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Delay Differential Equations on Manifolds

and Applications to Motion Problems

for Forced Constrained Systems
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Abstract. We prove a global bifurcation result for T -periodic solutions of the delay
T -periodic differential equation x′(t) = λf(t, x(t), x(t − 1)) on a smooth manifold
(λ is a nonnegative parameter). The approach is based on the asymptotic fixed point
index theory for C1 maps due to Eells–Fournier and Nussbaum. As an application,
we prove the existence of forced oscillations of motion problems on topologically
nontrivial compact constraints. The result is obtained under the assumption that the
frictional coefficient is nonzero, and we conjecture that it is still true in the frictionless
case.
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1. Introduction

Let M ⊆ R
k be a smooth manifold, possibly with boundary ∂M , and let f :

R×M ×M → R
k be a continuous map which is T -periodic in the first variable

and tangent to M in the second one; meaning that

f(t + T, p, q) = f(t, p, q) ∈ TpM , ∀ (t, p, q) ∈ R × M × M,
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where TpM ⊆ R
k denotes the tangent space of M at p. Consider the following

delay differential equation on M , depending on a parameter λ ≥ 0:

x′(t) = λf(t, x(t), x(t − 1)). (1.1)

A pair (λ, x), with λ ≥ 0 and x : R → M a T -periodic solution of (1.1) corre-
sponding to λ, is called a T -periodic pair of (1.1). The set of T -periodic pairs is
regarded as a subset of [0, +∞)×CT (M), where CT (M) is the set of continuous
T -periodic maps from R to M with the metric induced by the Banach space
CT (Rk) of continuous T -periodic R

k-valued maps (with the standard supremum
norm). A T -periodic pair of the type (0, x) is said to be trivial. In this case x
is a constant M -valued map and, therefore, one may think of M as the set of
trivial T -periodic pairs.

In two recent papers [1, 3], we investigated the structure of the set of T -

periodic pairs of (1.1). In the first one we tackled the case when the period T
is not smaller than the delay, that, without loss of generality, we supposed
to be 1. We also assumed that M is compact, possibly with boundary, with
nonzero Euler–Poincaré characteristic, and that f satisfies a natural inward
condition along ∂M . Under these assumptions, we proved the existence of an
unbounded (with respect to λ) connected branch of nontrivial T -periodic pairs
whose closure intersects the set of the trivial T -periodic pairs in the so-called
set of bifurcation points. Thus, this result extends an analogous one of the last
two authors for the undelayed case (see [8, 9]). The approach followed in [1]
consists in applying to a Poincaré-type T -translation operator, acting on the
space C([−1, 0],M), the fixed point index theory for locally compact maps on
ANRs (Absolute Neighborhood Retracts). For this purpose, the assumption
T ≥ 1 is crucial, since otherwise the compactness of the Poincaré operator fails.

In [3] we dealt with the case of arbitrary period T > 0, and we proved
a global bifurcation result as in [1], but with the additional assumption that
∂M = ∅. This extra condition is due to the fact that, when 0 < T < 1, the
Poincaré operator is not locally compact and, consequently, we applied the fixed
point index theory of Eells–Fournier (see [6]) and Nussbaum (see [18]) instead
of the classical one. This theory regards eventually condensing C1 maps on C1-
ANRs and cannot be applied when ∂M 6= ∅. In fact, in this case M is not a C1

retract of any of its neighborhoods and, consequently, the argument used in [5]
to prove that C([−1, 0],M) is a C1-ANR fails. Our purpose here is to overcome
this difficulty, in order to give a complete extension of the results in [1,3]. Since
M\∂M is a boundaryless manifold which is not compact when ∂M 6= ∅, unless
otherwise stated we will assume that M is boundaryless, but not necessarily
compact. In this context, we prove a global bifurcation result, Theorem 3.13,
whose consequence, Corollary 3.16, provides the desired extension of the results
in [1, 3].
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Since we do not assume T ≥ 1, as in [3] our approach is based on the fixed
point index theory by Eells–Fournier and Nussbaum.

