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Variable Order Differential Equations with

Piecewise Constant Order-Function and

Diffusion with Changing Modes

Sabir Umarov and Stanly Steinberg

Abstract. In this paper diffusion processes with changing modes are studied in-
volving the variable order partial differential equations. We prove the existence and
uniqueness theorem of a solution of the Cauchy problem for fractional variable order
(with respect to the time derivative) pseudo-differential equations. Depending on the
parameters of variable order derivatives short or long range memories may appear
when diffusion modes change. These memory effects are classified and studied in de-
tail. Processes that have distinctive regimes of different types of diffusion depending
on time are ubiquitous in the nature. Examples include diffusion in a heterogeneous
media and protein movement in cell biology.
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1. Introduction

Diffusion processes can be classified according to the asymptotic behaviour of
their mean square displacement (MSD) as a function of time. If the dependence
of the MSD on time is linear, then the process is classified as normal, otherwise
as anomalous. For many processes, the MSD satisfies

MSD(t) ∼ Kβt
β , t→ ∞, (1)

where Kβ is a constant. If β = 1 the diffusion is normal, if β > 1 the process is
super-diffusive, while if β < 1 the process is sub-diffusive [19,36]. The ultra-slow
diffusion processes studied in [5, 18, 20] lead to logarithmic behaviour of MSD
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for large t. The MSD of more complex processes with retardation (see [5, 12])
behaves like tβ2 for t small, and tβ1 for t large, where β1 < β2. Subdiffusive
motion with 0.1 < β < 0.9 was recorded in [10], and with 0.22 < β < 0.48
in [28], depending on macromolecules and cells. In [22, 30] protein movement
is studied in the cell membrane with a few types of compartments and made a
conclusion that β depends on time scales. Our models are subdiffusive, but of
variable order with order function β = β(t).

It is well known that simple homogeneous subdiffusive processes can be
modeled using a fractional order partial differential equation where only the
time derivative has a constant fractional order [19]. Variable fractional order
derivatives and operators were studied by N. Jacob et al. [15], S. G. Samko,
et al. [26, 27], W. Hoh [14]. Recently A. V. Chechkin et al. [6] used a version
of variable order derivatives to describe kinetic diffusion in heterogeneous me-
dia. In the recent paper [17], Lorenzo and Hartley introduced several types of
fractional variable order derivatives and applied them to engineering problems.
We will modify these operators, restrict them to order functions β(t) that are
piecewise constant and then apply the resulting variable order partial differen-
tial equations (VOPDE) to diffusion processes with changing diffusion modes.
An important aspect of the modeling is that the VOPDEs provides a descrip-
tion of memory effects arising from a change of diffusion modes that are distinct
from the “long range memory” connected with the non-Markovian character of
diffusion. Thus, in the VOPDE based description of anomalous diffusion mod-
els, both non-Markovian long range memory and new type of memory may be
present simultaneously.

The paper is organized as follows. In Section 2 we introduce background
material. In Section 3 we study the memory effects arising in connection with a
change of diffusion modes. In Sections 4 and 5 we study the mathematical model
of diffusion processes with changing modes in terms of an initial value problem
for VOPDE. Namely, we prove the theorem on the existence and uniqueness of
a solution of the initial value problems for variable order differential equations
and study some properties of a solution. The theorems are proved under the
assumption that diffusion mode change times are known.

2. LH-parallelogram and variable order derivatives

Recently Lorenzo and Hartley [17] introduced three types of derivatives of vari-
able fractional order β(t), t > 0, 0 < β(t) ≤ 1, all of which are special cases of
a more general fractional order derivative

Dβ(t)
µ,ν f(t) =

d

dt

∫ t

0

Kβ(t)
µ,ν (t, τ)f(τ)dτ, (2)
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where µ and ν are real parameters, t > 0, and

Kβ(t)
µ,ν (t, τ) =

1

Γ(1 − β(µt+ ντ))(t− τ)β(µt+ντ)
, 0 < τ < t . (3)

For convenience in studying of initial value problems, we prefer to use the closely
related Caputo type operator

Dβ(t)
∗µ,νf(t) =

∫ t

0

Kβ(t)
µ,ν (t, τ)

df(τ)

dτ
dτ. (4)

To describe the properties of the kernel (3) and the fractional derivative
operators (2) and (4) we introduce the Lorenzo–Hartley (LH) causality paral-

lelogram [17] Π = {(µ, ν) ∈ R
2 : 0 ≤ µ ≤ 1,−1 ≤ ν ≤ +1, 0 ≤ µ+ ν ≤ 1} . The

kernel (3), and thus, both the operators (2) and (4) are weakly singular for
(µ, ν) ∈ Π. Further, denote

K(t, τ, s) =
1

Γ(1 − β(s))(t− τ)β(s)
, t > 0, 0 < τ < t, s ≥ 0, (5)

where 0 < β(s) ≤ 1 is a given function1, which is called an order function.

Our main goal is to model problems where for different time intervals there
are different modes2 of diffusion. To this end, let Ti be a partition of the interval
(0,∞) into N + 1 sub-intervals (Tk, Tk+1), where 0 = T0 < T1 < · · · < TN <

TN+1 = ∞. Then let β(t) be the piecewise constant function

β(t) =
N

∑

k=0

βk Ik(t) , t ∈ (0,∞),

where Ik is the indicator of the interval (Tk, Tk+1) and 0 < βk ≤ 1, k = 0, . . . , N,
are constants. Under these conditions, the function (5) becomes

K(t, τ, s) =
N

∑

k=0

Ik(s)
1

Γ(1 − βk)(t− τ)βk
, t > 0, 0 < τ < t, s ≥ 0, (6)

and the kernel of the fractional order operator (4) becomes

Kβ(t)
µ,ν (t, τ) = K(t, τ, µt+ ντ), t > 0, 0 ≤ τ < t. (7)

with K(t, τ, s) defined in (6).

We think of the input to our model as the triplet (βk, µ, ν), 0 ≤ k ≤ N,

while the output of our model is determined by the kernel (7). Correspondingly,

1If β(t) = 1, then we agree D
β(t)
∗µ,νf(t) = df(t)

dt
.

