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Asymptotic Behavior
of Generalized Eigenvectors of Jacobi Matrices

in the Critical (“Double Root”) Case

J. Janas, S. Naboko and E. Sheronova

Abstract. This paper is concerned with asymptotic behavior of generalized eigenvec-
tors of a class of Hermitian Jacobi matrices J in the critical case. The last means that
the fraction qn

λn
generated by the diagonal entries qn of J and its subdiagonal elements

λn has the limit ±2. In other words, the limit transfer matrix as n → ∞ contains a
Jordan box (= double root in terms of Birkhoff–Adams theory). This is the situation
where the asymptotic Levinson theorem does not work and one has to elaborate more
special methods for asymptotic analysis. It should be mentioned that the critical case
exactly corresponds to spectral phase transition phenomena, where the spectral struc-
ture changes dramatically (from discreet spectrum to pure absolutely continuous one)
whenever the parameters in matrix entries cross singular surfaces, see J. Janas and
S. Naboko [Spectral properties of selfadjoint Jacobi matrices coming from birth and
death processes, Oper. Theory Adv. Appl. 127 (2001), pp. 387–397]. A Jordan box
is the limit transfer matrix for all values of the spectral parameter λ simultaneously,
it describes the “moment” of spectral phase transition. An application to the case of
λn = nα(1 + rn), qn = −2nα(1 + pn) with small perturbations rn, pn and α ∈ (0, 1] is
studied.
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1. Introduction

In the last ten years appeared several papers devoted to spectral analysis of
unbounded, self-adjoint Jacobi matrices [5–11,14,17,19–23,27,28,33–36]. Given
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a sequence {λn} of positive numbers and a sequence {qn} of real numbers the
Jacobi operator J is defined in l2 = l2(N) by

(Ju)1 = q1u1 + λ1u2

(Ju)n = λn−1un−1 + qnun + λnun+1 (n > 1).
(1.1)

More precisely, on its maximal domain J is always symmetric and sometimes
selfadjoint. In the case when there exist limits (as n tends to infinity) of qn

λn

and λn−1

λn
or sequences {λn} and (or) {qn} are periodically perturbed, spectral

analysis of J has been partially done in [17, 21, 22]. This analysis was based
on Gilbert–Pearson subordinacy theory [15] (due to Khan and Pearson [26])
combined with various variants of discrete versions of Levinson theorem, see
[12, 17, 30, 32, 33]. An especially interesting situation appears if limn

qn
λn

= ±2
which corresponds to the phase transition phenomena. If | limn

qn
λn
| < 2, then

(under some regularity assumptions on qn, λn) the spectrum of J is absolutely

continuous; and when limn
|qn|
λn

> 2 the spectrum of J is discrete [20]. In this
work we consider a special class of sequences {λn} and {qn} given by

λn = nα(1 + xn), qn = −2nα(1 + yn), (1.2)

where α ∈ (0, 1] and n
α
2 xn, n

α
2 yn belong to l1 the standard space of summable

sequences. This corresponds to the critical situation (double root) where
limn→∞

qn
λn

= −2 (the most difficult case for investigation). Generally speaking,
formulae (1.2) represent a very special case of the critical situation mentioned
above. However, the aim of our paper is to demonstrate a new technique for
treating the spectral phase transition point. The Jacobi matrix (1.2) is one of
the simplest non-trivial model satisfying this aim. Note that for qn = 2nα(1+yn)
one can make a change of variables (diagonal unitary transformation) reducing
to the above mentioned situation. The critical case corresponds to the situation
where the limit of the transfer matrix for the recurrent equation (1.1) is given
by the Jordan box. In other words it means the appearance of the irregular
singular point with double root of the characteristic equation related to (1.1) in
Birkhoff–Adams theory [1,4]. Recall that the case λn = n+a, qn = −2n related
to the birth and death processes [24] was already studied in [19]. However, even
in that paper spectral analysis of J was carried out only partially. The reason
for this was due to difficulties in the study of asymptotic behavior of generalized
eigenvectors of J , i.e, the solutions of the infinite system of equations

(Ju)n = λun, n = 2, 3, . . . (1.3)

for λ > −1. Later this problem was solved in unpublished work [31].

It turns out that the analysis of asymptotic behavior of solutions of (1.3)
depends on the sign of λ. Namely for λ < 0 so-called “Ansatz” idea is used,
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while for λ > 0 a combination of the WKB (Wentzel–Kramers–Brillouin) ap-
proach with detailed analysis of products of the transfer matrices is applied (see
Section 2 for details). In order to avoid some cumbersome formulae we shall
present our results only for α ∈ (1

2
, 2

3
). But the methods we propose work for

arbitrary α ∈ (0, 1] (see for some comments below). Note that the case α = 1
can be easily deduced from the Birkhoff–Adams theory [13]. Unfortunately, this
theory does not apply for α < 1. We think that the ideas used in this work can
also be efficient for other sequences {λn}, {qn} corresponding to the critical case
limn

qn
λn

= ±2. Finally, we mention about still another approach to the critical
case given by the first name author in [16]. This approach relies on some ideas
found by W. Kelley in [25].

The paper consists of four sections. Section 2 contains necessary notions and
notations and explains the WKB approach to asymptotic analysis of solutions
of (1.3). Section 3 presents an asymptotic formula for a basis of solutions of
(1.3) with λ > 0 (hyperbolic case). In turn Section 4 does the same for λ < 0
(elliptic case). The last Section contains applications of asymptotic results to
spectral analysis of J .