We conclude the paper with an application to motion problems for forced
constrained systems. Precisely, we consider the following second order delay
differential equation on a boundaryless manifold X ⊆ R

s:

x′′

π(t) = F (t, x(t), x(t − 1)) − εx′(t), (1.2)

where, regarding (1.2) as a motion equation,

1. x′′

π(t) stands for the tangential part of the acceleration x′′(t) ∈ R
s at the

point x(t) ∈ X,

2. the frictional coefficient ε is a positive constant,

3. the applied force F : R × X × X → R
s is continuous, T -periodic in the

first variable and tangent to X in the second one.

Theorem 4.1 asserts that, whatever is T > 0, the equation (1.2) admits at least
one forced oscillation (i.e., a T -periodic solution) provided that the constraint X
is compact with nonzero Euler–Poincaré characteristic. Such a result generalizes
a theorem of the last two authors regarding the undelayed case (see [10]) as well
as a theorem given in [2] in which the period T is not less than the delay. To get
Theorem 4.1 we apply Corollary 3.15 to a first order equation on the noncompact
tangent bundle TX ⊆ R

2s which is equivalent to (1.2).

As far as we know, when the frictional coefficient ε is zero, the problem of
the existence of forced oscillations of (1.2) is still open, even in the undelayed
case. An affirmative answer, in the undelayed situation, regarding the special
constraint X = S2 (the spherical pendulum) can be found in [11] (see also [13]
for the extension to the case X = S2n).

2. Preliminaries

Throughout the paper M will be a boundaryless smooth manifold embedded
in R

k. Let g : R × M × M → R
k be a continuous map. We say that g is

tangent to M in the second variable or, for short, that g is a vector field on M
if g(t, p, q) ∈ TpM for all (t, p, q) ∈ R × M × M , where TpM ⊆ R

k denotes the
tangent space of M at p. In this paper we are interested in delay differential
equations of the type

x′(t) = g(t, x(t), x(t − 1)), (2.1)

where g : R × M × M → R
k is a vector field on M . We will regard (2.1) as a

particular case of the equation

x′(t) = g(t, x(t), x(t − s)), (2.2)
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where the (constant) time lag s belongs to [0, 1]. For technical reasons, no
matter what is the delay s, by a solution of (2.2) we shall mean a continuous
function x : J → M , defined on a (possibly unbounded) interval with length
greater than 1, which is of class C1 on the subinterval (inf J + 1, sup J) of J
and verifies x′(t) = g(t, x(t), x(t − s)) for all t ∈ J with t > inf J + 1.

Given a continuous map ϕ : [−1, 0] → M and s ∈ [0, 1], consider the
following initial value problem:

{

x′(t) = g(t, x(t), x(t − s)),

x(t) = ϕ(t), t ∈ [−1, 0].
(2.3)

A solution of this problem is a solution x : J → M of (2.2) such that J ⊃ [−1, 0]
and x(t) = ϕ(t) for all t ∈ [−1, 0].

Consider a compact subset K of M and let x : J → M be a maximal
solution of problem (2.3). As in the ODE case, one can prove that, if the image
of x is contained in K, then sup J = +∞. In particular, when the manifold M is
compact, then problem (2.3) admits a solution defined (at least) on [−1, +∞).

The following technical lemma regards the uniqueness and the continuous
dependence on data of solutions of problem (2.3) in the case when g is of class
C1. The proof is standard in the theory of ODEs (see, e.g., [4, 16]) and can be
adapted to the delay case. Therefore, it will be omitted.

Lemma 2.1. Let g be a C1 vector field on M . Then problem (2.3) has a unique

solution which depends continuously on the data. More precisely, let {gn} be a

sequence of C1 vector fields on M which converges uniformly to g, and {ϕn} a

sequence of continuous maps from [−1, 0] to M which converges uniformly to ϕ.

Denote by xn(·) the maximal solution of the initial value problem

{

x′(t) = gn(t, x(t), x(t − s)), t > 0

x(t) = ϕn(t), t ∈ [−1, 0].

Let I be a compact interval contained in the domain of the maximal solution

x0(·) of (2.3). Then, for n sufficiently large, xn(·) is defined on I and xn(t)
converges to x0(t) uniformly on I.