2See definition in Section 2.3.
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we say that the triplet (βk, µ, ν) determines the diffusion mode in the time
interval (Tk, Tk+1). The output is determined by which values of β(t) are used
to compute the variable order derivative, that is, by which interval (Tk, Tk+1)
the point µt+ ντ belongs to. We always assume that (µ, ν) ∈ Π and then note
that τ ∈ (0, t) yields µt + ντ ∈ (µt, (µ + ν)t) and that (µt, (µ + ν)t) ⊂ (0, t).

This means that the operators D
β(t)
µ,ν and D

β(t)
∗µ,ν use information taken in the time

sub-interval (µt, (µ+ν)t) if ν is positive and from the sub-interval ((µ+ν)t, µt)
if ν is negative. In both cases, the length of this interval is |ν| t. The condition
(µ, ν) ∈ Π predetermines the causality, since 0 ≤ µt + ντ ≤ t for all t > 0 and
0 ≤ τ ≤ t.

2.1. Generalized function spaces ΨG,p(R
n), Ψ

′

−G,q(R
n). Let p > 1, q > 1,

p−1 + q−1 = 1, be two conjugate numbers. The generalized functions space
Ψ−G,q(R

n), which we are going to introduce is distinct from the classical spaces
of generalized functions. In the particular case of p = 2 this space was first
used by Yu. A. Dubinskĭı [8] in the course of initial-value problems for pseudo-
differential equations with analytic symbols. Later, the general case for all p
was studied in [31, 32]. Here we briefly recall some basic facts related to these
spaces, referring the interested reader to [11,31] for details.

Let G ⊂ R
n be an open domain and a system G ≡ {gk}

∞
k=0 of open sets be

a locally finite covering of G, i.e., G =
⋃∞

k=0 gk, gk ⊂⊂ G. This means that any
compact set K ⊂ G has a nonempty intersection with a finite number of sets gk.
Denote by {φk}

∞
k=0 a smooth partition of unity for G. We set GN = ∪N

k=1gk and
κN(ξ) =

∑N

k=1 φk(ξ). It is clear that GN ⊂ GN+1, N = 1, 2, . . . , and GN → G

for N → ∞. Further, by Ff (or f̂(ξ)) for a given function f(x) we denote its
Fourier transform, formally setting Ff(ξ) =

∫

Rn f(x)eixξdx, and by F−1f̂ the

inverse Fourier transform, i.e., F−1f̂(x) = (2π)−n
∫

Rn f̂(ξ)e−ixξdξ. The support
of a given f we denote by suppf .

Definition 2.1. Let N ∈ N. Denote by ΨN,p the set of functions f ∈ Lp(R
n)

satisfying the conditions (1)–(3):

(1) supp Ff ⊂ GN ;

(2) supp Ff ∩ supp φj = ∅ for j > N ;

(3) pN(f) = ‖F−1κNFf‖p <∞.

Lemma 2.2. For N = 1, 2, . . . , the relations ΨN,p →֒ ΨN+1,p, ΨN,p →֒ Lp(R
n)

hold, where →֒ denotes the operation of continuous embedding.

It follows from Lemma 2.2 that ΨN,p form an increasing sequence of Banach
spaces. Its limit with the inductive topology we denote by ΨG,p.

Definition 2.3. ΨG,p(R
n) = ind limN→∞ ΨN,p.
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The inductive limit topology of ΨG,p(R
n) is equivalent to the following con-

vergence.

Definition 2.4. A sequence of functions fm ∈ ΨG,p(R
n) is said to converge to

an element f0 ∈ ΨG,p(R
n) iff:

1. there exists a compact set K ⊂ G such that supp f̂m ⊂ K for all m ∈ N;

2. ‖fm − f0‖p = (
∫

Rn |fm − f0|
pdx)

1

p → 0 for m→ ∞.

Remark 2.5. According to the Paley–Wiener–Schwartz theorem, elements of
ΨG,p(R

n) are entire functions of exponential type which, restricted to R
n, are

in the space Lp(R
n).

The space topologically dual to ΨG,p(R
n), which is the projective limit of

the sequence of spaces conjugate to ΨN,p, is denoted by Ψ
′

−G,q(R
n).

Definition 2.6. Ψ
′

−G,q(R
n) = pr limN→∞ Ψ∗

N,p.

In other words, Ψ
′

−G,q(R
n) is the space of all linear bounded functionals

defined on the space ΨG,p(R
n) endowed with the weak topology. Namely, a

sequence of generalized functions gN ∈ Ψ
′

−G,q(R
n) converges to an element g0 ∈

Ψ
′

−G,q(R
n) in the weak sense if for all f ∈ ΨG,p(R

n) the sequence of numbers
〈gN , f〉 converges to 〈g0, f〉 as N → ∞. We recall that the notation 〈g, f〉 means
the value of g ∈ Ψ

′

−G,q(R
n) on an element f ∈ ΨG,p(R

n).

2.2. Pseudo-differential operators with constant symbols. Now we re-
call some properties of pseudo-differential operators with symbols defined and
continuous in a domain G ⊂ R

n. Outside of G or on its boundary the symbol
A(ξ) may have singularities of arbitrary type. For a function ϕ ∈ ΨG,p(R

n) the
operator A(D) corresponding to A(ξ) is defined by the formula

A(D)ϕ(x) =
1

(2π)n

∫

G

A(ξ)Fϕ(ξ)eixξdξ. (8)

Generally speaking, A(D) does not make sense even for functions in the space
C∞

0 (Rn). In fact, let ξ0 be a non-integrable singular point of A(ξ) and denote
by O(ξ0) some neighborhood of ξ0. Let us take a function ϕ ∈ C∞

0 (Rn) with
Fϕ(ξ) > 0 for ξ ∈ O(ξ0) and Fϕ(ξ0) = 1. Then it is easy to verify that
A(D)ϕ(x) = ∞. On the other hand, for ϕ ∈ ΨG,p(R

n) the integral in Eq. (8)
is convergent due to the compactness of supp Fϕ ⊂ G. We define the operator
A(−D) acting in the space Ψ

′

−G,q(R
n) by the duality formula

〈A(−D)f, ϕ〉 = 〈f,A(D)ϕ〉, f ∈ Ψ
′

−G,q(R
n), ϕ ∈ ΨG,p(R

n).
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Lemma 2.7. The spaces ΨG,p(R
n) and Ψ

′

−G,q(R
n) are invariant with respect

to the action of an arbitrary pseudo-differential operator A(D) whose symbol is

continuous in G. Moreover, if A(ξ)κN(ξ) is a multiplier on Lp for every N ∈ N,

then this operator acts continuously.

