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Strongly Extreme Points in
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Abstract. In this paper, criteria of strongly extreme points in Musielak—Orlicz spaces
endowed with the Orlicz norm are given.
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1. Introduction

It is well known that both strongly extreme points and extreme points are
important concepts in Banach Geometry Theory [1,3,15]. There are a lot of
discussions about the criteria for strongly extreme points and extreme points
(see [2-12]). The criteria for strongly extreme points and extreme points in the
classical Orlicz spaces have been given in [5,8,12] already. However, because of
the complication of Musielak—Orlicz spaces, at present there are only criteria
for extreme points which were obtained by A. Kaminska [9] in 1981. But the
criteria for strongly extreme points have not been discussed yet. In this paper,
by virtue of the local A-condition which has been introduced [14], necessary
and sufficient conditions for strongly extreme points in Musielak—Orlicz function
spaces equipped with the Orlicz norm were given.

Let (X, || - ||)denote a Banach space, B(X) and S(X) denote the unit ball
and the unit sphere of X, respectively. A point x € S(X) is said to be a strongly
extreme point if for any @, y, € X with ||z,| — 1,[lys]| — 1 and 2232 = 2,
there holds ||z, — y,|| — 0(n — o0). It is obvious that strongly extreme points
are extreme points, but the converse is not true.
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Let(T, >, u)be a nonatomic and complete measure space with u(7") < oc.
By M we denote a Musielak—Orlicz function, i.e., M : T x R — [0, +00]| satisfies
the conditions:

(1) M(-,u) is a > -measurable function for any u € R;

(2) M(t,0) = 0, lim,—oo M(t,u) = oo, and there exists u; > 0 such that
M(t,u;) < oo for ae. t €T,

(3) M(-,u) is even, convex and left-side continuous with respect to u € R.

A point g is said to be a point of strict convexity for M (t,-) if M (¢, uy) <
SM(t,ug — €) + 3 M(t,ug + €) holds for any e > 0.

We say that M satisfy the A[A]-condition (M € A[A] for short) if there
are a positive constant K > 0, a set C' € > with p(C) = 0 and a nonnegative
function 6 € L(T,), u) such that the inequality M (¢t,2u) < KM (t,u) + §(t)
holds for all t € A\ C and u € R. M is said to satisfy the A-condition if A = T.
In addition, we denote

e(t) =sup{u>0: M(t,u) =0}
B(t) = sup{u > 0: M(t,u) < oo},

and we may assume that u = 0 is not a point of strict convexity of M(t,-)
if e(t) > 0. Let x denote the > -measurable real function on (7>, u). The
convex modular of z with respect to M is py(x) = [ M(t,x(t)) dt. The linear
space {a:' : pM(f) < oo for some A > O} equipped with the Amemiya—Orlicz
norm |[z|° = inf {k > 0 : +(1+ pu(kz))} is a Banach space, and we call it
Musielak—Orlicz function space endowed with the Luxemburg norm, denoted
by L (T) (see [13]).

2. General results

In this section, we present some results relating the criteria for strongly extreme
points in Musielak—Orlicz spaces endowed with the Orlicz norm. First, we look
at the following lemma:

Lemma 2.1. If M € A and z,(t) — 0 for p-a.e. t € T', where u(T) < oo, then
lz.]|° — 0 if and only if par(z,) — 0.

Proof. We only need to prove that py(x,) — 0 implies that ||z,]|° — 0 as
n — oo. Using M € A, for any € > 0 there exists K > 0 and § € L(T, 3, u)
such that the inequality M(t, %) < KM(t,u) + 6(t) holds for p-a.e. t € T and
all u € R. By the Fegorov theorem, there exists eq € T with u(eg) < 1 such that
M(t, an(t)> convergent to 0 uniformly in 7"\ ;. Hence, fT\eO M(t, =DYay < 3

€



Strongly Extreme Points in Musielak-Orlicz Spaces 225

when n large enough. By pas(2,,) — 0, we have that py(x,) < 3 when n large
enough. Therefore,

) ) (2
<3+ | (MG 0) + 50)d
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|
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This implies that ||z, ||° < & when n large enough, i.e., ||,||° — 0asn — co. O

Theorem 2.2. x € S(Lyy) is a strongly extreme point if and only if:
(1) K(a) # 6, where K(x) = (b : k=0 + puaCha)] = ]
(2) fork € K(z),k|x(t)| is a point of strict convexity for M(t,-)(a.e.t € T);
(3) if T' C T, &kl < 1 implies M € A(T'), where &y(u) = inf{\ >0 :
pu () < oo}

Proof. Without loss of generality, we assume z(t) > 0 (a.e. t € T).

