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ExistenceTheory for SteadyFlows of Fluids with

Pressure and Shear Rate Dependent Viscosity,

for Low Values of the Power-Law Index

M. Buĺıček and V. Fǐserová

Abstract. We deal with a system of partial differential equations describing a steady
flow of a homogeneous incompressible non-Newtonian fluid with pressure and shear
rate dependent viscosity subject to the homogeneous Dirichlet (no-slip) boundary
condition. We establish a global existence of a weak solution for a certain class of
such fluids in which the dependence of the viscosity on the shear rate is polynomial-
like, characterized by the power-law index. A decomposition of the pressure and
Lipschitz approximations of Sobolev functions are considered in order to obtain al-
most everywhere convergence of the pressure and the symmetric part of the velocity
gradient and thus obtain new existence results for low value of the power-law index.
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1. Introduction

In this paper we are interested in mathematical analysis of steady flows of an
incompressible homogeneous non-Newtonian fluid in a bounded open domain
Ω ⊂ R

d (d ≥ 2) that adheres to the boundary ∂Ω. Such flows are described by
the following governing equations

div(v ⊗ v) − divTTT = f in Ω, div v = 0 in Ω, v = 0 on ∂Ω, (1.1)
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where v is the velocity of the fluid, f is the specific body force and TTT denotes
the Cauchy stress tensor. We assume that the Cauchy stress takes the form

TTT = −pIII + SSS(p,DDD(v)) = −pIII + ν(p, |DDD(v)|2)DDD(v), (1.2)

where p is the pressure (normal mean stress), SSS is the constitutively determined
part of the Cauchy stress and DDD(v) denotes the symmetric part of the velocity
gradient. The dependence of the viscosity ν on p and the second invariant
of DDD(v) includes non-Newtonian features, as shear and pressure thinning and
thickening, that the famous Navier-Stokes model is unable to capture.

Many experimental studies (see for example [5]) give clear evidence for the
possible dependence of material coefficients on the pressure and models of the
type (1.2) are often considered in various engineering areas, as in elastohydrody-
namics or mechanics of granular and visco-elastic materials. It is worth noticing
that there are at least two other concepts used in determining the form of the
constitutive equation for TTT that provide a solid theoretical basis for models of
the type (1.2). The key-words of the first approach, tabularly described in [27],
are the maximization of the rate of dissipation w.r.t. the state variables and
the structural constraints. The key-word of the second approach, originally for-
mulated in [26], is the implicit constitutive theory. We refer to [21, 22] where
more details concerning the application of these concepts to (1.2) are addressed.
The same sources [21, 22] provide also some explicit relationships between the
Cauchy stress, the shear rate and the pressure and more related references.

In order to have a complete system of equations, we look for the pressure p

satisfying
∫

Ω

p dx = p0 ≡ const. (1.3)

As it is not completely clear why we should assume such a ”non-physical” con-
dition, it requires a brief explanation. In the classical Navier–Stokes equations
(or in the case when SSS(p,DDD(v)) = SSS(DDD(v)), i.e., the viscous stress tensor does
not depend on the pressure) only the gradient of the pressure is met and so the
choice of a constant that fixes the pressure is irrelevant. In our case, on the other
hand, the situation is completely different. We deal with a pressure-dependent
viscous stress and the choice of the constant p0 may completely change the so-
lution (not only the pressure p but also the velocity v). For details and some
examples we refer to [15]. From the physical point of view it might be appropri-
ate to prescribe the pressure locally, which leads in the context of weak solutions
to prescribing the mean value of the pressure over some Ω0 ⊂ Ω. Note that the
recent work [7] deals with exactly this condition. As such a generalization of
(1.3) means essentially only technical difficulties, we do not consider it here.
Moreover, we set p0 ≡ 0 for simplicity.

The arrangement of the paper is as follows. In the next section we intro-
duce assumptions on SSS and also describe several important properties that the
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assumptions imply. We also fix the notation of the function spaces, formulate
the main theorem of the paper and give some comments on previous results and
new aspects of this paper. Then in Section 3 we recall several important lemmas
that will be used in the proof. The (ε, η)-approximate problem is described in
Section 4, where also several apriori estimates are derived. The last section is
then devoted to the proof of the main theorem, i.e., to the limit procedures in
ε and η.

2. Assumptions on SSS and the main existence theorem

2.1. Assumptions on SSS. For arbitrarily fixed r ∈ (1, 2) we assume that SSS(p,DDD)
introduced in (1.2) is a C1-mapping of R × R

d×d
sym into R

d×d
sym satisfying for all

DDD ∈ R
d×d
sym, BBB ∈ R

d×d
sym and p ∈ R the following two conditions:

C1

(

1 + |DDD|2
)

r−2
2 |BBB|2 ≤ ∂SSSij(p,DDD)

∂DDDkl

BBBijBBBkl ≤ C2

(

1 + |DDD|2
)

r−2
2 |BBB|2 (2.1)

∣

∣

∣

∣

∂SSS(p,DDD)

∂p

∣

∣

∣

∣

≤ γ0(1 + |DDD|2) r−2
4 ≤ γ0 < 1, (2.2)

with some positive constants C1, C2 and γ0. We refer to [9, 15] where several
examples of SSS(p,DDD) that satisfy (2.1)–(2.2) are considered.

Next, we recall several useful inequalities that are direct consequences of
the assumptions (2.1)–(2.2). In order to simplify the notation, we define for
arbitrary AAA,BBB ∈ R

d×d
sym

IAAA,BBB :=

∫ 1

0

(

1 + |BBB + s(AAA −BBB)|2
)

r−2
2 |AAA −BBB|2 ds.

Then the monotonicity of SSS satisfying (2.1)–(2.2) is expressed by the following
inequality:

C1

2
IAAA,BBB ≤ (SSS(p,AAA) − SSS(q,BBB)) · (AAA −BBB) +

γ2
0

2C1

|p − q|2 (2.3)

that holds for arbitrary p, q ∈ R. Another useful properties (as coercivity and
growth conditions) follow from the condition (2.1), namely

SSS(p,DDD) ·DDD ≥ C1

2r

(

|DDD|r − 1
)

(2.4)

and

|SSS(p,DDD)| ≤ C2

1 − (2 − r)λ
(1 + |DDD|)1−(2−r)λ for all λ ∈ [0, 1]. (2.5)

For the proofs of (2.3), (2.4) and (2.5) see [9] and [23, Lemma 5.1.19], respec-
tively.
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2.2. Main result. In what follows we consider that an open bounded domain
Ω ⊂ R

d, d ≥ 2, has Lipschitz boundary ∂Ω and we write Ω ∈ C0,1. For
1 ≤ q ≤ ∞ we define in the standard way the Lebesgue and Sobolev spaces
Lq(Ω) and W 1,q(Ω) equipped with the norm ‖ · ‖q and ‖ · ‖1,q, respectively.
The Sobolev spaces of functions that vanish on the boundary ∂Ω are defined

for 1 ≤ q < ∞ through W
1,q
0 (Ω) := C∞

0 (Ω)
‖·‖1,q . We also use the following

notation. If X(Ω) is a Banach space then (X(Ω))∗ stands for its dual space and
X(Ω)d := {u : Ω → R

d; ui ∈ X(Ω), i = 1, . . . , d}, similarly X(Ω)d×d := {AAA :
Ω → R

d×d;AAAij ∈ X(Ω), i, j = 1, . . . , d}. Next, we introduce the subspaces of
Lebesgue and Sobolev spaces

L
q
0(Ω) :=

{

h ∈ Lq(Ω) :

∫

Ω

h dx = 0

}

W
1,q
0,div(Ω)d :=

{

u ∈ W
1,q
0 (Ω)d : divu = 0 in Ω

}

.