Remark 2.8. In the case p = 2 an arbitrary pseudo-differential operator whose
symbol is continuous in G acts continuously without the additional condition
for A(ξ)κN(ξ) to be multiplier in L2 for every N ∈ N.

2.3. Subdiffusion processes. As is known [11, 19], a (sub-)diffusion process
is governed by the fractional order partial differential equation

Dβ
∗u(t, x) = A(D)u(t, x), t > 0, x ∈ R

n, (9)

where Dβ
∗ is the Caputo fractional derivative of order β ∈ (0, 1], and A(D), D =

(D1, . . . , Dn), Dj = −i ∂
∂xj
, j = 1, . . . , n, some elliptic pseudo-differential opera-

tor.

Many diffusion processes driven by a Brownian motion can be described by
equation (9) with a second order elliptic differential operator A(D) and β = 1.
Lévy stochastic processes (which include jumps) also connected with (9) and
an elliptic pseudo-differential operator A(D) (see, e.g., [2]). In particular, if
particle jumps are given by a symmetric Lévy stable distribution with infinite
mean square displacement, then A(D) is a hyper-singular integral, defined as
the inverse to the Riesz–Feller fractional order (0 < α < 2) operator (for details
see [25]). A wide variety of non-Gaussian stochastic (subdiffusive) processes
lead to equation (9) with 0 < β < 1 (see [19, 20]). For diffusion governed by
distributed order differential equations see [1,34]. The parameter β determines
the sub-diffusive mode, which is slower than the classical free diffusion.

Generalizing this approach we will say that the {βk, µ, ν}-diffusion mode in
the time interval (Tk−1, Tk) is governed by the equation

Dβk

∗{µ,ν}u(t, x) = A(D)u(t, x), t ∈ (Tk−1, Tk), x ∈ R
n.

The entire process then can be described by the equation

D
β(t)
∗{µ,ν}u(t, x) = A(D)u(t, x), t > 0, x ∈ R

n, (10)

where D
β(t)
∗{µ,ν} is the variable fractional order operator with the kernelK

β(t)
{µ,ν}(t, τ)

in (7).

In Section 4 we will prove the existence of solutions to the initial value
problem defined by the differential equation (10).
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3. Changing of modes: ’short-range’ and ’long-range’
memories

We call the triplet {βk, µ, ν} admissible if 0 < βk ≤ 1 and (µ, ν) ∈ Π. Diffusion
in complex heterogeneous media is accompanied by frequent changes of diffu-
sion modes. It is known that a particle undergoing non-Markovian movement
possesses a memory of past (see [19,36]). Protein diffusion in cell membrane, as
is recorded in [23,24] is anomalous diffusion. Descriptions of this process using
random walks also shows the presence of non-Markovian type memory [1,13,16].
It turns out, there is another type of memory noticed first by Lorenzo and Hart-
ley in their paper [17] in some particular cases of µ and ν. This kind of memory
arises when the diffusion mode changes.

In this section we study a special case of this phenomenon where there is
a single change of diffusion mode, that is, a sub-diffusion mode given by an
admissible triplet {β1, µ, ν} changes to a sub-diffusion mode corresponding to
another admissible triplet {β2, µ, ν} at some particular time T .

Definition 3.1. Let {β1, µ, ν} and {β2, µ, ν} be two admissible triplets. Assume
the diffusion mode is changed at time t = T from {β1, µ, ν}-mode to {β2, µ, ν}-
mode. Then the process is said to have a ’short-range’ (or short) memory, if
there is a finite T ∗ > T such that for all t > T ∗ the {β2, µ, ν}-mode holds.
Otherwise, the process is said to have a ’long-range’ (or long) memory.

Remark 3.2. According to Definition 3.1, a diffusion mode has a long mem-
ory if the influence of the old diffusion mode never vanishes, even though the
diffusion mode is changed, i.e., the particle does not forget its past. In the case
of short memory, the particle remembers the old mode for some critical time,
and then forgets it fully, recognizing the new mode.

Theorem 3.3. Let ν > 0 and µ 6= 0. Assume the {β1, µ, ν}-diffusion mode

is changed at time t = T to the {β2, µ, ν}-diffusion mode. Let T ∗ = T
µ

and

t∗ = T
µ+ν

. Then the process has a short memory. Moreover,

(i) {β1, µ, ν}-diffusion mode holds for all 0 < t < t∗;

(ii) {β2, µ, ν}-diffusion mode holds for all t > T ∗;

(iii) a mix of both {β1, µ, ν} and {β2, µ, ν}-diffusion modes holds for all t∗ <

t < T ∗.

Proof. Let β(s) = β1 for 0 < s < T and β(s) = β2 for s > T. Assume ν > 0.
Denote s = µt+ ντ. So, the {β1, µ, ν}-diffusion mode holds if µt+ ντ < T . Let
0 < t < t∗ = T

µ+ν
. Then for every τ ∈ (0, t) we have µt + ντ < (µ + ν)t < T .

This means that the order operator β(s) in D
β(t)
∗{µ,ν} takes the value β1 giving (i).

If t > T
µ

then for all τ > 0, µt + ντ > T . Hence, β(s) = β2, obtaining (ii).
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Now assume T
µ+ν

< t < T
µ
. Denote τ0 = T−µt

ν
. Obviously τ0 > 0. It follows from

(µ + ν)t > T dividing by ν that t > T
ν
− tµ

ν
= τ0, i.e., 0 < τ0 < t. It is easy

to check that if 0 < τ < τ0 then µt + ντ ∈ (µt, T ) ⊂ (0, T ), giving β(s) = β1,

while if τ0 < τ < t then µt + ντ ∈ (T, (µ + ν)t) ⊂ (T,∞), giving β(s) = β2.

Hence, in this case the mix of both {β1, µ, ν} and {β2, µ, ν}-diffusion modes is
present.