Necessity. If (1) is not necessary, then 1 = ||z||° = [, x(t)B(t)dt. Take
Tl,Tg - T such that T3 UT, = suppz, 71 N1, = 0 and lex(t)B(t) dt =
Jp, x(t)B(t) dt. Let

2x(t t el 2x(t tel
y(t) — x( )7 1 Z(t) — x( )7 2
0, teT\T, 0, teT\Ts.
Thus y # z,y + 2 = 2, [jy|° = [}, 22(t = [x(t)B(t)dt = 1, in the

same way we have ||z]|° = 1, this contradlcts the fact that x is an extreme point.

If (2) fails, then p{t € T : kxz(t) € (a¢, by)} > 0, where (ay, b;) is some affine
interval of M(t,-) and there exists ¢y > 0 small enough such that uA > 0,
where A = {t € T : kx(t) € (ar + €0, b — €9)}. We can suppose that M (t,u) =

alt )u+ﬁ( ) for u € (a¢,b;). Choose B,C C A, BNC = ¢, satisfying [, a(t) dt =
Jo (t)dt, and define

z(t)+¢, teB r(t)+ ¢, tel
g tedC 2(t)=qz(t)—%, teB
z(t), teT\ (BUCQC), z(t), teT\ (BUCO).
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Then y # 2,y + z = 2z, and

lyll® < —(1+ pu(ky))

ol B

=2 {1 + pu (kx| (Buc)) + /B[O[(t)(kx(t) +e) + B(t)] dt

~ﬁémw%ﬂw—@+5@m%
= % {1 + pu (kx| (BUC)) + /B M(t, kx(t)) dt + /B M(t, kx(t)) dt}

= (1 pu(ke)) = 1

In the same way we get ||z]|° < 1, this shows that x is not an extreme point.

If the condition (3) fails, then there exists A C 7,0 < s < 1, such that
Em(kz|a) <1—s < 1land M ¢ A(A). There are A, C A with pA, — 0 as
n — oo, and a sequence {u,} in S(LY,) such that u, = u,xa, and pp(u,) — 0
(see [9]). Let

o(t) = {x(t)> teT\ A, o (t) = {:L‘(t), teT\ A,

z(t) + qua(t), t€ Ay, 2(t) — Sun(t), tE€ A,
Then @, + y, = 2z and ||z, — y,||° = 22 > 0, but

1

2] < - ll + pavr (kx| a,) +/ M(t, kx(t) + suy,(t)) dt}
An
1 kx(t
<= [1+pM(kI|T\An) +(1— s)/ M <t, ﬂ) dt
k An 1—s
+s/ M(t,un(t))dt}
An

1—s T s
< ol + 2 2w () + o) = 1

Thus lim,, . ||2,]|° < 1, Similarity we get lim,, .o ||y.]|° < 1. Combining these
facts with x, + y, = 2z, we have lim, . ||2,]|° = 1,1im, .o ||yn]|° = 1, this
contradicts the fact that z is a strongly extreme point.
Sufficiency. Put ||2,]° — 1,[|y.]|° = 1,2, + y» = 2z, we want to prove
120 = ynl|® — 0(n — o0).

First, we will show that ||z,[|* = -[14par(knn)], [9nll® = 7= (14 par (hnyn)]
and k = sup,,{kn, h,} < 0o can be assumed. Otherwise, k, — oo or K(z,) = ¢,
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then we can assume that k,, — oo satisfies ||z,[|° > é[l + par(kpay)] — . Since

”w"—;xu — 1, we have

0 — [lzal® + l2[1° = |2n + 2|°

1 1 1 kn+k k,,
—_N knxn)] — — 4+ =1 kx)| — 1 —(Tn
> g bt o gl bl = S5 1 (o))
1
> ——.
n
Hence
k, + k 2knk T, +x |z + z|°
1 . — — 0.
2k, k k, + k 2 2
If ||ﬂcn+:v||0 [1 + /)M(wn ) xn+w)] then lim,, o Wy, = limnﬂoo ]zf_lzn = 2k, ie.,

{w,} is bounded Let z,, = oty = ¥t2 we also get x,,+y, = 2z, |z, [° — 1,

19]1° 10— 0 if and only if 2 — yn]l® — 0(n — o0).