2. Preliminaries

First note that the operator J defined by the sequences λn = nα(1 + xn) and
qn = −2nα(1 + yn), α ∈ (0, 1], is self-adjoint provided it acts on the maximal
domain D(J) := {f ∈ l2 : {(Jf)n} ∈ l2}. This is clear by the Carleman
condition

∑

k
1
λk

= +∞ [3]. As usual we rewrite the system (1.3) in the form

~un+1 = Bn(λ)~un, where ~un =

(

un−1

un

)

, Bn(λ) =

(

0 1

−λn−1

λn

λ−qn
λn

)

. (2.1)

The matrix Bn(λ) is called the transfer matrix of J . Therefore asymptotic be-
havior of solutions of (1.3) is equivalent to asymptotic behavior of arbitrary long
products of the Bk(λ)’s. This idea was frequently used in many works on spec-
tral properties of Jacobi operators. However, we start with another approach
to the problem of asymptotic behavior. Our approach is based on the idea of
application of the WKB asymptotic formula for solutions of a suitable differen-
tial equation related to (1.3). It should be mentioned that the idea to replace a
difference relation by a proper continuous differential equation has been already
used in theory of orthogonal polynomials. We describe below how to find this
differential equation. Dividing (1.3) by nα and disregarding lower order terms:
xnun+1

nα ,
xn−1un−1

nα , ynun

nα and O
(

1
n2

)

un−1 we rewrite (1.3) approximately as

un+1 + un−1 − 2un −
α

n
un−1 −

λ

nα
un ≈ 0 (2.2)
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for large n. Denoting ∆f(n) := f(n+1)−f(n) and changing un by a continuous
function u(n) for n ∈ R

+ we have ∆2u(n−1)+ α
n
∆u(n−1)−

(

λ
nα + α

n

)

u(n) ≈ 0.
Replacing ∆2u(n−1) and ∆u(n−1) by u′′(n) and u′(n) respectively, we obtain

u′′(n) +
α

n
u′(n) −

(

λ

nα
+
α

n

)

u(n) ≈ 0 (2.3)

for n≫ 1. The change of u(n) by n−α
2 v(n) allows to rewrite (2.3) as

v′′(n) +

[

α

2

(α

2
+ 1
) 1

n2
− α2

2n2
− α

n
− λ

nα

]

v(n) ≈ 0.

Finally, the above heuresis leads to the equation

v′′(n) −
(

λ

nα
+
α

n

)

v(n) = 0. (2.4)

Denote Q(n) := λ
nα + α

n
. Applying to (2.4) the standard WKB formula [29]

we find that (2.4) has a base of linearly independent solutions v±(·) with the

asymptotic given by v±(n) ∼ Q(n)−
1

4 exp
[

±
∫ n

1
Q(t)

1

2dt
]

, n → ∞. Therefore
one could make a reasonable “Ansatz” on the asymptotic formula for solutions
of (1.3),

un = n−α
2 v(n)

∼ n−α
4 exp

[

±
∫ n

1

(

λ

tα
+
α

t

)1

2

dt

]

∼ n−α
4 exp

(

±
[

a1n
1−α

2 + λ−
1

2n
α
2 −
∫ n

1

(

a2t
3α
2
−2 +O

(

t
5α
2
−3
))

dt

])

,

(2.5)

where a1 =
√
λ
(

1 − α
2

)−1
, a2 = α2

8λ
3
2

. In particular for α < 2
3

both terms a2t
3α
2
−2

and O
(

t
5α
2
−3
)

are integrable over (t0,+∞), for any t0 > 0. By the way, this fact
is one of the reasons to put an additional condition α < 2

3
. As we shall see below

(Section 3, Theorem 3.2) formula (2.5) is not correct. This phenomenon is due
to inaccuracy between continuous approximation and the differential equation.
Nevertheless, the essential part of (2.5) remains valid! For example the leading
term of (2.5) given by

n−α
4 exp

(

±
√
λ
(

1 − α

2

)−1

n1−α
2

)

(2.6)

is correct. As it was mentioned above if α = 1 asymptotic behavior of solutions
of (1.3) can be deduced by applying classical result of Birkhoff–Adams ( [13,
Theorem 8.36]). This is no longer possible for α ∈ (0, 1) as one can easily verify
by checking the assumption of Theorem 8.36 in [13].
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3. Case of positive λ and α ∈ (1
2 ,

2
3): hyperbolic situation

In what follows l1, to avoid tedious notations, will also denote the space of
vectors or matrices whose norms are summable sequences and we hope that
this will not lead to misunderstanding. Since

λn = nα(1 + xn), qn = −2nα(1 + yn), (3.1)

where n
α
2 xn and n

α
2 yn belong to l1, it follows that λn−1

λn
= 1 − α

n
+ r

(1)
n , λ

λn
=

λ
nα + r

(2)
n , and qn

λn
= −2 + r

(3)
n , where {r(i)

n n
α
2 } ∈ l1, i = 1, 2, 3. Therefore the

transfer matrix

Bn(λ) =

(

0 1
−1 2

)

+
1

nα

(

0 0
φn λ

)

+Rn (3.2)

with φn = αnα−1 and ‖Rn‖ = O (|xn−1| + |xn| + |yn|) + O
(

1
n2

)

, as n → ∞.

The leading term of Bn(λ), the matrix
(

0 1
−1 2

)

, is similar to the matrix
(

1 1
0 1

)

.

