemma 2.4 we obtain (4.19). Next, we put η(s) =
(w̄n(s) − w(s) − (w̄D

n − wD))χ(0,t) in (4.17), where χ(0,t) is the characteristic
function of (0, t), and pass to the limit for n→ ∞. The elliptic part gives

∫ t

0

(
DL

n (ūn,∇ūn)∇w̄n,∇(w̄n − w)
)
dt

≥ CA

∫ t

0

‖w̄n − w‖2dt−

∫

I

(
DL

n (ūn,∇ūn)∇w,∇(w̄n − w)
)
dt.

(4.21)

Since w̄n ⇀ w in L2(I, V2) and since (DL
n (ūn,∇ūn)∇w → (DL(u,∇u)∇w in

L2(I, L2), the last term in (4.21) converges to 0 as n → ∞. As the remaining
terms in (4.17) also converge to 0, the convergence of {w̄n} in L2(I, V2) follows
and the proof is complete.
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5. Full discretization scheme

The convergence results obtained in Section 4 remain valid for a suitable full
discretization scheme where (3.1)–(3.2) are approximated on finite dimensional
spaces, e.g., by a fem. We look for uγ

i ∈ V1,γ ⊂ V1, w
γ
i ⊂ V2,γ ⊂ V2, where

dimV1,γ < ∞, dimV2,γ < ∞ and V1,γ → V2, V2,γ → V2 for γ → 0 in canonical
sense. We determine uγ

i , w
γ
i for i = 1, . . . , n from (see (3.1), (3.2))

(
λi

u
γ
i −u

γ
i−1 ◦ ϕ

i
1

τ
, v

)
+

(
Ā∇uγ

i ,∇v
)
=

(
fi − divxF̄ (x, uγ

i−1), v
)
, ∀v ∈ V1,γ (5.1)

and
(
b(ui)

w
γ
i −w

γ
i−1 ◦ ϕ

i
2

τ
, ψ

)
+

(
DL

i ∇w
γ
i ,∇ψ

)
=

(
G(ti, x, w

γ
i−1), ψ

)
, ∀ψ ∈ V2,γ , (5.2)

where uγ
0 := P

(1)
γ u0 and w

γ
0 := P

(2)
γ w0, with P

(l)
γ : Vl → Vl,γ , (l = 1, 2), being

orthogonal projections, and where λi ∈ L∞(Ω) satisfies

∣∣∣∣λi −
b(uγ

i ) − b(uγ
i−1 ◦ ϕ

i
1)

u
γ
i − u

γ
i−1 ◦ ϕ

i
1

∣∣∣∣ ≤ τ . (5.3)

Here, DL
i = D(σL(uγ

i ), σL(∇uγ
i )), with

ϕi
1(x) ≡ x− τωh ∗

F̄ ′
u(x, u

γ
i−1)

b′(uγ
i−1)

and ϕi
2(x) ≡ x− τωh ∗

v̄(uγ
i ,∇u

γ
i )

b(uγ
i )

.

Let α := (τ, γ) represents the discretization parameter corresponding to the
time and space discretization. By means of uγ

i , w
γ
i we define the step functions

ūα(t) = u
γ
i and w̄α(t) = w

γ
i for t ∈ (ti−1, ti), i = 1, . . . , n. (5.4)

Following the arguments in Section 4 we prove the convergence ūα → u and
w̄α → wL in corresponding functional spaces for α → 0, where {u,wL} is a
variational solution to the problem (1.1)–(1.5) in the sense of Definition 2.1. By
{ᾱ} we denote a subsequence of {α}. We shall assume that

‖P (2)
γ v‖∞ ≤ C‖v‖∞ ∀v ∈ V2,γ ∩ L∞(Ω) . (5.5)

Theorem 5.1. Retain the assumptions of Theorem 4.5. Assume that (5.5)
holds. Moreover, let Vl,γ → Vl (l = 1, 2) in the canonical sense. Then, one has
that ūᾱ → u in L2(I, V1) and w̄ᾱ → wL in L2(I,W

1
2 ) for ᾱ → 0, where {u,wL}

is a variational solution to Problem PL and ūα and w̄α are from (5.1)–(5.4).
If Problem PL has a unique solution (see, e.g., Theorem 2.5), then the original
sequences {ūα} and {w̄α} are convergent.
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Proof. We follow the arguments in Section 4 and obtain a priori estimates for
u

γ
i as in Lemma 4.2. Consequently, we get the same a priori estimates for wγ

i

as in Lemma 4.3 and the compactness of {ūα} as in Lemma 4.4. In the same
way as in Lemma 4.4 we find that δb(ūα) ⇀ ∂tb(u) in L2(I, L2). However, we
cannot verify that δ(b(ūα)w̄α) ⇀ ∂t(b(u)w) in L2(I, V

∗
2 ), since we do not obtain

the uniform boundedness of the functionals δ(b(ūα)w̄α) ∈ L2(I, V
∗
2 ), (uniformly

for α). We only have

‖δ(b(ūα)w̄α)‖L2(I,V ∗

2,γ) ≤ C.