Theorem 3.4. Let ν < 0 and µ+ ν 6= 0. Assume the {β1, µ, ν}-diffusion mode

is changed at time t = T to the {β2, µ, ν}-diffusion mode. Let t∗
′

= T
µ

and

T ∗′

= T
µ+ν

. Then the process has a short memory. Moreover,

(i’) {β1, µ, ν}-diffusion mode for all 0 < t < t∗
′

;

(ii’) {β2, µ, ν}-diffusion mode holds for all t > T ∗′

;

(iii’) a mix of both {β1, µ, ν} and {β2, µ, ν}-diffusion modes holds for all t∗
′

<

t < T ∗′

.

Proof. Let ν < 0. Assume again β(s) = β1 for 0 < s < T and β(s) = β2 for
s > T. As in the previous theorem, denote s = µt + ντ. First we notice that
if 0 < t < T

µ
then µt + ντ < T , which implies β(s) = β1, giving (i’). Now let

t > T
µ+ν

be any number. Then for 0 < τ < t we have µt + ντ > T , which

yields β(s) = β2. So, we get (ii’). Now assume T
µ
< t < T

µ+ν
. Again denote

τ0 = T−µt

ν
. Obviously τ0 > 0. It follows from (µ + ν)t < T dividing by ν < 0

that t > T
ν
− tµ

ν
= τ0, i.e., 0 < τ0 < t. It is easy to check that if 0 < τ < τ0

then µt + ντ ∈ (T, µt) ⊂ (T,∞), giving β(s) = β2, while if τ0 < τ < t then
µt + ντ ∈ ((µ + ν)t, T ) ⊂ (0, T ), giving β(s) = β1. Hence, in this case the mix
of both {β1, µ, ν} and {β2, µ, ν}-diffusion modes is present, obtaining (iii’).

Corollary 3.5. Let ν = 0 and µ 6= 0. Assume the {β1, µ, ν}-diffusion mode is

changed at time t = T to the {β2, µ, ν}-diffusion mode. Let T ∗ = T
µ
. Then the

process has a short memory. Moreover,

(a) for all 0 < t < T ∗ there holds {β1, µ, ν}-diffusion mode;

(b) for all t > T ∗ there holds {β2, µ, ν}-diffusion mode.

Proof. If ν = 0 then we have β(s) = β(µt) = β1 for t < T
µ

and β(s) = β2 for

t > T
µ
.

Corollary 3.6. Let µ = 0 or µ+ ν = 0. Assume the {β1, µ, ν}-diffusion mode

is changed at time t = T to the {β2, µ, ν}-diffusion mode. Then the process has

the long memory.

Proof. According to the structure of LH-parallelogram µ = 0 implies ν > 0. In
this case T ∗ = ∞. If µ+ ν = 0 then ν < 0 and t∗ = ∞. In both cases we a have
long memory effect.
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Remark 3.7. Notice, that if ν = 0, then there is no intervals of mix of modes.
Moreover, if ν = 0, µ = 1, then T ∗ = t∗ = T. In this sense we say that a
process has no memory. For all points {(µ, ν)} except {µ = 0, 0 ≤ ν ≤ 1} and

{ν < 0, µ + ν = 0}, the operator D
β(t)
∗{µ,ν} has a short memory. The memory is

stronger in the region ν < 0 and weaker in ν > 0. On the line µ + ν = 1 we
have t∗ = T < T ∗. The lines µ = 0, ν ≥ 0 and µ+ ν = 0 identify the long range
memory.

4. The Cauchy problem for variable order differential
equations

In this section we study the Cauchy problem for variable order differential equa-
tions with a piecewise constant order function β(t) =

∑N

k=0 Ikβk, where Ik is
the indicator function of [Tk, Tk+1). We assume that the diffusion mode change
times T1, T2, . . . , TN are known, and set T0 = 0, TN+1 = ∞. We assume that the
solution of the initial value problem for the VOPDE (10) is continuous3 when
the diffusion mode changes.

Thus, the Cauchy problem is formulated in the form

D
β(t)
∗{µ,ν}u(t, x) = A(D)u(t, x), t > 0, x ∈ R

n (11)

u(0, x) = ϕ(x) (12)

u(T ∗
k − 0, x) = u(T ∗

k + 0, x), k = 1, . . . , N, x ∈ R
n, (13)

where A(D) is a pseudo-differential operator with a continuous symbolA(ξ), ξ ∈
R

n, and T ∗
k are actual mode change times. It follows from Theorems 3.3 and 3.4

that T ∗
k are defined through Tk

µ+ν
and Tk

µ
.

We note that, since the integration operator order β depends on the vari-
able t, a variable order analog of the integration operator becomes

J
β(t)
{µ,ν}f(t) =

∫ t

0

(t− τ)β(µt+ντ)−1f(τ)

Γ(β(µt+ ντ))
dτ,

which we call a variable order integration operator.

For further purpose we recall the definition of the Mittag–Leffler function
[7, 21] in the power series form

Eβ(z) =
∞

∑

n=0

zn

Γ(βn+ 1)
, z ∈ C1.

Obviously, Eβ(z) = ez, if β = 1. For all β > 0 Eβ(z) is an entire function of
type 1 and order 1

β
. Note that Eβ(−t), t > 0, is completely monotone [21], and

has asymptotics Eβ(−t) = O(t−1), t→ ∞.

3In the topology of ΨG,p(R
n) (or Ψ

′

−G,p).
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Lemma 4.1. Assume 0 < β∗ = min0≤j≤N{βj} and [kβ∗] is the integer part of

kβ∗. Let v(t) be a function continuous in [0,∞). Then for arbitrary T > 0 and

every k = 1, 2, . . . the estimate

max
0≤t≤T

|Jβ(t)kv(t)| ≤
[ψ(T )]k

[kβ∗ + 1]!
max
0≤t≤T

|v(t)| (14)

holds with ψ(τ) =
{

τβ∗ , 0 < τ < 1

τ , τ ≥ 1.

Proof. Let v(t) be a function continuous in [0,∞). For k large enough, so that
β∗k ≥ 2 we have min Γ(kβ(µt + ντ)) = Γ(kβ∗). Taking this into account, for
all such k and for all t ∈ (0, T ] we obtain the estimate

|Jβ(t)kv(t)| =

∣

∣

∣

∣

∫ t

0

(t− τ)kβ(µt+ντ)−1v(τ)dτ

Γ(kβ(µt+ ντ))

∣

∣

∣

∣

≤
[ψ(T )]k

Γ(kβ∗ + 1)
max
0≤t≤T

|v(t)|,

and hence, the estimate in Eq. (14).