— 1 and ||z, — ¥,

Stepl: We will show that k,z, —kx £ 0 in measure and k, — kasn — oco.
Since

0 — [lzal® + llyall” — N122]°

> kn h - _—

o Lot pn(nn)] 5= (o ()] = = = {1+ pM(kn+hn (2 +yn))]
foctl |l Fn i

>0,

s0 5 14 (it +33)] — 200 0, e

1 _ .
Sk { + oM (kn+hn( 2 ))} |z =0

Combining the last conditions with the fact that K(z) is singleton, we get

lim,,_ ,ffﬂ; = k. If kyz, — kz -5 0 fails , there exist € > 0, o > 0 such

that pA, > o, where A, = {t € T : |kpwn(t) — hoyn(t)| > €}. Since k — 1 >
kn — 1 = py(kpxyn), k=1 > pa(hay,), there exists large enough d > 0,
such that uB, < £, where B, = {t € T : |k,z,(t)| > d or |h,y,(t)| > d}.

57

. . . . . 1 kn
Since kx(t) is a point of strict convexity of M(t,-) and 0 < = < 7%,

hn < E_ < oo, there holds M(t,u) < —E—M(t,v) + L2 M(t,w) as

kn+hn 1+k kn‘i‘h}rz kn+hn
u € [kx(t) — 1+k kx(t) + (1+E)]’ u = knfhnv + 2w and |[v —w| > €. Thus,

there exists (¢ ( ) € (0,1) satisfying

ki hn
<1 —
M(tu) < [1=0(0)] | g Mt o)+ Mt w) |
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where u € [kx(t) — 1+k),ka:() (1€+E)]’ e < |v—w| < d. Because of
2k,

lim, o =35~ =k, we get pC, < ¢ for n large enough, where C, = {t eTl :

Bl (0] - yalt) = Zalua(t) ¢ [kolt) — ot kot) + 3] ). Since
d(t) > 0, there exists 6y > 0 small enough such that uD < %, where D =

{t € T :0(t) < do}. Since M(t,kx(t) + m) > 0, there is # > 0 small

enough such that uF < £, where B = {t € T : M(t,kz(t) + 2(11@)) < 6}.

Defining ©, = A, \ (B, UC, U DU E), we have uf, > ¢. If t € Q,, then
€ < |kpxn(t) — hpyn(t)| < 2d,

k,hn, € €
- - >
() () € (o) — 5o + 5] 60 2 6,
and M (t, kx(t) + m) > 0, because - +h < 1+_lc implies k}:tLhn > 1 L and
ko + T I, ki
M M
0 /T [kn Mt () + (t,hnyn(t))} dt
ko + T bl
- M
Foulim /T (t’ P CHORS I
ko + T hn kn
> 5 M(t, knz,, M(t, hyy,(1))] dt
—kmnénﬂm+m (O b0 + M B0
5
> :0/ M (t,kx(t) +;_> dt
k Ja, 2t(1 + k)
> @ 9-2>0.
E 5

This contradiction shows that k,x, — kx £50.

Since k’:f;n (xn + yn) is a convex combination between k,x, and h,y,, we

get that k,z, — klfl’f;;n (Tn + Yn) = knzp — ]3’“1’}1" z £ 0 holds. Since

_ knh, _ 2k, h,,
Tim pyy (k T (wn+yn)) < lim (k " —1> =k —1=pu(z),

we have

ul;gosup/]\/[( o +h — (2 (1) + yalt ))) dt—#lc}g sup/M (t, ka(t =0.