The Jordan box appearing in the leading term (limn→∞Bn(λ)) is the main
difficulty of the analysis. As we tried to explain in the Introduction the following
sequences are essential below:

zk := k−
α
4 exp(ρkβ), z̃k := k−

α
4 exp(−ρkβ); (3.3)

here ρ = (1− α
2
)−1

√
λ, β = 1− α

2
(
√
λ > 0). Below we shall find an asymptotic

formula for generalized eigenvectors for the above fixed λ > 0. This formula
will be computed in four steps.

Step 1. Introducing the Ansatz.

Consider the matrix Sn given by

Sk =

(

z̃k−1 zk−1

z̃k zk

)

(3.4)

The matrix Sn appears naturally for the system (1.3). This will become clear
later. It is obvious that

n
∏

k=2

Bk(λ) = Sn+1

{

n
∏

k=2

(S−1
k+1Bk(λ)Sk)

}

S−1
2 .

This allows us to reduce the product of transfer matrices Bk(λ) to the product of
matrices (S−1

k+1Bk(λ)Sk) which might be much simpler due to the proper choice
of matrices Sk (3.4).

Proposition 3.1. In the above notations we have for α ∈ (1
2
, 2

3
):

S−1
k+1Bk(λ)Sk =

(

Aij(k)
)

+R
(1)
k ,
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where R
(1)
k = S−1

k+1RkSk, ψk = eρk
β

and for k large enough matrix elements

Aij(k) satisfy the relations

A11(k) = 1 − α

2
√
λ
k

α
2
−1 +

(
√
λ)3

4!
k−

3α
2 +O

(

k−
2+α

2

)

A12(k) = ψ2
k

(

− α

2
√
λ
k

α
2
−1 +

(
√
λ)3

4!
k−

3α
2 +O

(

k−
2+α

2

)

)

A21(k) = ψ−2
k

(

α

2
√
λ
k

α
2
−1 − (

√
λ)3

4!
k−

3α
2 +O

(

k−
2+α

2

)

)

A22(k) = 1 +
α

2
√
λ
k

α
2
−1 − (

√
λ)3

4!
k−

3α
2 +O

(

k−
2+α

2

)

Proof. Using (3.3) we have

S−1
k+1Bk(λ)Sk

=(detSk+1)
−1

(

zk+1 −zk
−z̃k+1 z̃k

)[(

0 1
−1 2

)

+
1

kα

(

0 0
φk λ

)

+Rk

](

z̃k−1 zk−1

z̃k zk

)

=(detSk+1 · kα)−1

(

zk+1 −zk
−z̃k+1 z̃k

)[

kα
(

0 1
−1 2

)

+

(

0 0
φk λ

)

+ kαRk

](

z̃k−1 zk−1

z̃k zk

)

.

Denote by

(

aij(k)
)

:=

(

zk+1 −zk
−z̃k+1 z̃k

)(

0 1
−1 2

)(

z̃k−1 zk−1

z̃k zk

)

.

Then tedious but straightforward computation based on the expansion of ex =
∑5

0
xk

k!
+O(x6) up to the fifth term shows that

a11(k) = k−α
[

2
√
λ+ λk−

α
2 +

(
√
λ)3

3
k−α+

λ2

12
k−

3α
2 +

2(
√
λ)5

5!
k−2α+O

(

k−
2+α

2

)

]

a12(k) = k−αψ2
k

[

λk−
α
2 +

λ2

12
k−

3α
2 − α

√
λ

k
+O

(

k−
2+α

2

)

]

a21(k) = k−αψ−2
k

[

− λk−
α
2 − λ2

12
k−

3α
2 − α

√
λ

k
+O

(

k−
2+α

2

)

]

a22(k) = k−α
[

2
√
λ− λk−

α
2 +

(
√

λ)3

3
k−α− λ2

12
k−

3α
2 +

2(
√
λ)5

5!
k−2α+O

(

k−
2+α

2

)

]

.

Again direct calculation leads to the formula

(

detSk+1 · kα
)−1

=
1

2
√
λ

[

1+
α

2k
− λ

3!
k−α− λ2

5!
k−2α+

λ2

36
k−2α

]

+O
(

k−
2+α

2

)

.
(3.5)
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Let

(bij(k)) :=

(

zk+1 −zk
−z̃k+1 z̃k

)(

0 0
φk λ

)(

z̃k−1 zk−1

z̃k zk

)

.

We have (using definitions of zk, z̃k)

b11(k) = −λzkz̃k − zkz̃k−1φk = −λk−α
2 − αk

α
2
−1 − α

√
λ

k
+O

(

1

k1+ α
2

)

b12(k) = −λz2
k − zkzk−1φk = −ψ2

k

[

λk−
α
2 + αk

α
2
−1 − α

√
λ

k
+O

(

1

k1+ α
2

)]

b21(k) = ψ−2
k

[

λk−
α
2 + αk

α
2
−1 +

α
√
λ

k
+O

(

1

k1+ α
2

)]

b22(k) = λk−
α
2 + αk

α
2
−1 − α

√
λ

k
+O

(

1

k1+ α
2

)

.

Combining the above equalities (for aij(k) and bij(k)) we obtain

kαa11(k) + b11(k) = 2
√
λ

[

1+
λ

6
k−α− α

2
√
λ
k

α
2
−1− α

2k
+

(
√
λ)3

4!
k−

3α
2 +

λ2

5!
k−2α

]

+O
(

k−
2+α

2

)

kαa12(k) + b12(k) = ψ2
k

[

−αk α
2
−1 +

λ2

12
k−

3α
2 +O

(

k−
2+α

2

)

]

kαa21(k) + b21(k) = ψ−2
k

[

αk
α
2
−1 − λ2

12
k−

3α
2 +O

(

k−
2+α

2

)

]

kαa22(k) + b22(k) = 2
√
λ

[

1 +
λ

6
k−α +

α

2
√
λ
k

α
2
−1− α

2k
− (

√
λ)3

4!
k−

3α
2 +

λ2

5!
k−2α

]

+O
(

k−
2+α

2

)

.