Let us also denote the norm of the dual space (W 1,q
0 (Ω)d)∗ =: W−1,q′(Ω)d by

‖ · ‖−1,q′ and the duality pairing by 〈·, ·〉, q′ = q

q−1
.

We are ready to formulate the result on the existence of a weak solution to
(1.1)–(1.3) in the form of the following theorem.

Theorem 2.1 (Main theorem). Let Ω ∈ C1, d ≥ 2 and f ∈ W−1,r′(Ω)d. Let
2d

d+2
< r < min(2, 3d

d+2
) and the assumptions (2.1) and (2.2) be satisfied with1

γ0 <
C1

Cdiv(Ω, 2)(C1 + C2)
. (2.6)

Then there exists a couple (v, p) ∈ W
1,r
0,div(Ω)d × L

dr
2(d−r)

0 (Ω) such that

∫

Ω

SSS(p,DDD(v)) ·DDD(ϕ) dx −
∫

Ω

(v ⊗ v) · ∇ϕ dx =

∫

Ω

p divϕ dx + 〈f ,ϕ〉

for all ϕ ∈ C∞
0 (Ω)d.

(2.7)

The existence theory for steady flows of incompressible fluids with homoge-
neous Dirichlet boundary condition was first developed for the fluids with only
shear rate dependent material coefficients. It was initiated in the late 1960s
by Ladyzhenskaya (see [16–18]) and Lions (see [20]), showing the existence for
r ≥ 3d

d+2
with the use of standard arguments of the monotone operator the-

ory. This result was later extended also for r ≥ 2d
d+1

by Frehse, Málek and
Steinhauer in [10] and by Růžička in [29]. The proof was based on the so-called
L∞-truncation method, firstly introduced by Boccardo and Murat in [3], as well
as on the monotone operator theory. Recently, Frehse, Málek and Steinhauer

1The constant Cdiv(Ω, 2) depends only on the shape of Ω and is introduced in Lemma 3.3.
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in [11] and Diening, Málek and Steinhauer in [8] established the existence of
a weak solution for r > 2d

d+2
with the help of the Lipschitz approximations of

Sobolev functions.

The existence of a weak solution for steady flows with SSS depending on the
pressure and the shear rate subject to the homogeneous Dirichlet boundary
condition was firstly established by Franta, Málek and Rajagopal in [9] for
3d

d+2
< r < 2. For the same range of parameters r and for non-homogeneous

Dirichlet boundary condition (but still for inner flows) we refer to [19]. For such
cases it is enough to incorporate proper estimates on the pressure in the standard
monotone operator theory because for r ≥ 3d

d+2
the solution is a possible test

function. Inspired by a result in [8,11], we extend the theory presented in [9] for
all r > 2d

d+2
. For such values of the power-law index the Lipschitz approximation

method is available.

However, in our case, i.e., 2d
d+2

< r ≤ 3d
d+2

and SSS depends on the pressure and
the shear rate alike, the situation is even more tricky. For the reasons described
in Section 4, we have to consider a more complicated approximate system with
two levels of approximations and therefore to pass twice to the limit. The
compactness of the velocity gradient and of the pressure has to be established
in both limits, again with the help of the monotone operator condition (2.3).
However, the application of (2.3) requires the pressure belonging to L2, the
assumption fulfilled in the case 3d

d+2
< r < 2, but not if r ∈ ( 2d

d+2
, 3d

d+2
). To

overcome this problem, we decompose the pressure into two parts, one of them
satisfying this assumption and the other one having some other properties.

Another new aspect of our study resides in an extension of the existence to
an arbitrary dimension d ≥ 2. While the condition 2 > r > 3d

d+2
implies that

d = 2 or 3, for 3d
d+2

> r > 2d
d+2

no such restriction is obtained because for all

d ≥ 2 we have 2 > 2d
d+2

.

For the sake of completeness, we mention the known existence results for
unsteady flows, where the Dirichlet boundary condition seems to present an in-
teresting open problem. Málek, Nečas and Rajagopal in [24] and Hron, Málek,
Nečas and Rajagopal in [15] showed global-in-time existence for incompressible
fluids with pressure and shear rate dependent viscosity under spatially peri-
odic boundary conditions, and these results were extended to flows in bounded
domains subject to the Navier’s slip by Buĺıček, Málek and Rajagopal in [6].
Interestingly, for time dependent flows there are no results for a homogeneous
Dirichlet boundary condition (that are in the context of time independent flows
treated here).

On the other hand, there is no global existence theory available both for
steady and unsteady flows of fluids whose viscosity depends only on the pressure.
There are several studies, such as by Renardy [28], Gazzola [12] or Gazzola and
Secchi [13], but all of them suffer from the drawback that either the structure
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of the viscosity is contradicted by experiments or only short-in-time existence
of solutions for small data is shown. Recently, some analytical and numerical
solutions for the flows of fluids with pressure-dependent viscosities in special
geometries have been obtained by Hron, Málek and Rajagopal [14].

3. Tools

The purpose of this section is to introduce the necessary tools used later in the
proof of the main theorem. The proof itself combines the standard approaches
usually applied when dealing with mathematical analysis of problems similar to
ours (as Galerkin method, compact embedding and Minty method) with more
advanced methods such as the Lipschitz approximations of Sobolev functions,
the Lp-solvability of the divergence equation and the Lq-theory for the steady
Stokes system.

First, we recall the theory for the Stokes system.

Lemma 3.1 (Stokes operator, [2]). Let 2 Ω ∈ C1 and d ≥ 2. For any 1< q < ∞,

there exists a linear bounded operator S : W−1,q(Ω)d → W
1,q
0,div(Ω)d×L

q
0(Ω) such

that for h ∈ W−1,q(Ω)d and S(h) =: (Sv(h),Sp(h)) the following equality holds

in the sense of distributions:

−△Sv(h) + ∇Sp(h) = h in Ω. (3.1)

The next crucial method used in the proof of the main theorem is the so-
called Lipschitz approximation method. It is based on the fact that Sobolev
functions from W

1,p
0 (Ω), p ≥ 1, can be approximated by Lipschitz functions

that differ from the original ones only on sets of small Lebesgue measures.
Already Acerbi and Fusco in [1] showed their applications in the calculus of
variations and since then they have been used by many others in various areas
of analysis, for example in the existence theory of partial differential equations
or in the regularity theory. We consider the Lipschitz approximations in the
similar way as that in the study by Diening, Málek and Steinhauer [8], where
also the following theorem that summarizes the important properties of the
approximate functions together with more details and the proof can be found.