Combining this fact with (1), we get

lim sup/[k frh M(t, kpxn(t)) + 2 I_C:h M(t, hnyn(t))} dt = 0.

pe—0
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Thus
lim sup /[M(t, kny(t)) + M(t, hyy,(t))] dt = 0.

pe—0 5 e
Using the condition k,x, — kx —— 0, k, = 1 + ov(knxy) — 1+ py(kz) = k
(n — 00), i.e., k, — k (n — o0) and in the same way h, — k (n — 00).
Step 2: We will show that ||k,z, — kz||® — 0.
If Ty = p{t € T : x(t) = 0} > 0, by the condition (3) we know that
M € A(T)). By the Riesz lemma, we know that k,z,(t) — kz(t) (a.e. t € T)
(choose a subsequence if necessary), combining this fact with

lim sup / (Mt By (£))] d = 0,

ne—0 e

we know that pas(kn,zn|r,) — 0, then by the Lemma 1 we know that ||(k,x, —
kx)|111° = |(knzn)|n]|® — 0 (n — 00). So in the following discussion, we can
assume x(t) >0 (a.e. t €T).

If [|kpx, — kz||” — 0 (n — o00) fails, there exists ey > 0 satisfying ||k,x, —
kx| > 8k’ ¢y. For any m, choose 7, > 0 such that

/[M(t, knan(t)) + M(t, hoyn(t))] dt < x

e 2m’
where e C T,ue < 9. Choose G,, C T,uG,, < n, such that |k2§?t()t)|
1 and % — 1 holds uniformly on 7'\ G,,. Let n,, be large enough such

that |k, n,, (1) < (14 €0)kx(t), |hn,, Yn,, (t)] < (1 +€0)kz(t) if t € T\ G,,. Put

kn,, Tn,, (t kn,, Tn,, (t
Q:{tGT:Elmsuchthat|T(t)<)|Zl—|—€0 OI|T(25><)|21+60}.

Then we have Q C |JG,,. Since

/M(t, (1+ eo)k(t)) dt — / M, (1 + &) ka(t)) dt
Q Q

AU G
m

< | M(t, (14 e)kx(t))dt

+)° M(t, (1 + eo)kx(t)) dt

— Joncm

<3 1 K 0) + M i ()]

<Z;m:2,
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by condition (3) we know M € A(Q2). Take m large enough satisfying the
condition || kﬁ"”ﬁﬁ: (20, + Un,, — k)||° < €. Denote
kx(t)

Hm:{tET: k()

<1+ e, <l+4e€}

and put
H ={teH, : ka(t) <k, x,, (t)}
H, ={te Hy, :ky,x,,(t) < kx(t) < hy, Yn, (1)}
H, ={te€ H,, : kx(t) > max{k,, zn, (t),hn, Yo, (t)}}
Ift e H, , ky, o, (t) < (1+e)kx(t), then knmxnm(t) —kx(t) < eokx(t). Hence,

| (KT — k)| [|° < €0k < k7260, If t € H' . we also can get ||(hn,, Yn,, —
kx)| g ||° < eok. Combining this fact with

k7Lm hTLm &
K P, 1
P Y () — [ (@ () + Y (1)) 1+

we know that

Bl

=k,

Bl

||(knmxnm - ij)|H,::L ||0

kn, o, 0
<knmhnm - m(xnm + ynm))

- Hy,,
0
nm nm T, n - k
_ o Ky P, 0
<k [ (hnp Yy — k)| |7+ ﬁ(fﬁnm + Yn) — kx| | + €o
< E(€0k’ + 60) + e < 3]1’7260
Ifte . ky o, (t) > hy, yn, (1), then
G, — k)10 < | (2l 4 ,) = ) | -
n ne, — " n n - €0.
m m H,, knm 4 hnm m Ynm, H;:l/ 0
Ifte H ky xn (t) < hn, yn, (t), then
Ky P, ‘
G, = gy I < | (2205 ) = ) |
o i "
kn Nm, — n n
< (E—F 1)60

< 2k~2
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Thus we get ||(kn,,Tn,, — kx)|g,,||° < 6k~ 2€. It is clear that T'\ H,, C 2 and
MI"—W]T\HWL e LY,(9). Since k’“””mf(t)*kx(t) — 0 (a.e. t € T), we have the
following inequality:

/T\Hm y (u o, . (z;) - k:x(t))dt < % / (Mt b2, (1)) + M (2, Ea(2))] de

m

1
<gm 0 (k— o0).
Thus || (kn,, Tn,, — k2)|7\m,,|° < k™€ when m is large enough. Hence, we have
|k, Tn,, — kz||® < Tk™2€¢. A contradiction to the assumption that ||k, ©,, —
kx||® > 8k2¢,, which completes the proof of the theorem. O
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