Finally, using (3.5) and the above four equalities we verify the thesis of Propo-
sition 3.1. The proof is complete.

Step 2. Estimate of the remainder: reducing to l1 error terms.

Observe that S−1
k+1Bk(λ)Sk has the form I +

(

ak ψ2
k
ak

−ψ−2

k
ak −ak

)

+R
(2)
k , where ak :=

− α

2
√
λ
k

α
2
−1 + (

√
λ)3

4!
k−

3α
2 , and

R
(2)
k := R

(1)
k +

(

O
(

k−1−α
2

)

ψ2
kO
(

k−1−α
2

)

ψ−2
k O

(

k−1−α
2

)

O
(

k−1−α
2

)

)

+O
(

k−
2+α

2

)

as k → ∞ . Write R
(1)
k := (r

(1)
ij (k)). Due to definitions we check that

r
(1)
11 (k) = O

(

k
α
2 ‖Rk‖

)

, r
(1)
12 (k) = ψ2

kO
(

k
α
2 ‖Rk‖

)

r
(1)
21 (k) = ψ−2

k O
(

k
α
2 ‖Rk‖

)

, r
(1)
22 (k) = O

(

k
α
2 ‖Rk‖

)

.
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Therefore, for r
(2)
ij (k) we have

r
(2)
11 (k) =

(

O
(

k−1−α
2

)

+O
(

k
α
2 ‖Rk‖

))

∈ l1

r
(2)
12 (k) = ψ2

k

(

O
(

k−1−α
2

)

+O
(

k
α
2 ‖Rk‖

))

r
(2)
21 (k) = ψ−2

k

(

O
(

k−1−α
2

)

+O
(

k
α
2 ‖Rk‖

))

r
(2)
22 (k) =

(

O
(

k−1−α
2

)

+O
(

k
α
2 ‖Rk‖

))

∈ l1.

Note that the elements akψ
2
k and probably r

(2)
12 (k) grow to infinity as k → ∞, and

this makes a serious problem in the analysis of the product
∏

k(S
−1
k+1Bk(λ)Sk).

We try to kill this growth by finding suitable diagonal matrices Xk =
(

xk 0
0 yk

)

such that X−1
k+1S

−1
k+1Bk(λ)SkXk (the reasoning for appearance of matrices X−1

k+1

and Xk is similar to one for Sk) will be a bounded sequence. The right choice

of Xk is given by Xk :=
(

1 0

0 ψ−2

k

)

. This choice of Xk is determined by the factor-

ization
(

1 ψ2
k

−ψ−2
k −1

)

=

(

1 0
0 ψ−2

k

)(

1 1
−1 −1

)(

1 0
0 ψ−2

k

)−1

.

It follows that

X−1
k+1ak

(

1 ψ2
k

−ψ−2
k −1

)

Xk = ak

(

1 1

−
(

ψk+1

ψk

)2

−
(

ψk+1

ψk

)2

)

(3.6)

and

R
(3)
k := X−1

k+1R
(2)
k Xk =





r
(2)
11 (k) r

(2)
12 (k)ψ−2

k

ψ2
k+1r

(2)
21 (k) r

(2)
22 (k)

(

ψk+1

ψk

)2



 ∈ l1.

In this way we have proved that

X−1
k+1S

−1
k+1Bk(λ)SkXk

=

(

1 0

0
(

ψk+1

ψk

)2

)

+ ak

(

1 1

−
(

ψk+1

ψk

)2

−
(

ψk+1

ψk

)2

)

+R
(3)
k ,

(3.7)

where ‖R(3)
k ‖ ∈ l1.

Step 3. Asymtotics of solutions for an auxiliary linear system.

Denote by pk :=
(

ψk+1

ψk

)2 − 1, where pk ∼ 2
√
λk−

α
2 as k → ∞. Then we can

rewrite (3.7) as follows:

X−1
k+1S

−1
k+1Bk(λ)SkXk = I + pkV (k) +R

(3)
k , (3.8)

where

V (k) :=





akp
−1
k akp

−1
k

−
(

ψk+1

ψk

)2

akp
−1
k −

(

ψk+1

ψk

)2

akp
−1
k + 1



 .
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Note that akp
−1
k ∼ α

4λ
kα−1, k → ∞. Therefore, the original system of equations

can be written as

~u(n+ 1) = Sn+1Xn+1

{

n
∏

k=2

(

I + pkV (k) +R
(3)
k

)

}

X−1
2 S−1

2 ~u2 . (3.9)

Consider the auxiliary linear system

~w(n+ 1) =
(

I + pnV (n) +R(3)
n

)

~w(n) . (3.10)

Observe that the sequence {V (n)} is of bounded variation, i.e.,
∑

k ‖V (k+1)−
V (k)‖ < +∞ (this fact can be verified by using definition of V (k); namely both

akp
−1
k and ψk+1

ψk
are of bounded variations). Let σ(V (k)) = {µ1(k), µ2(k)} be

the spectrum of V (k), i.e.,

µ1(k) =
trV (k) −

√

discrV (k)

2
, µ2(k) =

trV (k) +
√

discrV (k)

2
,

where discrV := (trV )2 − 4 detV is the discriminant of V . Hence

µ1(k) = akp
−1
k +O

(

(

ak

pk

)2
)

(3.11)