Lemma 3.2 (Lipschitz approximations, [8, Theorem 2.5]). Let Ω ∈ C0,1, d ≥ 2
and 1 < p < ∞. Let un ∈ W

1,p
0 (Ω)d be such that un ⇀ 0 weakly in W

1,p
0 (Ω)d

as n → ∞. We set

K := sup
n

‖un‖1,p < ∞

γn := ‖un‖p → 0 (n → ∞).

2Lemma 3.1 holds also for Ω ∈ C0,1 for d = 3 and for q ∈ ( 3
2 , 3). Since we need also q ≤ 3

2
in the paper, we do not formulate the Lemma in such generality.
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Let θn > 0 be such that (e.g. θn :=
√

γn) θn → 0 and γn

θn
→ 0 (n → ∞). Let

µj := 22j

. Then there exist a sequence λn,j with

µj ≤ λn,j ≤ µj+1 (3.2)

and a sequence un,j ∈ W
1,∞
0 (Ω)d such that for all j, n ∈ N

‖un,j‖∞ ≤ θn → 0 (n → ∞) (3.3)

‖∇un,j‖∞ ≤ cλn,j ≤ cµj+1 (3.4)

and (M denotes the Hardy–Littlewood maximal function3)

{un 6= un,j} ⊂ Ω ∩
(

{M(un) > θn} ∪ {M(∇un) > 2λn,j}
)

. (3.5)

Moreover, for all j ∈ N and n → ∞

un,j → 0 strongly in Lq(Ω)d ∀q ∈ [1,∞]

un,j ⇀ 0 weakly in W
1,q
0 (Ω)d ∀q ∈ [1,∞)

∇un,j ∗
⇀ 0 weakly* in L∞(Ω)d×d

(3.6)

and for all n, j ∈ N

‖∇un,jχ{un 6=u
n,j}‖p ≤ c‖λn,jχ{un 6=u

n,j}‖p ≤ c
γn

θn

µj+1 + c εj, (3.7)

where εj := K 2−
j

p vanishes as j → ∞ and the constant c depends on Ω.

The last important tool that we will often use in the proof is the Lp-
solvability of the Dirichlet problem for the divergence equation (firstly addressed
in [4]).

Lemma 3.3 (Bogovskĭı operator, [25, Lemma 3.17]). Let Ω ∈ C0,1 and d ≥ 2.
Then there exists a continuous linear operator B : L

p
0(Ω) → W

1,p
0 (Ω)d such that

for all 1 < p < ∞ and for all f ∈ L
p
0(Ω)

div(Bf) = f in Ω, ‖Bf‖1,p ≤ Cdiv(Ω, p)‖f‖p.

Moreover, if f = divu and u ∈ W
1,p
0 (Ω)d ∩ Lq(Ω)d with some 1 < q < ∞, then

there exists a constant C(Ω, q) such that ‖Bf‖q ≤ C(Ω, q)‖u‖q.

3For a function f ∈ L1(Rd), we define the Hardy–Littlewood maximal function through
(Mf)(x) := supr>0

1
|Br(x)|

∫

Br(x)
|f(y)|dy.
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4. Approximate system and its properties

In order to establish the existence of a weak solution to (1.1)–(1.3), we first
introduce the (ε, η)-approximate system. The ε-approximation is considered
since we need to control the pressure from the very beginning. Therefore, we
replace the constraint of incompressibility div v = 0 by the following Neumann
problem for the pressure of the form (ε > 0)

−ε△pε + εpε + div vε = 0 in Ω,
∂pε

∂n
= 0 on ∂Ω.

In order to be able to test with the solution itself, we consider η-approxima-
tion by introducing an extra term to the equation of linear momentum (1.1)1,
namely we add the term η|vε,η|2r′−2vε,η, where r′ = r

r−1
. Since div vε,η is no

longer equal to zero and we would still like to deal easily with the convective
term (for preservation of uniform estimates), we modify it as well. For this
purpose, we define the ”Bogovskĭı ” projection P : W

1,q
0 (Ω)d → W

1,q
0,div(Ω)d as

Pv := v − B(div v).

Note that from the definition it is obvious that divPv = 0 a.e. in Ω and
therefore considering vε,η ⊗ Pvε,η instead of vε,η ⊗ vε,η gives

∫

Ω

(vε,η ⊗ Pvε,η) · ∇vε,η dx = 0.

Later on, we will see that thanks to the additional term η|vε,η|2r′−2vε,η the
expression (vε,η ⊗ Pvε,η) · ∇vε,η is indeed an integrable function. Moreover,
from the properties of the Bogovskĭı operator (Lemma 3.3) we also have the
following estimates

‖Pvε,η‖1,r ≤ C‖vε,η‖1,r , ‖Pvε,η‖2r′ ≤ C‖vε,η‖2r′ . (4.1)

Incorporating all of the above-mentioned modifications, we obtain the (ε, η)-
approximate system of the following form:

η|vε,η|2r′−2vε,η + div(vε,η ⊗ Pvε,η) − div(SSS(pε,η,DDD(vε,η)) + ∇pε,η = f (4.2)

−ε△pε,η + εpε,η + div vε,η = 0, (4.3)

completed by the boundary conditions vε,η = 0 and ∂pε,η

∂n
= 0 on ∂Ω. Note that

(4.3) implies that
∫

Ω
pε,η dx = 0.

The following lemma establishes the existence of a weak solution to (ε, η) -
approximative system and shows the uniform estimates fulfilled by the approx-
imate velocity vε,η and the approximate pressure pε,η.
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Lemma 4.1. Let ε, η > 0 be arbitrary. Let all assumptions of Theorem 2.1 be

satisfied. Then there exists a couple (vε,η, pε,η) satisfying

vε,η ∈ W
1,r
0 (Ω)d ∩ L2r′(Ω)d and pε,η ∈ W 1,2(Ω) ∩ L2

0(Ω), (4.4)

ε

∫

Ω

∇pε,η · ∇ξ dx + ε

∫

Ω

pε,ηξ dx +

∫

Ω

div vε,ηξ dx = 0

for all ξ ∈ W 1,2(Ω),

(4.5)

and

η

∫

Ω

|vε,η|2r′−2vε,η ·ϕ dx +

∫

Ω

SSS(pε,η,DDD(vε,η)) ·DDD(ϕ) dx

−
∫

Ω

(vε,η ⊗ Pvε,η) · ∇ϕ dx −
∫

Ω

pε,η divϕ dx = 〈f ,ϕ〉

[0.1cm]for all ϕ ∈ W
1,r
0 (Ω)d ∩ L2r′(Ω)d.