Let tcr,j =
Tj

µ+ν
, j = 1, . . . , N, be critical points corresponding to the mode

change times Tj, j = 1, . . . , N. We accept the conventions tcr,0 = 0, tcr,N+1 = ∞.

Let Eβ(z) be the Mittag–Leffler function with parameter β ∈ (0, 1]. Now we
introduce the symbols which play an important role in the representation of a
solution. Let

Sj(t, ξ) = Eβj
((t− tcr,j)

βjA(ξ)), t ≥ tcr,j, j = 0, . . . , N, (15)

and

Mk(t, ξ) = Sk(t− tcr,k, ξ)
k−1
∏

j=0

Sj(tcr,j+1 − tcr,j, ξ), t ≥ tcr,k, k = 1, . . . , N. (16)

Further, we define recurrently the symbols

R1(t, ξ) = −
1

Γ(1 − β1)

∫ tcr,1

0

∂
∂τ
S0(τ, ξ)

(t− τ)β1
dτ =

−β0A(ξ)

Γ(1 − β1)

∫ tcr,1

0

E
′

β0
(τβ0A(ξ))dτ

τ 1−β0(t− τ)β1
,

P−1(t, ξ) ≡ 0, P0(t, ξ) ≡ 1, P1(t, ξ) =
∫ t

tcr1

Sj(t+ tcr,1 − τ, ξ) tcr,1
D1−β1

τ R1(τ, ξ)dτ ,

and if Pj(t, ξ) =
∫ t

tcrj

Sj(t+ tcr,j − τ, ξ) tcr,j
D

1−βj
τ Rj(τ, ξ)dτ is defined for t ≥ tcr,j

and for all j ≤ k − 1, then for t ≥ tcr,k,

Rk(t, ξ)

=−
1

Γ(1−βk)

k−1
∑

j=0

∫ tcr,j+1

tcr,j

∂
∂τ

[Mj(τ,ξ)+Sj(τ−tcr,j, ξ)Pj−1(tcr,j,ξ)+Pj(τ,ξ)]

(t−τ)βk
dτ,

(17)

for k = 2, . . . , N.
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4.1. The case ν = 0.

Theorem 4.2. Assume ν = 0 and ϕ ∈ ΨG,p(R
n). Then the Cauchy problem

(11)–(13) has a unique solution u(t, x) ∈ C([0, T ],ΨG,p(R
n)), T < ∞, which

is represented in the form u(t, x) = S(t,D)ϕ(x), where S(t,D) is the pseudo-

differential operator with the symbol

S(t, ξ) = I
′

0S0(t, ξ) +
N

∑

k=1

I
′

k(t)

{

Mk(t, ξ)

+ Sk(t, ξ)

∫ tcr,k

tcr,k−1

Sk−1(tcr,k + tcr,k−1 − τ, ξ) tcr,k−1
D1−βk

τ Rk(τ, ξ)dτ

+

∫ t

tcr,k

Sk(t+ tcr,k − τ, ξ) tcr,k
D1−βk

τ Rk(τ, ξ) dτ

}

,

(18)

where I
′

k = I[tcr,k,tcr,k+1)(t), k = 0, . . . , N, are indicator functions of the intervals

[tcr,k, tcr,k+1), k = 0, . . . , N ; Sj(t, ξ), j = 0, . . . , N, Mk(t, ξ) and Rk(t, ξ), k =
1, . . . , N, are defined in (15), (16) and (17), respectively.

Proof. It is not hard to verify that

J
β(t)
{µ,0}D

β(t)
∗{µ,0}u(t, x) =

N
∑

k=0

I
′

kJ
βkDβk

∗ u(t, x)

= u(t, x) −
N

∑

k=0

I
′

ku(tcr,k, x) + g(t, x),

(19)

where g(t, x) =
∑N

k=1 I
′

k
tβk

Γ(1+βk)

∑k−1
j=0 tcr,j

Dβk

∗{µ,0}u(tcr,j+1, x). Multiplying both

sides of equation (11) by J
β(t)
{µ,0} and applying the formula (19), we obtain

u(t, x) −
N

∑

k=0

I
′

kJ
βkA(D)u(t, x) =

N
∑

k=0

I
′

ku(tcr,k, x) − g(t, x). (20)

Let t ∈ (0, tcr,1). Then β(µt) = β0 and g(t, x) ≡ 0. In this case taking into
account the initial condition (12), we can rewrite equation (20) in the form

u(t, x) − Jβ0A(D)u(t, x) = ϕ(x), 0 < t < tcr,1.

The obtained equation can be solved by using the iteration method. Deter-
mine the sequence of functions {u0(t, x), . . . , um(t, x)} in the following way. Let
u0(t, x) = ϕ(x) and by iteration

um(t, x) = Jβ0A(D)um−1(t, x) + ϕ(x), m = 1, 2, . . . . (21)
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We show that this sequence is convergent in the topology of C[0, T ; Ψ(Rn)] and
its limit is a solution to the Cauchy problem (11),(12). Moreover, this solution
can be represented in the form of functional series

u(t, x) =
∞

∑

k=0

Jβ0kAk(D)ϕ(x). (22)

Indeed, it follows from the iteration process (21) that

um(t, x) = Jβ(t)mAm(D)ϕ(x) + Jβ(t)(m−1)Am−1(D)ϕ(x) + · · · + ϕ(x). (23)

Now we estimate um(t, x) applying Lemma 14 term by term in the right hand
side of (23). Indeed, let N ∈ N. Then taking into account the fact that the
Fourier transform in x commutes with Jβ(t), we have

max
[0,T ]

pN

(

Jβ0kAk(D)ϕ(x)
)

≤
ψk−1(T )

[kβ0]!
pN(Aϕ(x)).