µ2(k) = 1 − ak

pk
(1 + pk) +O

(

(

ak

pk

)2
)

(3.12)

(by definition of V (k)). Since pk ∼ 2
√
λk−

α
2 , k → ∞, using (3.11) and (3.12)

we have

pkµ1(k) = ak +O

(

1

k2−3α
2

)

(3.13)

pkµ2(k) = pk − ak(1 + pk) +O

(

1

k2−3α
2

)

. (3.14)

Due to our assumption α < 2
3

all O
(

1

k2−3 α
2

)

terms in the above equations are

summable. Note that V (n) −−−→
n→∞

V∞ =
(

0 0
0 1

)

. Trivially, V∞~e1 = 0~e1 and

V∞~e2 = ~e2, where ~e1 = (1, 0) and ~e2 = (0, 1). Applying Theorem 1.7(b) of [17]
we obtain a basis ~ws, s = 1, 2, of solutions of (3.10) having the asymptotic form

~w1(n) =

{

n−1
∏

k=2

(1 + pkµ1(k))

}

(~e1 + o(1)) (3.15)

~w2(n) =

{

n−1
∏

k=2

(1 + pkµ2(k))

}

(~e2 + o(1)). (3.16)
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Using (3.13) and (3.14) we find

n−1
∏

k=2

(1 + pkµ1(k)) = F (n)
n−1
∏

2

(1 + ak) (3.17)

n−1
∏

k=2

(1 + pkµ2(k)) =

{

n−1
∏

2

(

ψk+1

ψk

)2

(1 − ak)

}

·G(n) , (3.18)

where F (n), G(n) converge to some positive constants. Formally speaking in
the above products in formulae (3.15), (3.16) one has began to calculate the
products not from k = 2 but rather from k = k0 ≫ 1 to avoid any “occasional”
zeros in the product factors. Let us ignore this inessential “problem” to avoid
new tedious notations.

Step 4. Returning to the original linear system: obtaining the asymptotics

of the solutions.

Combining (3.15), (3.16), (3.17) and (3.18) we find that (see (3.9)) there exists
a basis ~us(n) of solutions of original system given by

~u1(n+ 1) = Sn+1Xn+1F (n)

{

n−1
∏

2

(1 + ak)

}

(~e1 + o(1))

= F̃ (n) exp
(

Σn−1
2 ak

)

[(

z̃n
z̃n+1

)

+

(

z̃n znψ
−2
n+1

z̃n+1 zn+1ψ
−2
n+1

)

o(1)

]

= F̃ (n) exp
(

Σn−1
2 ak

)

z̃n+1

[(

1
1

)

+ o(1)

]

,

(3.19)

for some F̃ (n) convergent to a positive F . Similarly for the second solution
~u2(.) we have

~u2(n+ 1) =

(

ψn

ψ2

)2
{

n−1
∏

2

(1 − ak)

}

G(n)

(

z̃n znψ
−2
n+1

z̃n+1 zn+1ψ
−2
n+1

)

[

~e2 + o(1)
]

= G̃(n)

(

ψn

ψ2

)2

exp
(

−Σn−1
2 ak

)

z̃n

[(

1
1

)

+ o(1)

]

,

(3.20)

for some convergent G̃(n) to a positive constant. Using the Euler summation
formula we can rewrite (3.19) and (3.20) as

~u1(n+1)= F1(n)n−α
4 exp

[

−ρnβ− n
α
2

√
λ

+
(
√
λ)3

4!(1− 3α
2

)
n1− 3α

2

][(

1
1

)

+o(1)

]

~u2(n+1)= G1(n)n−α
4 exp

[

ρnβ+
n

α
2

√
λ
− (

√
λ)3

4!(1− 3α
2

)
n1− 3α

2

][(

1
1

)

+o(1)

]

,

(3.21)

where F1(n), G1(n) are convergent to positive constants. Summing up we have
proved
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Theorem 3.2. Let λn = nα(1 + xn), and qn = −2nα(1 + yn), where α ∈ (1
2
, 2

3
),

{xnn
α
2 } and {ynn

α
2 } belong to l1. Fix λ > 0. Then the system of equations

λn−1un−1 + qnun + λnun+1 = λun (n > 1)

has two linearly independent solutions u1(·) and u2(·) with the asymptotic given

by

u1(n) ∼ n−α
4 exp

[

−ρn1−α
2 − 1√

λ
n

α
2 + ηn1− 3α

2

]

(1 + o(1))

u2(n) ∼ n−α
4 exp

[

ρn1−α
2 +

1√
λ
n

α
2 − ηn1− 3α

2

]

(1 + o(1)) ,

with ρ =
√
λ
(

1 − α
2

)−1
and η = λ

3

2

[

4!(1 − 3α
2

)
]−1

.

Remark 3.3. One can formulate extensions of the above formulae to the whole
interval α ∈ (0, 1) but the form of them becomes more cumbersome as α tends
to zero or one. Remind that the aim of the paper is just to demonstrate a new
technique in critical situation (the Jordan box).

Note that the asymptotic formulae from Theorem 3.2 collapse as α ap-
proaches 2

3
. Therefore, in order to preserve the form of asymptotics our condi-

tion α < 2
3

is essential. Hence, for other regions of α our approach works but
gives another form of asymptotics.

4. The case of negative λ: elliptic situation

It turns out that the analysis of asymptotic behavior of solutions of (1.3) for
λ < 0 can be done in a similar way. Assumptions on xn and yn are also the
same as for λ > 0.