(4.6)

Moreover,

ε‖∇pε,η‖2
2 + ε‖pε,η‖2

2 + C‖∇vε,η‖r
r + η‖vε,η‖2r′

2r′ ≤ C < ∞ (4.7)

and consequently,

‖SSS(pε,η,DDD(vε,η))‖r′ ≤ C < ∞. (4.8)

Furthermore, the pressure satisfies the following uniform estimate with respect

to ε:
‖pε,η‖ 2dr

(d−2)r+d
≤ C(η) < ∞. (4.9)

Proof. First of all, note that all the integrals above make sense, including
the integral

∫

Ω
div vε,ηξ dx as W 1,2(Ω) →֒ Lr′(Ω) for r > 2d

d+2
. The existence

of (vε,η, pε,η) fulfilling (4.4)–(4.6) can be proven via Galerkin approximations
with the help of the compact embedding and the monotonicity condition (2.3).
Brouwer’s fixed point theorem, properties (4.1) of the projection Pvε,η and Vi-
tali’s theorem has to be used. The proof then follows the same pattern as in [9].
We comment the derivation of inequalities (4.7)–(4.9) only.

Taking ξ := pε,η in (4.5) and ϕ := vε,η in (4.6), adding resulting equations
and using Korn’s, Young’s and Poincaré’s inequalities lead to the estimate (4.7).
Inequality (4.8) then follows from the growth condition (2.5) with λ = 1.

In order to obtain the estimate (4.9) on the pressure pε,η, we set ϕ = ϕε,η :=
B(|pε,η|s−2pε,η − 1

|Ω|

∫

Ω
|pε,η|s−2pε,η dx) in (4.6) with s = 2dr

(d−2)r+d
. Note that from

the properties of the Bogovskĭı operator ϕε,η satisfies

‖ϕε,η‖1,s′ ≤ 2Cdiv(Ω, s′)‖pε,η‖s−1
s . (4.10)
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We use the fact that
∫

Ω
pε,η dx = 0 and with the help of (2.5), (4.7), (4.10) and

Sobolev embeddings, namely W 1,s′(Ω) →֒ L2r′(Ω), we can conclude (note that
r ≤ s′ and s ≤ r′)

‖pε,η‖s
s =

∫

Ω

SSS(pε,η,DDD(vε,η)) ·DDD(ϕε,η) dx − 〈f ,ϕε,η〉

−
∫

Ω

(vε,η ⊗ Pvε,η) · ∇ϕε,η dx + η

∫

Ω

|vε,η|2r′−2vε,η ·ϕε,η dx

≤ C(1 + ‖DDD(vε,η)‖r)
r−1‖ϕε,η‖1,r + ‖f‖−1,r′‖ϕε,η‖1,r

+ ‖vε,η ⊗ Pvε,η‖s‖∇ϕε,η‖s′ + η‖vε,η‖2r′−1
2r′ ‖ϕε,η‖2r′

≤ C(η)‖ϕε,η‖1,s′ ≤ C(η)‖pε,η‖s−1
s ,

which leads to the desired estimate (4.9). �

5. Proof of the main theorem

This final section is devoted to the proof of Theorem 2.1. The proof is split
into several steps that will be discussed in the following subsections. In order to
obtain a weak solution to (1.1)–(1.3), we first recall (ε, η)-approximate system
introduced in the previous section and let first ε and then η tend to 0. In both
limits the difficulty occurs in the viscous stress tensor because it depends on the
pressure and on the shear rate nonlinearly. Therefore, several extra tools are
needed such as a decomposition of the pressure or the Lipschitz approximations
of Sobolev functions.

5.1. Limit ε → 0. For simplicity, we denote (vε, pε) := (vε,η, pε,η) in this
subsection, where (vε,η, pε,η) is the couple introduced in Lemma 4.1. First of all,

the estimates (4.7), (4.8) and (4.9) allow us to find a (not relabeled) subsequence

(vε, pε) and a couple (v, p) ∈ (W 1,r
0 (Ω)d ∩ L2r′(Ω)d) × L

2dr
(d−2)r+d

0 (Ω) such that

vε ⇀ v weakly in W
1,r
0 (Ω)d

vε ⇀ v weakly in L2r′(Ω)d

pε ⇀ p weakly in L
2dr

(d−2)r+d

0 (Ω)

SSS(pε,DDD(vε)) ⇀ SSS weakly in Lr′(Ω)d×d,

(5.1)

and due to the compact embedding and the interpolation inequality

vε → v strongly in Lq(Ω)d for all 1 ≤ q < dr
d−r

vε → v strongly in Lq(Ω)d for all 1 ≤ q < 2r′

|vε|2r′−2vε ⇀ |v|2r′−2v weakly in L
2r′

2r′−1 (Ω)d.

(5.2)
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We would like to pass to the limit in the identities (4.5) and (4.6). Doing so, it
follows directly from the first identity and from (4.7) that

div v = 0 a.e. in Ω. (5.3)

This fact helps us to treat the convective term. Indeed, (5.2)2 and (5.3) imply
that

Pvε → v strongly in Lq(Ω)d for all q : 1 ≤ q < 2r′, (5.4)

which can be gained from the definition of Pvε and from the linearity and
continuity of the Bogovskĭı operator B (Lemma 3.3). Therefore, using (5.1)-
(5.4), one can easily deduce that

η

∫

Ω

|v|2r′−2v ·ϕ dx −
∫

Ω

(v ⊗ v) · ∇ϕ dx +

∫

Ω

SSS ·DDD(ϕ) dx

=

∫

Ω

p divϕ dx + 〈f ,ϕ〉 for all ϕ ∈ W 1,∞(Ω)d ∩ W
1,r
0 (Ω)d.

(5.5)

It remains to identify SSS = SSS(p,DDD(v)) a.e. in Ω. To show this, it is enough to
prove that

pε → p a.e. in Ω and DDD(vε) → DDD(v) a.e. in Ω, (5.6)

at least for a subsequence. Vitali’s theorem then completes this part of the
proof.

In order to show (5.6), we first decompose the pressure pε into two particular
pressures. The first one will converge strongly in some Lebesgue space and the
second one only weakly but in some ”better” Lebesgue space, namely in Lr′(Ω).
As a second step, we recall the monotonicity condition (2.3) for SSS and with the
help it we will be able to prove (5.6).