As said in the Introduction, our approach to the study of equation (2.2) is
based on the fixed point index theory for eventually compact C1 maps between
C1-ANRs. This index has been defined independently by Eells–Fournier in [6]
and Nussbaum in [18] for the more general class of eventually condensing maps.

Recall that a Banach manifold X is a Cr-ANR (r ∈ N∪{∞}) if there exist
an embedding j of class Cr of X into a Banach space E, an open neighborhood
W of j(X) in E, and a retraction of W onto j(X) of class Cr.

Recall also that, given a topological space Y and a subset A of Y , a con-
tinuous map k : A → Y is said to be eventually compact if for some n ∈ N
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the n-th iterate kn is defined on A and kn(A) is contained in a compact subset
of Y . Moreover, given a compact interval I, a continuous map H : I × A → Y
is called an eventually compact homotopy if the map

(λ, x) 7→ (λ,H(λ, x)), (λ, x) ∈ I × A,

is eventually compact.

Let X be a C1-ANR and consider an eventually compact map k : W → X
defined on an open subset W of X and of class C1. Given an open subset
V of W , if the set of fixed points of k in V is compact, the pair (k, V ) is
called admissible. Then (as proved in [6, 18]) it is possible to associate to any
admissible pair (k, V ) an integer indX(k, V ) – the fixed point index of k in V –
which satisfies the classical properties of the fixed point index theory. Obviously,
in this new theory, the continuity assumption of homotopies is strengthened by
assuming the C1 regularity, and the compactness is weakened by supposing the
eventual compactness.

As far as we know, whether or not the above theory holds for the merely
C0 case is still an open problem.

To conclude these preliminaries, let us recall some basic notions on degree
theory for tangent vector fields on differentiable manifolds. Let v : M → R

k

be a continuous (autonomous) tangent vector field on M , and let U be an
open subset of M . We say that the pair (v, U) is admissible (or, equivalently,
that v is admissible on U) if v−1(0) ∩ U is compact. In this case one can
assign to the pair (v, U) an integer, deg(v, U), called the degree (or index, or
Euler characteristic, or rotation) of the tangent vector field v on U which,
roughly speaking, counts algebraically the number of zeros of v in U (for general
references see e.g. [14,15,17,19]). Notice that the condition for v−1(0)∩U to be
compact is clearly satisfied if U is a relatively compact open subset of M and
v(p) 6= 0 for all p in the boundary of U .

As a consequence of the Poincaré–Hopf theorem, when M is compact,
deg(v,M) equals χ(M), the Euler–Poincaré characteristic of M . In the par-
ticular case when U is an open subset of R

k, deg(v, U) is just the classical
Brouwer degree, deg(v, U, 0), of the map v on U with respect to zero.

All the standard properties of the Brouwer degree for continuous maps
on open subsets of Euclidean spaces, such as homotopy invariance, excision,
additivity, existence, still hold in the more general context of differentiable
manifolds. To see this, one can use an equivalent definition of degree of a tangent
vector field based on the fixed point index theory as presented in [9, 12]. Let
us point out that no orientability of M is required for the degree of a tangent
vector field to be defined.

Observe that, if (v, U) is admissible, then

deg(v, U) = (−1)m deg(−v, U), (2.4)
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where m denotes the dimension of M .

We recall that, when v is a C1 tangent vector field on M , a zero p ∈ M
of v is said to be nondegenerate if v′(p) : TpM → R

k is one-to-one. Since the
condition v(p) = 0 implies that v′(p) maps TpM into itself (see e.g. [17]), then
v′(p) is actually an isomorphism of TpM . Thus, the determinant det(v′(p)) is
nonzero and its sign is called the index of v at p.

In the particular case when an admissible pair (v, U) is regular (i.e., v is
smooth with only nondegenerate zeros), one can show that deg(v, U) coincides
with the sum of the indices at the zeros of v in U . This makes sense, since
v−1(0) ∩ U is compact (v being admissible in U) and discrete; therefore, the
sum is finite.