The reasoning presented in the first two steps in the proof of Theorem 3.2
remains unchanged. On the other hand, the matrix V (k) in equation (3.8)
has now complex entries and the scalars pk are complex as well. Therefore
formally we can not use the above evoked Theorem 1.7 from [17] because this
theorem concerns only real valued matrices V (k) and real sequences pk. One
can extend Theorem 1.7 to the complex case and then verify that the matrices
V (k) from equation (3.8) satisfy assumption of the above mentioned extension of
Theorem 1.7. We do not want to use this approach here for two reasons. Firstly,
it would require presentation of the analysis of “the dichotomy condition” from
discrete variant of the Levinson theorem (see [17]). Secondly (more essential
reason), the “Ansatz” approach we will use below for negative λ may be of some
interest for itself, as an alternative method in asymptotic analysis of generalized
eigenvectors of Jacobi matrices. This method was alredy used in [16] but we
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decided to present it here again due to some clarifications made in this work (in
comparison to [16]).

In what follows we assume that

{xnn
α
2 } and {ynn

α
2 } belong to l1. (4.1)

The idea of the proof is based on right “Ansatz” for the asymptotic form for so-
lutions of (1.3). This approach has been successfully used in [19] (for negative λ
and α = 1) and in [6] for a different model. Surely the form of the Ansatz we
make below is inspired by Theorem 3.2 and the WKB approach (see Section 2).

Theorem 4.1. Let α ∈ (1
2
, 2

3
). Suppose that λn and qn are given by λn =

nα(1 + xn), qn = −2nα(1 + yn) . If xn and yn satisfy (4.1), then for any λ < 0
there are two linearly independent solutions ~u±(n) of

~u(n+ 1) = Bn(λ)~u(n) (4.2)

with the asymptotic given by

u±(n) = n−α
4 exp

[

±i(Dn1−α
2 + En

α
2 + Fn1−3α

2 )
]

(1 + o(1))

as n → ∞, where ~u(n) :=
(

u(n− 1)
u(n)

)

, D :=
√
−λ(1 − α

2
)−1, E := −(

√
−λ)−1,

F := (
√
−λ)3

24
(1 − 3α

2
)−1.

Proof. We make the Ansatz (its summation form is convenient for the calcula-
tions below):

zn = nγ exp i

[ n
∑

1

(

Akδ +Bkǫ + Ckθ
)

]

,

where −1 ≤ θ < ǫ < δ < 0, and A, B, C, γ are some real numbers. Define the
matrix corresponding to the Ansatz

Sn =

(

z̄n−1 zn−1

z̄n zn

)

,

where z̄n denotes the complex conjugate of zn as usual.

We want to choose A, B, C, γ, ǫ, δ, θ such that

S−1
n+1Bn(λ)Sn = I +Rn (4.3)

for some matrices Rn with {‖Rn‖} ∈ l1. The reason for the appearance of the
product S−1

n+1Bn(λ)Sn is the same as in Section 3. It follows that an arbitrary
solution of (4.2) has the form ~un+1 = Sn+1 ~wn, where ~wn is a sequence of vectors
which tends to a non-zero vector. Therefore the form of the asymptotics of ~un
will be determined by the matrix Sn, i.e., by the parameters A, B, C, γ, δ, ǫ, θ.
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In what follows we will see that

A = ±
√
−λ, B = ∓ α

2
√
−λ

, C = ±(
√
−λ)3

24

δ = −α
2
, ǫ =

α

2
− 1, θ = −3α

2
, γ = −α

4
,

where all signs should be chosen correspondingly. Note that the choice of pa-
rameters γ, δ, ǫ, θ can be easily deduced from the WKB asymptotic formula.
However, we plan to derive the values from the explicit calculations on the basis
of cancellation of terms.

Remark 4.2. Note that the parameters γ, D and E from the asymptotic for-
mula in Theorem 4.1 coincide with ones appearing in (2.5) after formal substi-
tution

√
λ = i

√
−λ. However, the “F -term” is different here. See the discussion

of the situation in the Section 2.

Denote, for fixed λ < 0, ϕ(n) := 1 − λn−1λ
−1
n and ψ(n) := λλ−1

n + 2(1 +
yn)(1 + xn)

−1 − 2, where both sequences are real. Then

Bn(λ) =

(

0 1
−1 2

)

+

(

0 0
ϕ(n) ψ(n)

)

.

We have

S−1
n+1Bn(λ)Sn = (detSn+1)

−1

[(

ρn ηn
−η̄n −ρ̄n

)

+

(

sn tn
−t̄n −s̄n

)]

, (4.4)

where

ρn := |zn|2(z̄n−1(z̄n)
−1 + zn+1z

−1
n − 2)

ηn := z2
n(zn−1z

−1
n + zn+1z

−1
n − 2)

sn := |zn|2(−ψ(n) − ϕ(n)z̄n−1(z̄n)
−1)

tn := z2
n(−ψ(n) − ϕ(n)zn−1z

−1
n ).

Step 1. Calculation of the off-diagonal term.

Below we shall estimate the off-diagonal element (detSn+1)
−1(ηn + tn) of

S−1
n+1Bn(λ)Sn. We compute

zn−1z
−1
n =

(

1 − γ

n
+O

(

1

n2

))[

1 − i
(

Anδ +Bnǫ + Cnθ
)

− 1

2

(

Anδ +Bnǫ + Cnθ
)2

+
i

3!

(

Anδ +Bnǫ + Cnθ
)3

+

+
1

4!

(

Anδ +Bnǫ + Cnθ
)4

+O
(

n5δ
)

]

(4.5)
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and

zn+1z
−1
n =

(

1 +
γ

n
+O

(

1

n2

))[

1 + i
(

A(n+ 1)δ +B(n+ 1)ǫ

+ C(n+ 1)θ
)

− 1

2

(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)2

− i

3!