We extend the functional δ(b(ūα)w̄α) ∈ L2(I, V
∗
2,γ) to Fα ∈ L2(I, V

∗
2 ), so

that ‖Fα‖L2(I,V ∗

2
) ≤ ‖Fα‖L2(I,V ∗

2,γ) by the definition

∫

I

〈Fα, v〉dt :=

∫

I

〈
δ(b(ūα)w̄α), P (2)

γ v
〉
dt =

∫

I

∫

Ω

δ(b(ūα)w̄α)P (2)
γ v dx dt. (5.6)

Then, Fα ⇀ F in L2(I, V
∗
2 ) since L2(I, V

∗
2 ) is reflexive. Due to the compactness

of {ūα} and {w̄α} in L2(I, L2), we have that b(ūα) → b(u) and b(ūα)w̄α) →
b(u)w in L2(I, L2) for α → 0. From these facts we find that F = ∂t(b(u)w).

To prove that {u, wL} is the variational solution to PL, we use a test
function v = z̃α in (5.1), where z̃α → v in L2(I, V1) for α → 0, and rewrite the
equation in a similar way as (4.16). By the same arguments as in Theorem 4.5,
taking the limit α → 0, we conclude that u satisfies (2.1).

We write ūα = z̄α + ūD,α and u = z+ uD. Let z̃α ∈ L2(I, V1,γ) be such that
z̃α → z in L2(I, V1), i.e., z̃α + ūD,α → u for α → 0 in L2(I,W

1
2 ). To prove

ūα → u for α → 0 in L2(I,W
1
2 ) we choose the test function v = ūα− (z̃α + ūD,α)

in (5.1) and transform the remaining equation in a similar way as (4.16). Using
the same arguments as in the proof of Theorem 4.5 and noticing that

∫

I

(
Ā∇(zα + ūD,α),∇(ūα − (zα + ūD,α))

)
dt→ 0, for α → 0,

we arrive at ūα → u in L2(I, V1) for α → 0. To prove that (2.2) holds, we
use δ(b(ūα)w̄α) ⇀ ∂t(b(u)w) in L2(I, V

∗
2 ) and ūα → u in L2(I, V1). By the

same arguments as in Lemma 4.4 we can prove that w̄α → wL in L2(I, L2) and
w̄α ⇀ wL in L2(I,W

1
2 ). For this purpose we first rewrite (5.2) in a similar way

as (3.2), where the splitting (4.11) is taken into account. Then, we multiply
by τ and sum up for i = j + 1, . . . , j + k. Next, we choose the test function
ψ = b(uγ

j+k)w
γ
j+k − b(uγ

j )w
γ
j − (P

(2)
γ [b(uγ

j+k)w
D,γ
j+k] − P

(2)
γ [b(uγ

j )w
D,γ
j ]) and sum

up the resulting equation for j = 1, . . . , n − k. Similarly as in the proof of
Lemma 4.3 we obtain

J0
1,1 ≥

n−k∑

j=1

∥∥b(uγ
j+k)w

γ
j+k − b(uγ

j )w
D,γ
j

∥∥2

0
τ
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and

|JD
1,1| ≤ ε

n−k∑

j=1

∥∥b(uγ
j+k)w

γ
j+k − b(uγ

j )w
D,γ
j

∥∥2

0
τ

+ Cε

n−k∑

j=1

j+k∑

i=j

∥∥P (2)γ[δb(u
γ
i )w

D,γ
i ]

∥∥
0
·
∥∥P (2)

γ [b(uγ
i−1)δw

D,γ
i ]

∥∥
0
τ 2

≤ ε

n−k∑

j=1

∥∥b(uγ
j+k)w

γ
j+k − b(uγ

j )w
D,γ
j

∥∥2

0
τ + Cεkτ

since ‖P
(2)
γ ‖ ≤ C. The remaining steps are similar as in the proof of Theorem 4.5

and we conclude that w̄α → wL in L2(I, L2) and w̄α ⇀ wL in L2(I,W
1
2 ) for

α → 0. To show that w = wL obeys (2.2) and that {u,wL} is a variational
solution to the problem (1.1)–(1.5) in the sense of Definition 2.1, we proceed as

follows. Take v ∈ L2(I, V2) ∩ L∞(QT ). Use the test function ψ = P
(2)
γ v in (5.2)

and rewrite this equation similarly as (4.17). In the first (parabolic) term we
use (5.5). The crucial point is to prove that

∫

I

(
b(ūα)

w̄α
τ − w̄α

τ ◦ ϕ̄α
2

τ
, P (2)

γ v

)
dt→

∫

I

(v̄∇w, v)dt for α → 0.