3. Branches of periodic solutions

From now on we will adopt the following notation. By C([−1, 0],M) we mean
the metric space of the M -valued continuous functions defined on [−1, 0] with
the metric induced by the Banach space C([−1, 0], Rk). Given T > 0, by CT (Rk)
we denote the Banach space of the continuous T -periodic maps x : R → R

k

(with the standard supremum norm) and by CT (M) we mean the metric sub-
space of CT (Rk) of the M -valued maps.

We point out that the metric spaces C([−1, 0],M) and CT (M) need not be
complete, unless M is closed in R

k. However, due to the fact that M is locally
compact, one can prove that C([−1, 0],M) and CT (M) are locally complete.

It is known that C([−1, 0],M) is a smooth infinite dimensional manifold
(see, e.g., [5]), and it is not difficult to prove (see, e.g., [6]) that it is a C1-ANR as
well. In fact, it is a C1 retract of the open subset C([−1, 0], U) of C([−1, 0], Rk),
U ⊆ R

k being a tubular neighborhood of M .

Let f : R×M ×M → R
k be a vector field on M which is T -periodic in the

first variable. Consider the following delay differential equation depending on
a parameter λ ≥ 0:

x′(t) = λf(t, x(t), x(t − 1)). (3.1)

We will say that (λ, x) ∈ [0, +∞) × CT (M) is a T -periodic pair (of (3.1)) if
x : R → M is a T -periodic solution of (3.1) corresponding to λ. A T -periodic
pair of the type (0, x) is said to be trivial. Notice that in this case the function x
is constant.

A pair (λ, ϕ) ∈ [0, +∞)×C([−1, 0],M) will be called a T -starting pair (of
(3.1)) if there exists x ∈ CT (M) such that x(t) = ϕ(t) for all t ∈ [−1, 0] and
(λ, x) is a T -periodic pair. A T -starting pair of the type (0, ϕ) will be called
trivial. In this case the map ϕ is constant, being the restriction of a constant
map defined on R.
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Clearly, the map ρ : (λ, x) 7→ (λ, ϕ) which associates to a T -periodic pair
(λ, x) the corresponding T -starting pair (λ, ϕ) is continuous, ϕ being the restric-
tion of x to the interval [−1, 0]. Moreover, if f is C1, from Lemma 2.1 it follows
that ρ is actually a homeomorphism between the set Γ ⊆ [0, +∞) × CT (M) of
the T -periodic pairs and the set Σ ⊆ [0, +∞)×C([−1, 0],M) of the T -starting
pairs.

It is not difficult to see that the set Γ is closed in [0, +∞) × CT (M) (and
locally closed in [0, +∞) × CT (Rk)). It is consequently locally complete, as a
closed subset of a locally complete space. Moreover, using Ascoli’s Theorem,
one can show that Γ is actually a locally compact space, and this fact will turn
out to be useful in order to get our main result.

Given p ∈ M , we denote by p̄ ∈ CT (M) the constant map t 7→ p, t ∈ R, and
by p̂ ∈ C([−1, 0],M) the constant map t 7→ p, t ∈ [−1, 0]. With this notation,
a trivial T -periodic pair is of the form (0, p̄), and the corresponding trivial T -
starting pair is (0, p̂); that is, ρ(0, p̄) = (0, p̂). Clearly, M can be identified in a
natural way both with the set of the trivial T -periodic pairs {0}×{p̄ : p ∈ M} ⊆
Γ and the set of the trivial T -starting pairs {0} × {p̂ : p ∈ M} ⊆ Σ. In other
words, the restriction of the map ρ to {0} × {p̄ : p ∈ M} ⊆ [0, +∞) × CT (M)
as domain and to {0} × {p̂ : p ∈ M} ⊆ [0, +∞) × C([−1, 0],M) as codomain
can be regarded as the identity on M .

An element p0 ∈ M will be called a bifurcation point of the equation (3.1)
if every neighborhood of (0, p̄0) in [0, +∞) × CT (M) contains a nontrivial T -
periodic pair (i.e. a T -periodic pair (λ, x) with λ > 0). Roughly speaking, p0 is
a bifurcation point if, for λ > 0 sufficiently small, there are T -periodic orbits of
(3.1) that rotate arbitrarily close to p0.