(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)3

+
1

4!

(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)4

+O
(

n5δ
)

]

.

(4.6)

Hence, using (4.5), (4.6) and the form of λn we have (after straightforward
calculations)

ηn + tn = z2
n

{

− 2 +

(

1 − γ

n
+O

(

1

n2

))[

1 − i
(

Anδ +Bnǫ + Cnθ
)

− 1

2

(

Anδ +Bnǫ + Cnθ
)2

+
i

3!

(

Anδ +Bnǫ + Cnθ
)3

+
1

4!

(

Anδ +Bnǫ + Cnθ
)4

+O
(

n5δ
)

]

+

(

1 +
γ

n
+O

(

1

n2

))[

1 + i
(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)

− 1

2

(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)2

− i

3!

(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)3

+
1

4!

(

A(n+ 1)δ +B(n+ 1)ǫ + C(n+ 1)θ
)4

+O
(

n5δ
)

]

−
(

α

n
+O

(

1

n2

)

+O (|xn−1| + |xn|)
)

×
[

1 − iAnδ +O

(

1

n2

)

+O (nǫ)

]

−
[

λ

nα
+O (|yn| + |xn|)

]}

.

Elementary calculations shows that the last expression is equal to

ηn + tn = z2
n

{

O

(

1

n2

)

+O
(

n5δ
)

+O (|xn+1| + |xn| + |yn|) +O

(

1

n1−ǫ

)

+O

(

1

n1−2δ

)

+O
(

n2ǫ
)

+O
(

n3δ+ǫ
)

+
2iγA

n1−δ +
iAδ

n1−δ − A2n2δ

−2ABnδ+ǫ − 2ACnδ+θ +
1

12
A4n4δ − α

n
+
iAα

n1−δ −
λ

nα

}

.
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Thus

ηn + tn = z2
n

{

O

(

1

n2

)

+O
(

n5δ
)

+O (|xn+1| + |xn| + |yn|) +O

(

1

n1−ǫ

)

+O

(

1

n1−2δ

)

+O
(

n2ǫ
)

+O
(

n3δ+ǫ
)

−
(

A2n2δ +
λ

nα

)

+

(

1

12
A4n4δ − 2ACnδ+θ

)

−
(α

n
+ 2ABnδ+ǫ

)

+
iA

n1−δ (δ + 2γ + α)

}

.

Grouping in pairs above (presumably the terms of the same order) was based
on the expecting values (from WKB approach) of the parameters α, δ, θ and ǫ.
Now put the condition that all four brackets in the formula below are equal to
zero separately. It immediately gives the values of parameters:

from 1st bracket: δ = −α
2

and A = ±
√
−λ

from 2nd bracket: θ = −3α

2
and C = ±

√
−λ3

24

from 3rd bracket: ǫ =
α

2
− 1 and B = ∓ α

2
√
−λ

from 4th bracket: γ = −α
4
.

Hence, substituting the values of powers δ, θ and ǫ,

|ηn + tn| = |zn|2
{

O

(

1

n2

)

+O
(

n− 5α
2

)

+O (|xn+1| + |xn| + |yn|)

+O

(

1

n2−α
2

)

+O

(

1

n1+α

)

+O

(

1

n2−α

)}

= |zn|2
{

O
(

n− 5α
2

)

+O (|xn+1| + |xn| + |yn|)
}

.

Step 2. Calculation of the determinant.

Explicit calculation of detSn+1 gives detSn+1 = z̄nzn+1 − znz̄n+1 =
2iℑ(z̄nzn+1) = 2in−α

2

(

1 +O
(

1
n2

))

sin
(

A(n+ 1)δ +B(n+ 1)ǫ + C(+1)nθ
)

=

±n−α2i
√
−λ
(

1 +O
(

1
n1−α

))

, since α > 1
2
. Therefore

(detSn+1)
−1 = ∓ inα

2
√
−λ

(

1 +O

(

1

n1−α

))

, (4.7)

which gives extra-multiple of order nα in formula (4.4). Therefore by (4.7) one
gets
∣

∣(detSn+1)
−1(ηn+tn)

∣

∣ = O (nα) |zn|2
{

O
(

n− 5α
2

)

+O (|xn+1|+|xn|+|yn|)
}

= O
(

n
α
2

)

{

O
(

n− 5α
2

)

+O (|xn+1|+|xn|+|yn|)
}

= O
(

n−2α
)

+O
(

n
α
2 (|xn+1|+|xn|+|yn|)

)

,

(4.8)
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since z2
n = O

(

n−α
2

)

due to γ = −α
4
. Thanks to α > 1

2
and conditions (4.1) the

right-hand side term in (4.8) belongs to l1. Now it is clear that the off-diagonal
elements of S−1

n+1Bn(λ)Sn are summable under conditions of the Theorem 4.1.

Step 3. Estimate of the diagonal elements.

Concerning the diagonal element (detSn+1)
−1(ρn + sn) note that

|ρn + sn − detSn+1|
= |zn|2

∣

∣z̄n−1(z̄n)
−1 + zn+1z

−1
n − 2 − ψ(n) − ϕ(n)z̄n−1(z̄n)

−1

− (zn+1z
−1
n − z̄n+1(z̄n)

−1)
∣

∣

= |zn|2
∣

∣z̄n−1(z̄n)
−1 + z̄n+1(z̄n)

−1 − 2 − ψ(n) − ϕ(n)z̄n−1(z̄n)
−1
∣

∣

= |zn|2
∣

∣(zn−1z
−1
n + zn+1z

−1
n − 2 − ψ(n) − ϕ(n)zn−1z

−1
n )
∣

∣

= |ηn + tn|.