For the decomposition of the pressure,we consider two Stokes problems (3.1)
with the right-hand sides hi = hε

i (i = 1, 2) of the form

hε
1 = div(SSS(pε,DDD(vε))) + f ∈ (W 1,r

0 (Ω))∗

hε
2 = − div(vε ⊗ Pvε) − η|vε|2r′−2vε ∈ (W 1,s′

0 (Ω))∗, s′ :=
2dr

(d + 2)r − d
,

and we denote (vε
i , p

ε
i ) := S(hε

i ), i = 1, 2. Lemma 3.1 then implies

‖∇vε
1‖r′ + ‖pε

1‖r′ ≤ C‖hε
1‖(W 1,r

0 (Ω))∗ ≤ C + C‖SSS(pε,DDD(vε))‖r′

(4.8)

≤ C

‖∇vε
2‖s + ‖pε

2‖s ≤ C‖hε
2‖(W 1,s′

0 (Ω))∗
≤ C‖vε ⊗ Pvε‖s+ Cη‖vε‖2r′−1

2r′

(4.7)

≤ C(η−1).
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Owing to the strong convergence result (5.2)2 and the linearity of S, we get

∇vε
1 ⇀ ∇v1 weakly in Lr′(Ω)d×d

pε
1 ⇀ p1 weakly in Lr′(Ω)

∇vε
2 → ∇v2 strongly in Lq(Ω)d×d

pε
2 → p2 strongly in Lq(Ω),

(5.7)

where q ∈ [1, 2dr
(d−2)r+d

). Using (4.6) and the linearity of S we deduce that

S(h1) + S(h2) = S(h1 + h2) = S(∇pε) = (0,∇pε). Consequently,

pε = pε
1 + pε

2 and vε
1 = −vε

2, (5.8)

and by using (5.7)3 we obtain

∇vε
1 → ∇v1 strongly in Lq(Ω)d×d. (5.9)

Next, setting AAA := DDD(vε), BBB := DDD(v), p := pε and q := p1 + pε
2 in (2.3) and

integrating it over the domain Ω, we have

C1

2

∫

Ω

IDDD(vε),DDD(v) dx

≤
∫

Ω

(

SSS(pε,DDD(vε)) − SSS(p1 + pε
2,DDD(v))

)

· (DDD(vε) −DDD(v)) dx

+
γ2

0

2C1

‖pε
1 − p1‖2

2.

(5.10)

Our goal is to show that
∫

Ω
IDDD(vε),DDD(v) dx → 0 for ε → 0.

First, since pε
2 converges (for a not relabeled sequence) a.e. in Ω, (2.5) with

λ = 1 and Lebesgue’s dominated convergence theorem imply that

SSS(p1 + pε
2,DDD(v)) → SSS(p,DDD(v)) strongly in Lr′(Ω)d×d. (5.11)

Therefore,
∫

Ω

SSS(p1 + pε
2,DDD(v)) · (DDD(vε) −DDD(v)) dx → 0 for ε → 0. (5.12)

Next, considering the weak formulation (4.6) with ϕ := vε − v, we arrive at

∫

Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx =

∫

Ω

pε div(vε − v) dx + 〈f ,vε − v〉

+

∫

Ω

(vε ⊗ Pvε) · ∇(vε − v) dx

− η

∫

Ω

|vε|2r′−2vε · (vε − v) dx.
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As div v = 0 a.e. in Ω and
∫

Ω
pε div vε dx = −ε‖∇pε‖2

2 − ε‖pε‖2
2, which follows

from (4.5) with ξ := pε, and since the terms ε‖∇pε‖2
2 +ε‖pε‖2

2 are non-negative,
we then conclude
∫

Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx

≤
∫

Ω

(vε ⊗ Pvε) ·∇(vε− v) dx − η

∫

Ω

|vε|2r′−2vε · (vε − v) dx + 〈f ,vε − v〉

=

∫

Ω

(vε ⊗ Pvε) ·∇(vε− v) dx − η‖vε‖2r′

2r′ + η

∫

Ω

|vε|2r′−2vε · v dx + 〈f ,vε− v〉.

Consequently, we find (after using the weak lower semicontinuity of norms and
convergence results (5.1)–(5.2)) that

lim sup
ε→0

∫

Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx ≤ −
∫

Ω

(v ⊗ v) · ∇v dx = 0. (5.13)

Hence, in view of (5.13) together with (5.12), the condition (5.10) can be ex-
pressed as

C1

2

∫

Ω

IDDD(vε),DDD(v) dx ≤ g(ε) +
γ2

0

2C1

‖pε
1 − p1‖2

2 (5.14)

with g(ε) → 0 as ε → 0.

In order to handle the term ‖pε
1 − p1‖2

2, we consider the weak formulation
of (3.1) for hε

1 with the special test function ϕε := B(pε
1 − p1). Note that

∫

Ω
(pε

1 − p1) dx = 0. Since pε
1 ⇀ p1 weakly in Lr′(Ω), from the continuity and

linearity of the Bogovskĭı operator we see that

ϕε ⇀ 0 weakly in W
1,r′

0 (Ω)d. (5.15)

Thus, testing (3.1) for h := h1 by ϕε we obtain

‖pε
1 − p1‖2

2 =

∫

Ω

∇vε
1 · ∇ϕε dx +

∫

Ω

SSS(pε,DDD(vε)) ·DDD(ϕε) dx

− 〈f ,ϕε〉 −
∫

Ω

p1(p
ε
1 − p1) dx

=

∫

Ω

∇vε
1 · ∇ϕε dx +

∫

Ω

SSS(p1 + pε
2,DDD(v)) ·DDD(ϕε) dx (5.16)

+

∫

Ω

(SSS(pε,DDD(vε)) − SSS(p1 + pε
2,DDD(v))) ·DDD(ϕε) dx

− 〈f ,ϕε〉 −
∫

Ω

p1(p
ε
1 − p1) dx.

From (5.15) and from (5.7)2 we deduce that

lim
ε→0

(

〈f ,ϕε〉 +

∫

Ω

p1

(

pε
1 − p1

)

dx

)

= 0. (5.17)
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Moreover, using the same arguments as in (5.11) and (5.12), we get

lim
ε→0

∫

Ω

SSS
(

p1 + pε
2,DDD(v)

)

·DDD(ϕε) dx = 0. (5.18)

Since ∇ϕε ⇀ 0 weakly in Lr′(Ω)d×d and r′ > 2, ∇ϕε ⇀ 0 weakly in L2(Ω)d×d

as well. Using (5.7)1, (5.9) and the fact that r′ > 2, we derive that ∇vε
1 → ∇v1

strongly in L2(Ω)d×d. Consequently,

lim
ε→0

∫

Ω

∇vε
1 · ∇ϕε dx = 0. (5.19)

From (5.17), (5.18) and (5.19) we deduce that

‖pε
1 − p1‖2

2 = g(ε) +

∫

Ω

(

SSS(pε,DDD(vε)) − SSS(p1 + pε
2,DDD(v))

)

·DDD(ϕε) dx,

where g(ε) → 0 for ε → 0. After applying the assumptions (2.1) and (2.2) to
the integral on the right-hand side, we obtain

‖pε
1 − p1‖2

2

≤ g(ε) + γ0

∫

Ω

|pε
1 − p1||DDD(ϕε)| dx

+ C2

∫

Ω

∫ 1

0

(

1+|DDD(v) + s(DDD(vε) −DDD(v))|2
)

r−2
2 |DDD(vε) −DDD(v)| |DDD(ϕε)| ds dx.

Next, we use the fact that r < 2 and by Hölder’s inequality we get

‖pε
1 − p1‖2

2 ≤ g(ε) + γ0‖pε
1 − p1‖2‖∇ϕε‖2 + C2

(
∫

Ω

IDDD(vε),DDD(v) dx

)
1
2

‖∇ϕε‖2

≤ g(ε) + γ0Cdiv(Ω, 2)‖pε
1 − p1‖2

2

+ C2Cdiv(Ω, 2)

(
∫

Ω

IDDD(vε),DDD(v) dx

)
1
2

‖pε
1 − p1‖2.