Let w : M → R
k be the mean value tangent vector field given by

w(p) =
1

T

∫ T

0

f(t, p, p) dt.

Throughout the paper, the tangent vector field w will play a crucial role in
obtaining bifurcation results for equation (3.1).

The following result provides a necessary condition for p0 ∈ M to be a
bifurcation point. The easy proof is given for the sake of completeness.

Theorem 3.1. Assume that p0 ∈ M is a bifurcation point of the equation (3.1).
Then the tangent vector field w vanishes at p0.

Proof. By assumption there exists a sequence
{

(λn, xn)
}

of T -periodic pairs
such that λn > 0, λn → 0, and xn(t) → p0 uniformly on R. Given n ∈ N,

since xn(T ) = xn(0) and λn 6= 0, we get
∫ T

0
f(t, xn(t), xn(t− 1)) dt = 0, and the

assertion follows passing to the limit.
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Let Ω be an open subset of [0, +∞) × CT (M). Our main result (Theo-
rem 3.13 below) provides a sufficient condition for the existence of a bifurcation
point p in M with (0, p̄) ∈ Ω. More precisely, we give conditions which ensure
the existence of a connected subset of Ω of nontrivial T -periodic pairs of equa-
tion (3.1) whose closure in Ω is not compact and intersects the set of trivial
T -periodic pairs contained in Ω (a global bifurcating branch for short). Notice
that, because of Ascoli’s Theorem, a global bifurcating branch either is un-
bounded or, if bounded, must contain points which are arbitrarily close to the
boundary of Ω in [0, +∞) × CT (M).

From now on we will adopt the following notation. Given a subset Y of a
metric space Z, we will denote by Y , Y̊ and Fr Y the closure, the interior and
the boundary of Y , respectively.

Given a subset A of M , we denote by Ã the subset of C([−1, 0],M) of
all maps with values in A; i.e., Ã = C([−1, 0], A), and by Â the subset of Ã of
constant maps; i.e., the set {p̂ : p ∈ A}. In particular, for simplicity, throughout

the paper M̃ will stand for C([−1, 0],M). Notice that the closure Ã of Ã in M̃

coincides with Ã. Moreover,

Fr Ã =
{

ϕ ∈ Ã : ϕ(t) ∈ Fr A for some t ∈ [−1, 0]
}

.

Suppose, for the moment, that f is C1 (this assumption will be removed in
Theorem 3.13). Given λ ≥ 0 and ϕ ∈ M̃ , consider in M the following delay
differential (initial value) problem:

{

x′(t) = λf(t, x(t), x(t − 1)), t > 0

x(t) = ϕ(t), t ∈ [−1, 0].
(3.2)

Given a positive integer n, define

Dn =

{

(λ, ϕ) ∈ [0, +∞) × M̃ :
the maximal solution of (3.2) is
defined (at least) on [−1, nT ]

}

.

With an argument analogous to that given in [16] for the ODE case, one can
show that Dn is open in [0, +∞) × M̃ . Moreover, Dn+1 ⊆ Dn for any n and,
when the manifold M is compact, any set Dn coincides with [0, +∞) × M̃ .

Notice that, when λ = 0, the solution of problem (3.2) is eventually constant
and, when (λ, ϕ) is a T -starting pair of equation (3.1), the maximal solution
of problem (3.2), being T -periodic, is defined on the whole real line. In other
words, both {0} × M̃ and the set of the T -starting pairs of (3.1) are contained
in Dn for any n.

Given (λ, ϕ) ∈ D1, denote by x(λ,ϕ) the maximal solution of problem (3.2).
Consider the Poincaré-type operator

P : D1 → M̃
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defined as P (λ, ϕ)(t) = x(λ,ϕ)(t + T ), t ∈ [−1, 0]. The following lemma regards
an important property of the operator P . The proof is standard and will be
omitted.

Lemma 3.2. The fixed points of P (λ, ·) correspond to the T -periodic solutions

of the equation (3.1) in the following sense: ϕ is a fixed point of P (λ, ·) if and

only if it is the restriction to [−1, 0] of a T -periodic solution.