(4.9)

Combining (4.9) and (4.8) we conclude the proof of (4.3) and the statement of
Theorem. It is enough to know that the second diagonal element (in formula
(4.4)) estimate follows from the estimate of the first one because detSn+1 is
pure imaginary.

5. An application to a class of Jacobi matrices

We mentioned in the Introduction the class of Jacobi matrices (studied in [19])
given by λn = n+a and qn = −2n. Below we also consider a much more general
class of Jacobi matrices related to the ones from the theory of birth and death
processes [19,24]. The entries of such matrices must satisfy the identity

qn + λn−1 + λn = 0, n ≥ 1 . (5.1)

To be precise the right-hand side term in formula (5.1) should be equal to 1, but
standard shift of the spectral parameter brings zero instead of 1. If λn = nα,
α ∈ (0, 1), then using (5.1) we find qn = −2nα

(

1 − α
2n

+O
(

1
n2

))

for large n. It
follows that yn = − α

2n
+O

(

1
n2

)

does not satisfy our assumption {nα
2 yn} ∈ l1.

Therefore, to avoid extra tedious calculations, we modify slightly the above
definitions to obtain the cancellation of terms. Using the technique of present
paper one could be able to consider the above mentioned model without any
corrections, but it would force us to consider asymptotic formulae in more de-
tails. Remind that the aim of our paper is just to demonstrate the technique
in the critical case.

Let λk = kα(1 + rk), α ∈ (1
2
, 2

3
), rk = O

(

1
k1+x

)

, x > α
2

(rk 6= −1 for any k).
We claim also that λk > 0 for any k. Define the diagonal qk by

qk + λk + λk−1 = − α

k1−α + dkk
α, (5.2)
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for arbitrary real sequence dk satisfying the condition dk = O (k−1−x), x > α
2
.

Thus qk = −2kα
[

1 + 1
2
(rk + rk−1 − dk) − αrk−1k

−1 + O (k−2)
]

. Note that
the new yk := 1

2
(rk + rk−1 − dk) − αrk−1k

−1 + O (k−2) fulfills the assumption
{k α

2 yk} ∈ l1. Without lost of generality, let us put the assumption that all new
λk > 0. Therefore our asymptotic formulae are applicable. Consequently, we
obtain the following spectral picture of Jacobi matrix J0 defined by the entries
given in formula (5.2).

Theorem 5.1. The half-line (−∞, 0) is contained in the pure absolutely contin-

uous spectrum of J0 and its local multiplicity is equal to one, a.e. λ ∈ (−∞, 0).
The spectrum of J0 in the interval (0,+∞) is discreet and finite. Moreover,

the number of eigenvalues of J0 is less or equal to N provided that (see (5.2))
αk−1 − dk ≥ 0, k > N , and the corresponding eigenvectors decay exponentially.

Proof. Fix λ < 0. Applying Theorem 4.1 we know that for any solutions ~u(n)
of the system (4.2) we obtain the estimate ‖~u(n)‖2 ≤ Cn−α

2 ≤ C1

λn
for some

constants C, C1 (depending on λ) and all n. Applying standard result [3, 18]
(generalized Behncke–Stolz lemma) we conclude that λ belongs to the support
of the spectral measure of J0 and so (−∞, 0) ⊂ σac(J0). Moreover, the spectrum
on the interval (−∞, 0) is pure absolutely continuous and its local multiplicity
(Lebesgue measure) a.e. is equal to one (i.e., non-zero). The last result follows
from Gilbert–Pearson subordinacy theory [26]. Concerning the point spectrum
of J0 note that it may appear on the semi-axis λ ≥ 0 only. Actually, by
the subordinacy theory positive spectrum is pure point. Moreover, using the
technique of the paper [33] one can prove its discreetness. However, in our
special case the discreetness can be proved easily. Indeed, for any f ∈ D(J0)
we have (f0 := 0)

(Jf, f) =
∞
∑

k=1

−kα(αk−1 − dk)|fk|2 −
∞
∑

k=0

λk|fk − fk+1|2 ≤ 0.

Therefore (by the Glazman lemma [2])

the cardinality of {λ ∈ σp(J0)} ≤ N, (5.3)

where N has been chosen to satisfy the inequality: αk−1−dk ≥ 0 for any k > N .
The final statement of Theorem 5.1 follows from the asymptotic formula (3.23)
which gives the precise form for the eigenvectors asymptotics.

Remark 5.2. Another approach to a similar class of Jacobi matrices based
on the generalization of ideas of W. Kelley [25] (whose paper concerns the
“double root” (= the Jordan box) case for Jacobi matrices whose matrix entries
are rational functions of n) was given by the first named author in [16]. Our
approach and the one of the paper [16] are complementary and seem to have
different areas of applications.
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Remark 5.3. If the choice of the right-hand side terms in (5.2) (and therefore
the choice of a few first values of qk and λk) is so that for some integer N

N
∑

k=1

kα(−αk−1 + dk) > λN + λ1 = Nα(1 + rN) + λ1 ,

then σp(J0) 6= ∅. In fact, for f̃ := (1, . . . , 1, 0, 0, . . .) only the first N coordinates
are equal to 1. Therefore we have

(J0f̃ , f̃) =

(

N
∑

k=1

kα(−αk−1 + dk) −Nα(1 + rN) − λ1

)

> 0 .
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