Further, since A(ξ) is continuous on G there exists a constant CN > 0 such that
maxξ∈supp κN

|A(ξ)| ≤ CN , or, by induction maxξ∈supp κN
|Ak(ξ)| ≤ Ck

N . Hence,
for every N ∈ N, we have

pN

(

Jβ(t)kAk(D)ϕ(x)
)

≤ ‖ϕ‖p

Ck−1
N ψk−1(T )

[kβ0]!
. (24)

It follows from (24) that, for N = 1, 2, . . . ,

max
[0,T ]

pN(um(t, x)) ≤ ‖ϕ(x)‖p

m
∑

k=0

Ck
Nψ

k(T )

Γ(β0k + 1)
≤ C‖ϕ(x)‖pEβ0

(CN ψ(T )),

where Eβ0
(τ) is the Mittag–Leffler function corresponding to β0. As far as the

right hand side of the latter does not depend on m, we conclude that um(t, x)
defined in (23) is convergent. Again making use of estimate (14) in Lemma 4.1
we have

pN(u(t, x) − um(t, x)) ≤ ‖ϕ(x)‖p

∞
∑

k=m+1

CNψ
k(T )

Γ(β0k + 1)
, N = 1, 2, . . . . (25)

The function Rm(η) =
∑∞

k=m+1
ηk

Γ(β0k+1)
on the right side of equation (25) is the

residue in the power series representation of the Mittag–Leffler function Eβ0
(η),

and, hence, Rm(η) → 0, when m → ∞ for any real (or even complex) η.
Consequently, um(t, x) → u(t, x) for every N = 1, 2, . . ., that is in the inductive
topology of the space C([0,∞),ΨG,p). Thus, u(t, x) ∈ C([0,∞),ΨG,p) is a
solution. Moreover, it is readily seen that u(t, x) in (22) can be represented



Variable Order Differential Equations 443

through the pseudo-differential operator S(t,D) with the symbol S0(t, ξ) =
Eβ0

(tβ0A(ξ)) in the form u(t, x) = u0(t, x) = S0(t,D)ϕ(x), t ∈ (0, tcr,1). By
construction u(t, x) is unique and continuous in t. So, limt→tcr,1−0 u(t, x) =

Eβ0
(tβ0

cr,1A(D))ϕ(x) exists in ΨG,p(R
n). Further we extend u(t, x) to [tcr,1, tcr,2).

Equation (11) in the interval (tcr,1, tcr,2) reads Dβ1

∗ u(t, x) = A(D)u(t, x), ∈
(tcr,1, tcr,2). Splitting the integration interval (0, t) on the left hand side of the
last equation into subintervals (0, tcr,1) and (tcr,1, t), we can rewrite it in the
form

tcr,1
Dβ1

∗ u(t, x) = A(D)u(t, x) + F1(t, x), t ∈ (tcr,1, tcr,2),

where F1(t, x) = − 1
Γ(1−β1)

∫ tcr,1

0

∂
∂τ

u0(τ,x)

(t−τ)β1
dτ. Taking into account the fact u0(t, x)=

S0(t,D)ϕ(x), it is not hard to see that F1(t, x) = R1(t,D)ϕ(x), where

R1(t, ξ) =
−β0A(ξ)

Γ(1 − β1)

∫ tcr,1

0

E
′

β0
(τβ0A(ξ))

τ 1−β0(t− τ)β1
dτ.

Due to the continuity condition (13), we have also

u(tcr,1, x) = u0(tcr,1, x) = Eβ0

(

t
β0

cr,1A(D)
)

ϕ(x) = S0(tcr,1, D)ϕ(x).

In the general case, assuming that solution are found in the intervals [0,tcr,1), . . . ,
[tcr,k−1, tcr,k), we have the following inhomogeneous Cauchy problem for the
interval (tcr,k, tcr,k+1):

tcr,k
Dβk

∗ u(t, x) = A(D)u(t, x) + Fk(t, x), t ∈ (tcr,k, tcr,k+1), (26)

u(tcr,k, x) = uk−1(tcr,k, x), (27)

where Fk(t, x) = − 1
Γ(1−βk)

∑k−1
j=0

∫ tcr,j+1

tcr,j

∂
∂τ

uj(τ,x)

(t−τ)βk
dτ. It is not hard to verify that

Fk(t, x) can be represented in the form Rk(t,D)ϕ(x) with a pseudo-differential
operator Rk(t,D) whose symbol is given in (17). A unique solution to (26),(27)
can be found applying the fractional Duhamel principle (see [35]):

uk(t, x) = Sk(t,D)uk−1(tcr,k, x) +

∫ t

tcr,k

Sk(t− (τ − tcr,k), D) tcr,k
D1−βk

τ Fk(τ, x)dτ,

for k = 1, . . . , N, tcr,k < t < tcr,k+1. Now taking into account that

uk−1(tcr,k, x) =

[ k−1
∏

j=0

Sj(tcr,j+1 − tcr,j, D)

]

ϕ(x)

+

∫ tcr,k

tcr,k−1

Sk−1(tcr,k − (τ − tcr,k−1), D)tcr,k−1
D1−βk−1

τ Fk−1(τ, x) dτ

we arrive at (18).

Remark 4.3. Assume in equation (11) β(t) = β, where β is a constant in (0, 1].
Then the representation formula (18) is reduced to u(t, x) = Eβ(tβA(D))ϕ(x),
which coincides with the result of [11].
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Applying the technique used in the paper [11] and the duality of the spaces
ΨG,p(R

n) and Ψ
′

−G,q(R
n) we can prove the following theorem.

Theorem 4.4. Assume ν = 0 and ϕ ∈ Ψ
′

−G,q(R
n). Then the Cauchy prob-

lem (11)-(13) (with ’-D’ instead of ’D’) has a unique weak solution u(t, x) ∈
C([0, T ],Ψ

′

−G,q(R
n)), T <∞, which is represented in the form

u(t, x) = I
′

0S0(t,−D)ϕ(x) +
N

∑

k=1

I
′

k(t)

{

Mk(t,−D)ϕ(x) + Sk(t,−D)

×

∫ tcr,k

tcr,k−1

Sk−1(tcr,k+tcr,k−1−τ,−D) tcr,k−1
D1−βk

τ Rk(τ,−D)ϕ(x) dτ

+

∫ t

tcr,k

Sk(t+ tcr,k − τ,−D) tcr,k
D1−βk

τ Rk(τ,−D)ϕ(x) dτ

}

,

Corollary 4.5. If ν = 0 then the fundamental solution of equation (11) with

the continuity conditions in (13) is represented in the form

U(t, x) = I
′

0(t)
1

(2π)n

∫

Rn

Eβ0
(tβ0A(−ξ))dξ +

N
∑

k=1

I
′

k(t)
1

(2π)n

×

∫

Rn

{

Eβk

(

(t− tk)
βkA(−ξ)

)

k−1
∏

j=0

Eβj

(

(tj+1 − tj)
βjA(−ξ)

)

+ Eβk

(

(t− tk)
βkA(−ξ)

)

×

∫ tk

tk−1

Eβk−1

(

(tk − τ)βk−1A(−ξ)
)

tk−1
D1−βk−1

τ Rk−1(τ,−ξ)dτ

+

∫ t

tk

Eβk

(

(t− τ)βkA(−ξ)
)

tkD
1−βk
τ Rk(τ,−ξ)dτ

}

eixξ dξ,

where tj = tcr,j. Moreover, U(t, x) ∈ Ψ
′

−G,q(R
n) for every fixed t > 0.