We point out that Dn is the natural domain of definition of the n-th iterate
of the map from D1 to [0, +∞) × M̃ defined by (λ, ϕ) 7→ (λ, P (λ, ϕ)).

In what follows we will denote by ν the smallest integer such that νT ≥ 1,
and we will consider P defined just on Dν .

The proof of the next lemma can be carried out as in [3, Lemmas 3.3, 3.4].

Lemma 3.3. The map P : Dν → M̃ is of class C1 and the ν-th iterate of

the map from Dν to [0, +∞) × M̃ , defined as (λ, ϕ) 7→ (λ, P (λ, ϕ)), is locally

compact.

The following theorem will be crucial in the proof of our main results. We
recall that w is the mean value tangent vector field associated with f .

Theorem 3.4. Let U be a relatively compact open subset of M . Assume that

there are no zeros of w on the boundary of U . Then there exists ε > 0 such that,

for any 0 < λ ≤ ε, indM̃(P (λ, ·), Ũ) is well defined and equals deg(−w,U).

The proof of Theorem 3.4 is divided in a number of intermediate results:
from Lemma 3.6 to Lemma 3.10 below.

Given λ ≥ 0 and ϕ ∈ M̃ , consider in M the initial value problem

{

x′(t) = λf(t, x(t), x(t − s)), t > 0

x(t) = ϕ(t), t ∈ [−1, 0],
(3.3)

depending on s ∈ [0, 1], and regard problem (3.2) as a particular case of this
one.

As before, let ν be the smallest integer such that νT ≥ 1 and (recalling
the definition of solution of the above problem given in Section 2) define the
following subset of Dν :

∆ =

{

(λ, ϕ) ∈ [0, +∞) × M̃ :
the maximal solution of (3.3) is
defined on [−1, νT ],∀s ∈ [0, 1]

}

.

One can prove that ∆ is open in Dν and that, when M is compact, ∆ =
[0, +∞) × M̃ .
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Given (λ, ϕ, s) ∈ ∆ × [0, 1], denote by ξ = ξ(λ,ϕ,s) the maximal solution of
problem (3.3). Consider the Poincaré-type operator

Π : ∆ × [0, 1] → M̃

defined as Π(λ, ϕ, s)(t) = ξ(t + T ), t ∈ [−1, 0]. Notice that Π(·, ·, 1) coincides
with P , while Π(·, ·, 0) turns out to be the (infinite dimensional) Poincaré-type
operator associated with the undelayed problem

{

x′(t) = λf(t, x(t), x(t)), t > 0

x(t) = ϕ(t), t ∈ [−1, 0].

We point out that even in this undelayed case we adopt the definition of solution
given in Section 2.

Remark 3.5. Analogously to P (λ, ·), one can show that the fixed points of
Π(λ, ·, s) correspond to the T -periodic solutions of the equation

x′(t) = λf(t, x(t), x(t − s))

in the sense that ϕ is a fixed point of Π(λ, ·, s) if and only if it is the restriction
to [−1, 0] of a T -periodic solution.

The next lemma, which is similar to Lemma 3.3, regards some properties
of Π.

Lemma 3.6. The map Π : ∆× [0, 1] → M̃ is of class C1 and the map from ∆×
[0, 1] to [0, +∞)×M̃×[0, 1], defined by (λ, ϕ, s) 7→ (λ, Π(λ, ϕ, s), s), is eventually

locally compact. Consequently, the set {(λ, ϕ, s) ∈ ∆× [0, 1] : Π(λ, ϕ, s) = ϕ} is

locally compact.

The following result shows in particular that, if V is a relatively compact

open subset of M , then the map P (λ, ·) is well defined on Ṽ for λ > 0 sufficiently
small.

Lemma 3.7. Let K be a compact subset of M . Then, there exists ε > 0 such

that [0, ε] × K̃ ⊆ ∆.