Application of Young’s inequality gives

(1 − γ0Cdiv(Ω, 2))‖pε
1 − p1‖2

2 ≤ g(ε) +
1 − γ0Cdiv(Ω, 2)

2
‖pε

1 − p1‖2
2

+
C2

2C
2
div(Ω, 2)

2(1 − γ0Cdiv(Ω, 2))

∫

Ω

IDDD(vε),DDD(v) dx.

As 1 − γ0Cdiv(Ω, 2) − 1−γ0Cdiv(Ω,2)
2

> 0 due to (2.6), we then conclude

‖pε
1 − p1‖2

2 ≤ g(ε) +
C2

2C
2
div(Ω, 2)

(1 − γ0Cdiv(Ω, 2))2

∫

Ω

IDDD(vε),DDD(v) dx. (5.20)
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Coming back to (5.14) and incorporating (5.20), we finally get

C1

2

∫

Ω

IDDD(vε),DDD(v) dx ≤ g(ε) +
γ2

0

2C1

C2
2C

2
div(Ω, 2)

(1 − γ0Cdiv(Ω, 2))2

∫

Ω

IDDD(vε),DDD(v) dx

with g(ε) → 0 for ε → 0. As C1

2
− γ2

0

2C1

C2
2C2

div(Ω,2)

(1−γ0Cdiv(Ω,2))2
> 0, again thanks to (2.6),

we indeed have
∫

Ω

IDDD(vε),DDD(v) dx → 0 for ε → 0. (5.21)

The almost everywhere convergence (at least for a subsequence) of the pres-
sure pε in Ω then follows from (5.8) since (5.21) and (5.20) imply the a.e.
convergence of the pressure pε

1 and from (5.7)4 also the pressure pε
2 converges

a.e. in Ω. Following step by step the same scheme as in [6], one can easily show
that (5.21) implies (at least for subsequence)

DDD(vε) → DDD(v) a.e. in Ω.

Using Vitali’s theorem, we then conclude that SSS = SSS(p,DDD(v)).

5.2. Limit η → 0. In this subsection we use the result proven in Subsection 5.1,
namely the equation (5.5). Purely from technical reasons, let us first take

η := 1
n
. Then we indeed know that there exists a couple (vn, pn) ∈ (W 1,r

0,div(Ω)d∩
L2r′(Ω)d) × L

2dr
(d−2)r+d

0 (Ω) such that4

1

n

∫

Ω

|vn|2r′−2vn ·ϕ dx +

∫

Ω

SSS(pn,DDD(vn)) ·DDD(ϕ) dx −
∫

Ω

pn divϕ dx

−
∫

Ω

(vn ⊗ vn) · ∇ϕ dx = 〈f ,ϕ〉 for all ϕ ∈ W
1, 2dr

(d+2)r−d

0 (Ω)d.

(5.22)

Note that applying the density of smooth functions argument, we also have that
(5.22) is valid for all ϕ ∈ W

1,r
0 (Ω)d ∩ L2r′(Ω)d. Next, taking ϕ := vn in (5.22)

and using the same arguments as in (4.7), we verify

C‖∇vn‖r
r +

1

n
‖vn‖2r′

2r′ ≤ C < ∞ , (5.23)

and then again from (2.5) with λ = 1 and (5.23) we have that

‖SSS(pn,DDD(vn))‖r′ ≤ C < ∞. (5.24)

In order to obtain an estimate for the pressure pn independent of n, we apply
the same procedure as for pε, namely we take the test function ϕ = ϕn :=

4In formula (5.5) the test functions ϕ are taken from W
1,r
0 (Ω)d ∩ W 1,∞(Ω)d. But once

having (5.1), one can easily deduce by using the density of smooth functions that formula

(5.5) (and consequently also (5.22)) is valid for all ϕ ∈ W
1, 2dr

(d+2)r−d

0 (Ω)d.
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B(|pn|s−2pn − 1
|Ω|

∫

Ω
|pn|s−2pn dx) in (5.22) with s := dr

2(d−r)
. The function ϕn

then fulfills
‖ϕn‖1,s′ ≤ 2Cdiv(Ω, s′)‖pn‖s−1

s . (5.25)

Note that
∫

Ω
pn dx = 0. With the help of (2.5), (5.23), (5.25), the embedding

W 1,s1 →֒ L2r′(Ω), s1 = 2dr
(d+2)r−d

, and the fact that s1 ≤ s′ and r+1
2r

≤ 1 we
conclude

‖pn‖s
s =

∫

Ω

SSS(pn,DDD(vn)) ·DDD(ϕn) dx − 〈f ,ϕn〉

−
∫

Ω

(vn ⊗ vn) · ∇ϕn dx +
1

n

∫

Ω

|vn|2r′−2vn ·ϕn dx

≤ C(1 + ‖DDD(vn)‖r)
r−1‖ϕn‖1,r + ‖f‖−1,r′‖ϕn‖1,r

+ ‖vn ⊗ vn‖s‖∇ϕn‖s′ +
1

n
‖vn‖2r′−1

2r′ ‖ϕn‖2r′

≤ C‖ϕn‖1,s′ + C
1

n
(‖vn‖2r′

2r′)
r+1
2r ‖ϕn‖1,s1

≤ C‖ϕn‖1,s′

≤ C‖pn‖s−1
s ,

which leads to
‖pn‖ dr

2(d−r)
≤ C < ∞. (5.26)

Owing to (5.23), (5.24) and (5.26) we can again find a (not relabeled) subse-

quence (vn, pn) and (v, p) ∈ W
1,r
0,div(Ω)d × L

dr
2(d−r)

0 (Ω) such that

vn ⇀ v weakly in W
1,r
0,div(Ω)d

pn ⇀ p weakly in L
dr

2(d−r)

0 (Ω)

SSS(pn,DDD(vn)) ⇀ SSS weakly in Lr′(Ω)d×d,

(5.27)

and due to the compact embedding

vn → v strongly in Lq(Ω)d for all q : 1 ≤ q < dr
d−r

. (5.28)

Especially, vn → v strongly in L2(Ω)d (as r > 2d
d+2

). Thus, it is easy to pass to
the limit in the convective term and also in all linear terms. Moreover, having
(5.23), we directly obtain that

1

n

∫

Ω

|vn|2r′−2vn ·ϕ dx → 0 ∀ϕ ∈ L∞(Ω)d.

Thus, to prove (2.7) it remains to show that SSS = SSS(p,DDD(v)). Similarly as before,
it is enough to know that

pn → p a.e. in Ω and DDD(vn) → DDD(v) a.e. in Ω, (5.29)
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at least for a subsequence. Vitali’s theorem then completes the whole proof.

In order to show (5.29), we again decompose the pressure pn into two parts
and recall the monotone properties of SSS (2.3). However, we use this condition
in a different way as in the previous section. We apply the so-called Lipschitz
approximations of Sobolev functions that (as we are going to see) are essential
for the proof.