4.2. The case −1 < ν ≤ 1. The solution u(t, x) = S(t,D)ϕ(x) obtained in
Theorem 4.2 in the case ν = 0 has the structure u(t, x) = Ψ1(t,D)ϕ(x) +
Ψ2(t,D)ϕ(x), where Ψ1(t,D) and Ψ2(t,D) are operators with symbols

Ψ1(t, ξ) = I
′

0S0(t, ξ) +
N

∑

k=1

I
′

k(t)Mk(t, ξ),

and

Ψ2(t, ξ)

=
N

∑

k=1

I
′

k(t)

{

Sk(t, ξ)

∫ tcr,k

tcr,k−1

Sk−1(tcr,k+tcr,k−1−τ, ξ) tcr,k−1
D1−βk

τ Rk(τ, ξ) dτ

+

∫ t

tcr,k

Sk(t+ tcr,k − τ, ξ) tcr,k
D1−βk

τ Rk(τ, ξ) dτ

}

.
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The term v(t, x) = Ψ(t,D)ϕ(x) reflects an effect of diffusion modes, while the
term w(t, x) = Ψ2(t,D)ϕ(x) is connected with a memory of the past. We note
that this structure remains correct in the general case ν ∈ (0, 1] also, however,
the symbols of solution operators are further restructured depending on the
intervals of mixture of (two or more) modes. The theorems formulated below
concern some intervals free of mixed modes.

Theorem 4.6. Assume µ 6= 0, µ+ ν 6= 0 and ϕ ∈ ΨG,p(R
n). Then there exists

a number T ∗ > 0 and pseudo-differential operators P∗(D) and R∗(t,D) with

continuous symbols, such that for t > T ∗ the solution of the Cauchy problem

(11)–(13) coincides with the solution of the Cauchy problem

T ∗DβN
∗ u(t, x) = A(D)u(t, x) + f ∗(t, x), t > T ∗, x ∈ R

n (28)

u(T ∗, x) = ϕ∗(x), x ∈ R
n. (29)

where f ∗(t, x) = R∗(t,D)ϕ(x) and ϕ∗(x) = P∗(D)ϕ(x).

Proof. Assume ν > 0. Then as it follows from Theorem 3.3 that the actual mode
changes occur at times T ∗

j =
Tj

µ
and t∗j =

Tj

µ+ν
, j = 1, . . . , N, if diffusion modes

change at times Tj, j = 1, . . . , N. Obviously, t∗1 < · · · < t∗N and T ∗
1 < · · · < T ∗

N if

T1 < · · · < TN . The order function β(µt+ντ) under the integral in D
β(t)
∗{µ,ν} takes

the value βN for all t > T ∗
N and τ > 0. Hence, the variable order operator on the

left side of (11) becomesDβN
∗ if t > T ∗

N . Analogously it follows from Theorem 3.4
that if ν<0, then β(µt+ντ) takes the value βN for all t > t∗N and τ > 0. Thus, if
ν 6= 0, then for all t > T ∗= max{T ∗

N , t
∗
N} and 0 < τ < t we have β(µt+ντ) = βN .

Similar to the case ν = 0, splitting the interval (0, t), t > T ∗, into subintervals,
we can represent the equation (11) in the form (28). Further, from the continuity
condition (13) we have u(T ∗, x) = limt→T ∗−0 v(t, x), where v(t, x) is a solution
to the Cauchy problem for fractional order pseudo-differential equations in sub-
intervals of the interval [0, T ∗

N) constructed by continuation. Therefore there
exists an operator S∗(t,D), such that v(t, x) = S∗(t,D)ϕ(x). Denote P∗(D) =
S∗(T ∗, D). Then u(T ∗, x) = P∗(D)ϕ(x). This means that for t > T ∗ solutions of
problems (11)–(13) and (28),(29) coincide. If ν = 0, then the statement follows
from Theorem 4.2.

Theorem 4.7. Assume ϕ ∈ ΨG,p(R
n). Then there exists a number t∗ > 0, such

that for 0 < t < t∗ the solution of the Cauchy problem (11)–(13) coincides with

the solution of the Cauchy problem

Dβ0

∗ u(t, x) = A(D)u(t, x), t > 0, x ∈ R
n (30)

u(0, x) = ϕ(x), x ∈ R
n. (31)

Proof. It follows from Theorems 3.3 and 3.4 that the order function β(µt+ ντ)

under the integral in D
β(t)
∗{µ,ν} takes the value β0 for all t < t∗ = min{t∗1, T

∗
1 }
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and 0 < τ < t. Hence, the variable order operator in (11) becomes Dβ0

∗ if
0 < t < t∗. The order β1 (or diffusion mode {β1, µ, ν}) has no influence in this
interval. For t > t∗ two diffusion modes {β0, µ, ν} and {β1, µ, ν} are present.
If t < min{t∗2, T

∗
2 }, then for all τ > 0 we have µt + ντ < T2. That is, there is

no influence of the mode {β2, µ, ν} if t < min{t∗2, T
∗
2 }. In the same manner the

other values of β have no influence in the interval 0 < t < t∗. This means that
for 0 < t < t∗ solutions of problems (11)–(13) and (30),(31) coincide.

5. Some properties of the fundamental solution

In this section we study some basic properties of a solution u(t, x) to the problem
(11)–(13). Namely, we show that u(t, x) is a density function under a rather
general conditions on the pseudo-differential operator A(D). We also study the
MSD(t) of the corresponding process near the initial time, which is important,
in particular, in cell biology.