To this end we use

w̄α
τ − w̄α

τ ◦ ϕ̄α
2

τ
=

∫ 1

0

∇ ˜̄wα
τ (x+ s(ϕα(x) − x) ds · ωh ∗

v̄(ūα,∇ūα)

b(ūα)
.

Similarly as in Theorem 4.5 we obtain
∫ 1

0
∇ ˜̄wα

τ (x + s(ϕα(x) − x)ds ⇀ ∇w in

L2(I, L2) and ωh ∗
v̄(ūα,∇ūα)

b(ūα)
→ v̄(u,∇u)

b(u)
in L2(I, L2) for α → 0. Then, using (5.5)

and (5.6) we conclude that w = wL satisfies (2.2) and {u,wL} is a variational
solution to problem (1.1)–(1.5) in the sense of Definition 2.1.

It remains to prove the L2(I,W
1
2 )-convergence of {w̄α}. We follow the idea

used for the convergence of {uα} in L2(I,W
1
2 ). Let wα = ȳα + w̄D,α and w =

y + wD, where ȳα ∈ L2(I, V2,γ) and ȳα ⇀ y in L2(I,W
1
2 ). Let ỹα ∈ L2(I, V2,γ)

be such that ỹα → y in L2(I,W
1
2 ). Then , we put ψ = w̄α − (ỹα + w̄D,α) in (5.2)

and rewrite this equation in a similar way as (4.17). We have that

lim sup
α→0

∫ t

0

(
δ(b(ūα)w̄α), w̄α − (ỹα + w̄D,α)

)
dt ≥ 0 for a.e. t ∈ I

since∫ t

0

(
δ(b(ūα)w̄α), w̄α

)
dt =

1

2

(
b(ūα),{w̄α}2

)
−

1

2

(
b(u0), w

2
0

)

+
1

2

∫ t

0

∫

Ω

δb(ūα(w̄α)2dx dt+
1

2

∫ t

0

∫

Ω

b(ūα(w̄α−w̄α
τ )2dx dt

≡ Jα(t) for t = ti
(
ti = t

(n)
i

)
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and

lim sup
α→0

Jα(t) ≥ J(t) :=
1

2

∫

Ω

b(u(t))w2(t) dx−
1

2

∫

Ω

b(u0)w
2
0 dx

+
1

2

∫ t

0

∫

Ω

∂tb(u)w dx dt for a.e. t ∈ I.

On the other hand,
∫ t

0
(δ(b(ūα)w̄α), ỹα + w̄D,α)dt→ J(t) for a.e. t ∈ I for α → 0

because of δ(b(ūα)w̄α) ⇀ ∂t(b(u)w) and ỹα+w̄D,α → wL in L2(I,W
1
2 ) for α → 0.

Similarly as in (4.21) we have
∫ t

0

(
DL(ūα,∇ūα),∇(w̄α − (ỹα + w̄D,α))

)
dt

≥ CA

∫ t

0

‖∇(w̄α − w)‖2
0dt−

∫ t

0

(
DL(ūα,∇ūα)∇w,∇(w̄α − w)

)
dt

+

∫ t

0

(
DL(ūα,∇ūα)∇w̄α,∇(w − (ỹα + w̄D,α))

)
dt,

where the last two terms converge to 0 with α → 0. Then we obtain w̄α → w ≡
wL in L2(I,W

1
2 ) along the same lines as in the proof of Theorem 4.5. Thus the

proof is complete.

Remark 5.2. If the convective term generated by F̄ (x, u) is not dominant (with
respect to the diffusion), then a simplified approximation scheme can be used.
Here, (1.8) and (1.10) are replaced by

λi

ui − ui−1

τ
− div(Ā∇ui) = fi − divxF̄ (x, ui−1) −

ui − ui−1 ◦ ϕ
i
3

τ

with the “convergence” condition
∣∣λi−

b(ui)−b(ui−1)
ui−ui−1

∣∣ < τ, where ϕi
3(x) := x−τωh∗

F̄ ′
u(x, ui−1). In this case the only change in the convergence analysis concerns

the uniform L∞-boundedness of ui, i = 1, . . . , n. If this boundedness is shown,
then all other results remain valid.
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