Consider again two auxiliary Stokes problems (3.1) with the right-hand
sides hi = hn

i (i = 1, 2) of the form

hn
1 = div(SSS(pn,DDD(vn))) + f ∈ (W 1,r

0 (Ω))∗

hn
2 = − div(vn ⊗ vn) − 1

n
|vn|2r′−2vn ∈ (W 1,s′

0 (Ω))∗, s′ =
dr

(d + 2)r − 2d
,

and denote (vn
i , pn

i ) := S(hn
i ), i = 1, 2. Similarly as before, we again have

vn
1 = −vn

2 and pn = pn
1+pn

2 and we also obtain the following estimates, uniformly
w.r.t. n:

‖∇vn
1‖r′ + ‖pn

1‖r′ ≤ C‖hn
1‖(W 1,r

0 (Ω))∗ ≤ C + C‖SSS(pn,DDD(vn))‖r′

(5.24)

≤ C

‖∇vn
2‖s+ ‖pn

2‖s ≤ C‖hn
2‖(W 1,s′

0 (Ω))∗
≤ C‖vn‖2

2s+ C
1

n
1

2r′

(

1

n
‖vn‖2r′

2r′

)
r+1
2r (5.23)

≤ C.

From these inequalities thanks to (5.28) we get

∇vn
1 ⇀ ∇v1 weakly in Lr′(Ω)d×d

pn
1 ⇀ p1 weakly in Lr′(Ω)

∇vn
2 → ∇v2 strongly in Lq(Ω)d×d

pn
2 → p2 strongly in Lq(Ω),

(5.30)

where q ∈ [1, dr
2(d−r)

). And again from the fact that vn
1 = −vn

2 we obtain

∇vn
1 → ∇v1 strongly in Lq(Ω)d×d.

We want to apply the similar monotone operator argument as in the pre-
ceding subsection but now we cannot directly use ϕ = vn −v as a test function
in order to treat the term

∫

Ω
SSS(pn,DDD(vn)) ·DDD(vn −v) dx. This is due to the fact

that we are interested in the case when 2d
d+2

< r ≤ 3d
d+2

and for this range of r’s
the function vn − v is not an admissible test function anymore. The trouble is
caused by the convective term since

∫

Ω
(vn ⊗ vn) · ∇(vn − v) dx → 0 provided

that r > 3d
d+2

. Nevertheless, we notice that thanks to (5.27)1 the functions

un := vn − v

satisfy the assumptions of Lemma 3.2 on Lipschitz approximations of functions
from W

1,r
0 (Ω)d. Therefore, there exists a sequence un,j ∈ W

1,∞
0 (Ω)d possessing
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the properties (3.3)–(3.7). Of course,

Ω = {un = un,j} ∪ {un 6= un,j} =: Un,j ∪ (Ω \ Un,j).

On returning to (2.3) with AAA := DDD(vn), BBB := DDD(v), p := pn and q := p1 +pn
2 ,

and integrating it over the set of coincidence Un,j, we obtain (χ denotes the
characteristic function)

C1

2

∫

Un,j

IDDD(vn),DDD(v)dx ≤
∫

Un,j

(

SSS(pn,DDD(vn))− SSS(p1+pn
2 ,DDD(v))

)

·DDD(un,j) dx

+
γ2

0

2C1

‖(pn
1 − p1)χUn,j

‖2
2.

(5.31)

Our goal is to show that lim supn→∞

∫

Un,j
IDDD(vn),DDD(v) dx ≤ εj.

Firstly, in the same manner as before we deal with the second integral
on the right-hand side. Since Lebesgue’s dominated convergence theorem im-
plies that SSS(p1 + pn

2 ,DDD(v)) → SSS(p,DDD(v)) strongly in Lr′(Ω)d×d, we obtain that
lim supn→∞

∫

Ω
SSS(p1 + pn

2 ,DDD(v)) ·DDD(un,j) dx = 0. This implies that

lim sup
n→∞

∫

Un,j

SSS(p1 + pn
2 ,DDD(v)) ·DDD(un,j) dx

≤ lim sup
n→∞

∣

∣

∣

∣

∫

Ω\Un,j

SSS(p1 + pn
2 ,DDD(v)) ·DDD(un,j) dx

∣

∣

∣

∣

≤ C lim sup
n→∞

(
∫

Ω\Un,j

|DDD(un,j)|rr dx

)
1
r

(3.7)

≤ Cεj

(5.32)

with εj := C2−
j

r .

Next, since un,j is not in general divergence-free on the set of non-coincidence
Ω\Un,j, we consider the weak formulation (5.22) with the test function

ϕ = ϕn,j := Pun,j = un,j − B(divun,j) =: un,j −ψn,j.

Note that

‖ψn,j‖1,r ≤ Cdiv(Ω, r)‖ divun,jχ
Ω\Un,j

‖r

(3.7)

≤ Cεj.

In addition, the properties (3.3)–(3.7) of the sequence un,j and the continuity
and linearity of the Bogovskĭı operator imply that for j ∈ N and n → ∞

ψn,j → 0 strongly in Lq(Ω)d ∀q ∈ (1,∞)

ψn,j ⇀ 0 weakly in W
1,q
0 (Ω)d ∀q ∈ (1,∞),

(5.33)
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and

lim sup
n→∞

‖ψn,j‖1,r ≤ Cdiv(Ω, r) lim sup
n→∞

‖ divun,jχ
Ω\Un,j

‖r

≤ Cdiv(Ω, r) lim sup
n→∞

‖∇un,jχ
Ω\Un,j

‖r

≤ Cεj.

(5.34)

Also note that thanks to (5.33) we also have for j ∈ N and n → ∞ that

ϕn,j → 0 strongly in Lq(Ω)d ∀q ∈ (1,∞)

ϕn,j ⇀ 0 weakly in W
1,q
0 (Ω)d ∀q ∈ (1,∞).

(5.35)

Now, considering (5.22) with the test function ϕ = ϕn,j, we can write
∫

Ω

SSS(pn,DDD(vn)) ·DDD(un,j) dx

= 〈f ,ϕn,j〉 − 1

n

∫

Ω

|vn|2r′−2vn ·ϕn,j dx

+

∫

Ω

(vn ⊗ vn) · ∇ϕn,j dx +

∫

Ω

SSS(pn,DDD(vn)) ·DDD(ψn,j) dx

:= I1
n,j + I2

n,j + I3
n,j + I4

n,j.

(5.36)

Letting n → ∞ and taking (5.23), (5.28) and (5.35) into account, we see that
limn→∞(I1

n,j + I2
n,j + I3

n,j) = 0. On the other hand, on using Hölder’s inequality,
(5.24) and (5.34), we get

|I4
n,j| ≤ ‖SSS(pn,DDD(vn))‖r′‖DDD(ψn,j)‖r

(5.34)

≤ C
γn

θn

µj+1 + Cεj = g(n) + Cεj,

where for j ∈ N fixed the function g(n) → 0 for n → ∞. Using everything
together with (5.36), we get that lim supn→∞

∫

Ω
SSS(pn,DDD(vn)) ·DDD(un,j) dx ≤ Cεj.