Theorem 5.1. Assume A(ξ) is a continuous symbol with negative values for

ξ 6= 0, A(−ξ) = A(ξ) and A(0) = 0. Then the Fourier transform Û(t, ξ) =
F [U ](t, ξ) of the fundamental solution U(t, x) to the problem (11)–(13) satisfies

the following conditions:

1. Û(t, ξ) is continuous in ξ for every fixed t ≥ 0;

2. Û(t, 0) = 1 for all t ≥ 0;

3. Û(t, ξ) is positive definite for every fixed t ≥ 0.

Proof. First, let ν = 0. Then Corollary 4.5 and the symmetry A(−ξ) = A(ξ)
imply that

Û(t, ξ) = I
′

0(t)Eβ0

(

tβ0A(ξ)
)

+
N

∑

k=1

I
′

k(t)

{

Eβk

(

(t− tk)
βkA(ξ)

)

k−1
∏

j=0

Eβj
((tj+1 − tj)

βjA(ξ))

+ Eβk

(

(t− tk)
βkA(ξ)

)

×

∫ tk

tk−1

Eβk−1

(

(tk − τ)βk−1A(ξ)
)

tk−1
D1−βk−1

τ Rk−1(τ, ξ) dτ

+

∫ t

tk

Eβk

(

(t− τ)βkA(ξ)
)

tkD
1−βk
τ Rk(τ, ξ) dτ

}

,

(32)

where Eβ(z) is the Mittag–Leffler function and Rk(t, ξ) is defined in (17). Tak-

ing into account continuity of Eβ(z), we conclude that Û(t, ξ) is continuous
for every fixed t > 0. Further, it follows from the definition of Rk(t, ξ) that
R(t, 0) = 0. This implies Û(t, 0) =

∑N

k=0 I
′

k(t), since Eβ(0) = 1. Finally, as is
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known [21,29] since the function Eβ(−λtβ), 0 < β ≤ 1, is completely monotone

for all t > 0 if λ > 0, we have Eβ(−λtβ) > 0 and
dEβ(−λtβ)

dt
< 0 for all t > 0.

The latter implies Rk(t, ξ) ≥ 0, k = 1, . . . , N. It follows from this fact together
with A(ξ) ≤ 0 and positiveness of Eβ(tβA(ξ)) for all t ≥ 0 that Û(t, ξ) > 0
for every fixed t ≥ 0 and ξ ∈ K ⊂⊂ Rn, where K is an arbitrary compact.
Now it is easy to verify positive definiteness of Û(t, ξ) for each fixed t > 0. The
idea of the proof in the general case ν ∈ (−1, 1] is preserved, since the general
structure of the representation formula for the fundamental solution remains
unchanged.

Corollary 5.2. Under the assumption of Theorem 5.1 the fundamental solution

U(t, x) to the problem (11)–(13) is a probability density function for each fixed

t ∈ (0,∞).

The proof of this statement immediately follows from the Bochner–Khinchin
theorem (see, e.g., [3]).

Thus there exists a stochastic process Xt with a density function pt(x) =
U(t, x) for every fixed t ≥ 0 with p0(x) = δ(x). Denote by µt = E[Xt] the
expectation of a random variable Xt (t is fixed) and MSD(t) = E[|Xt − µt|

2].

Now assume that the pseudo-differential operator on the right hand side of
(11) is a negative definite second order homogeneous elliptic operator, that is
the symbol of the operator A(D) has the form A(ξ) = 1

2

∑

aijξiξj. The matrix
A = (aij) is symmetric and negative definite: V TAV ≤ −C|V |2, C > 0, where
V is an n-dimensional vector, V T is its transpose. By Tr(A) we denote the trace
of A: Tr(A) =

∑

ajj. It is not hard to verify that in this case U(t,−x) = U(t, x)
and µt = 0. Hence,

MSD(U ; t) =

∫

Rn

|x|2U(t, x)dx. (33)

Theorem 5.3. Assume A(D) in (11) is a second order homogeneous negative

definite elliptic operator. Then there exists t∗ > 0 such that for t < t∗ the

function MSD(U ; t), where U(t, x) is the fundamental solution of the Cauchy

problem (11)–(13), is represented in the form

MSD(U ; t) =
Tr(A)

Γ(β + 1)
tβ, 0 < t < t∗. (34)

Proof. The proof is an implication of Theorem 4.7 and the fact that MSD(U ; t)
for a solution of the Cauchy problem (30),(31) can be represented in the form
MSD(U ; t) = (−∆ξ)Û(t, ξ)|ξ=0.

Theorem 5.4. Under the condition of Theorem 5.3 for MSD(U ; t), where U

is the fundamental solution of the Cauchy problem (11)–(13), the asymptotic

relation MSD(U ; t) = O(tβN ), t→ ∞, holds.
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Proof. It follows from (32) for t > T ∗
N that ˆU(t, ξ) = Q1(t, ξ) +Q2(t, ξ), where

Q1(t, ξ) = EβN

(

(t− tN)βNA(ξ)
)

{ N−1
∏

j=0

Eβj

(

(tj+1 − tj)
βjA(ξ)

)

+

∫ tN

tN−1

EβN−1

(

(tN − τ)βN−1A(ξ)
)

tN−1
D1−βN−1

τ RN−1(τ, ξ) dτ

}

,

and

Q2(t, ξ) =

∫ t

tN

EβN

(

(t− τ)βNA(ξ)
)

tND
1−βN
τ RN(τ, ξ) dτ.

It is not hard to verify that Q1(t, ξ) dominates in terms of asymptotics for
large t. We observe the same after applying −∆ξ as well. Elementary, but
tedious calculations show that (−∆ξ)Q1(t, ξ) = O(tβN ), t→ ∞.

Corollary 5.5. Let β(t) = β, where β is a constant in (0, 1]. Then

MSD(U ; t) =
Tr(A)

Γ(β + 1)
tβ, t > 0.

Remark 5.6. A natural generalization of the model is to allow changing of
random diffusion modes βk at random times Tk with appropriate distributions,
respectively. The questions on an asymptotic behaviour of U(t, x) for large
times, which shows how heavy is the tail of the distribution, as well as an
asymptotic behaviour of MSD(U ; t), t → ∞, which tells about the nature of
the corresponding process, are important. We will discuss these challenging
questions in a separate paper.
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