Moreover, Hölder’s inequality, (5.24) and (3.7) yield that also

lim sup
n→∞

∣

∣

∣

∣

∫

Ω\Un,j

SSS(pn,DDD(vn)) ·DDD(un,j) dx

∣

∣

∣

∣

≤ Cεj,

and therefore

lim sup
n→∞

∫

Un,j

SSS(pn,DDD(vn)) ·DDD(un,j) dx ≤ Cεj. (5.37)

Coming back to the inequality (5.31), using (5.32) and (5.37) we then con-
clude

C1

2

∫

Un,j

IDDD(vn),DDD(v) dx ≤ g(n) + Cεj +
γ2

0

2C1

‖(pn
1 − p1)χUn,j

‖2
2

≤ g(n) + Cεj +
γ2

0

2C1

‖pn
1 − p1‖2

2.

(5.38)
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Clearly, we would also like to have the estimate ‖pn
1 − p1‖2

2 ≤ g(n) + Cεj. For
this purpose, we first look at the set Ω\Un,j = {un 6= un,j} and show that its
Lebesgue measure is sufficiently small. We recall the Theorem 3.2 and since
λn,j ≥ 1, according to (3.2), we observe from (3.7) that

|Ω\Un,j| = ‖χ
Ω\Un,j

‖1 ≤ cλ−1
n,j‖λn,jχΩ\Un,j

‖r

≤ c‖λn,jχΩ\Un,j
‖r

≤ g(n) + c εj.

(5.39)

Next, we consider the weak formulation of (3.1) for hn
1 with the test function

ϕn := B(pn
1 − p1). Notice that

∫

Ω
(pn

1 − p1) dx = 0. From the properties of

the Bogovskĭı operator and from (5.30)2 we have ϕn ⇀ 0 weakly in W 1,r′(Ω)d.

Using the same arguments as for (5.17), (5.18) and (5.19), we obtain

‖pn
1 − p1‖2

2 = g(n) +

∫

Ω

(

SSS(pn,DDD(vn)) − SSS(p1 + pn
2 ,DDD(v))

)

·DDD(ϕn) dx,

where g(n) → 0 for n → ∞. From the application of (2.1) and (2.2) to the
integral on the right-hand side and Hölder’s inequality we get

‖pn
1 − p1‖2

2 ≤ g(n) + γ0Cdiv(Ω, 2)‖pn
1 − p1‖2

2 + C2

∫

Ω

J dx, (5.40)

where J :=
∫ 1

0
(1 + |DDD(v) + s(DDD(vn − v))|2) r−2

2 |DDD(vn − v)| |DDD(ϕn)| ds. We split
the integral in (5.40) as

∫

Ω
J dx =

∫

Un,j
J dx +

∫

Ω\Un,j
J dx. Using Hölder’s

inequality, (2.1), (2.2) and Young’s inequality, we can write

∫

Un,j

J dx ≤ Cdiv(Ω, 2)

(
∫

Un,j

IDDD(vn),DDD(v) dx

)
1
2

‖pn
1 − p1‖2

≤ C2
div(Ω, 2)C2

2(1−γ0Cdiv(Ω, 2))

∫

Un,j

IDDD(vn),DDD(v) dx +
1−γ0Cdiv(Ω, 2)

2C2

‖pn
1−p1‖2

2.

Applying Hölder’s inequality again, using (5.23), (5.39) and the fact that r < 2
we deduce that

∫

Ω\Un,j

J dx ≤
(

∫

Ω\Un,j

IDDD(vn),DDD(v) dx

)
1
2
(

∫

Ω\Un,j

|∇ϕn|r′ dx

)
1
r′

|Ω\Un,j|
r′−2
2r′

≤ C|Ω\Un,j|
r′−2
2r′

≤ g(n) + C(εj)
r′−2
2r′ .

Putting this together with (5.40) we see that

‖pn
1 − p1‖2

2 ≤ g(n) + C(εj)
r′−2
2r′ +

C2
div(Ω, 2)C2

2

(1 − γ0Cdiv(Ω, 2))2

∫

Un,j

IDDD(vn),DDD(v) dx. (5.41)
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Furthermore, as r′ > 2 and C1

2
− γ2

0

2C1

C2
div(Ω,2)C2

2

(1−γ0Cdiv(Ω,2))2
> 0, again due to (2.6), from

(5.38) and (5.41) we indeed have

lim sup
n→∞

∫

Un,j

IDDD(vn),DDD(v) dx ≤ εj. (5.42)

The almost everywhere convergence (at least for a subsequence) of the pressure
pn in Ω then follows from (5.41), (5.42) and (5.30)4.

Finally, considering (5.39) and since ‖∇vn‖r ≤ C, ‖∇v‖r ≤ C and r < 2,
we obtain (again following step by step the same procedure as in [6])

∫

Ω

|DDD(vn − v)| dx

=

∫

Un,j

|DDD(vn − v)| dx +

∫

Ω\Un,j

|DDD(vn − v)| dx

≤
∫

Un,j

(

IDDD(vn),DDD(v)
)

1
2

(
∫ 1

0

(

1 + |DDD(v) + s(DDD(vn − v))|2
)

r−2
2 ds

)− 1
2

dx

+

∫

Ω\Un,j

(|DDD(vn)| + |DDD(v)|) dx

≤ C

∫

Un,j

(

IDDD(vn),DDD(v)
)

1
2
(

1 + |DDD(vn)| + |DDD(v)|
)

2−r
2 dx

+ (‖∇vn‖r + ‖∇v‖r)|Ω\Un,j|
1
r′

≤ C

(
∫

Un,j

IDDD(vn),DDD(v) dx

)
1
2

(1 + ‖∇vn‖r + ‖∇v‖r)
2−r
2 |Ω| 1

r′ + g(n) + C(εj)
1
r′

≤ C

(
∫

Un,j

IDDD(vn),DDD(v) dx

)
1
2

+ g(n) + C(εj)
1
r′ .

Thus, letting n → ∞ and then εj → 0 (i.e., j → ∞), we obtain (at least for a
subsequence) DDD(vn) → DDD(v) a.e. in Ω. Hence, (5.29) is proven and the proof of
Theorem 2.1 is complete.
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References

[1] Acerbi, E. and Fusco, N., Semicontinuity problems in the calculus of variations.
Arch. Rational Mech. Anal. 86 (1984), 125 – 145.

[2] Amrouche, Ch. and Girault, V., Decomposition of vector spaces and applica-
tion to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44
(1994), 109 – 140.

[3] Boccardo, L. and Murat, F., Almost everywhere convergence of the gradients
of solutions to elliptic and parabolic equations. Nonlinear Anal. 19 (1992)(6),
581 – 597.
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[6] Buĺıček, M., Málek, J. and Rajagopal, K. R., Navier’s slip and evolutionary
Navier-Stokes-like systems with pressure and shear-rate dependent viscosity.
Indiana Univ. Math. J. 56 (2007), 51 – 85.
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Solutions to Evolutionary PDEs. London: Chapman & Hall 1996.
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