Proof. Since M is locally compact, there exists δ > 0 such that Kδ = {p ∈
M : dist(p,K) ≤ δ} is a compact subset of M . Put c = max{‖f(t, p, q)‖ :
t ∈ R, p, q ∈ Kδ} and fix a positive ε such that εcνT < δ. Given λ ∈ [0, ε],
ϕ ∈ K̃, and s ∈ [0, 1], let ξ be the maximal solution of problem (3.3). Let us
show that ξ is defined (at least) on [−1, νT ]. If the image of ξ is contained in
the compact set Kδ, then the domain of ξ contains [−1, +∞), and the assertion
is true. Suppose therefore that there exists t0 such that ξ(t) ∈ Kδ for any
t ∈ [−1, t0] and ξ(t0) ∈ Fr Kδ. We claim that t0 ≥ νT . Indeed, assume by
contradiction t0 < νT . Then, as ‖ξ′(t)‖ ≤ εc for any t ∈ (0, t0], we have
dist(ξ(t0), K) ≤ εc νT < δ, which is a contradiction since ξ(t0) ∈ Fr Kδ. This
completes the proof.
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Lemma 3.8. For λ > 0 sufficiently small, indM̃(Π(λ, ·, s), Ũ) does not depend

on s.

Proof. First notice that, by Lemma 3.7, there exists ε > 0 such that [0, ε]× Ũ ⊆
∆. Let us show that, if λ > 0 is sufficiently small, then

Aλ =
{

(ϕ, s) ∈ Ũ × [0, 1] : Π(λ, ϕ, s) = ϕ
}

is a compact subset of Ũ × [0, 1]. For this purpose it is enough to prove that,
for λ small, Aλ coincides with

Bλ =
{

(ϕ, s) ∈ Ũ × [0, 1] : Π(λ, ϕ, s) = ϕ
}

,

which is compact by Ascoli’s Theorem. In other words, we have to show that
Bλ does not intersect Fr Ũ × [0, 1] for λ > 0 small. Recall that

Fr Ũ =
{

ϕ ∈ Ũ : ϕ(t) ∈ Fr U for some t ∈ [−1, 0]
}

and assume by contradiction that there exist sequences {sn} in [0, 1], {λn} in

(0, ε], {ϕn} in Ũ , {tn} in [−1, 0] such that

1. ϕn(tn) ∈ Fr U ;

2. λn → 0;

3. Π(λn, ϕn, sn) = ϕn.

By the compactness of the sets Bλ, λ ∈ (0, ε], it is not restrictive to assume that

there exists (ϕ0, s0) ∈ Ũ × [0, 1] such that sn → s0 and ϕn(t) → ϕ0(t) uniformly
on [−1, 0].

Given n ∈ N, let ξn be the maximal solution of the following problem:

{

x′(t) = λnf(t, x(t), x(t − sn)), t > 0

x(t) = ϕn(t), t ∈ [−1, 0].

Then

ξn(t) = ϕn(0) + λn

∫ t

0

f(τ, ξn(τ), ξn(τ − sn)) dτ, t ∈ [0, νT ]. (3.4)

Moreover, since Π(λn, ϕn, sn) = ϕn, Remark 3.5 implies that ξn is a T -periodic
solution of the equation x′(t) = λnf(t, x(t), x(t−sn)) whose restriction to [−1, 0]
coincides with ϕn. Thus, ξn(T ) = ξn(0) = ϕn(0). Since λn 6= 0 for any n, from
equality (3.4) we get

∫ T

0

f(τ, ξn(τ), ξn(τ − sn)) dτ = 0. (3.5)
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On the other hand, since λn → 0, we have ξ′n(t) → 0 uniformly on R. There-
fore ξn(t) → p0 uniformly on R, where p0 = ϕ0(0). Consequently, ϕn(t) → p0

uniformly on [−1, 0], and the assumption ϕn(tn) ∈ Fr U implies that p0 ∈ Fr U .
Passing to the limit in equality (3.5), we get w(p0) = 0 which contradicts the
assumption w(p) 6= 0 on FrU in Theorem 3.4. Hence, if λ > 0 is sufficiently
small, the index indM̃(Π(λ, ·, s), Ũ) is well defined and the homotopy invari-
ance property of the fixed point index implies that indM̃(Π(λ, ·, s), Ũ) does not
depend on s ∈ [0, 1].

We will need a consequence of the commutativity property of the fixed point
index (Lemma 3.9 below). Let g : R×M → R

k be a C1 map which is T -periodic
in the first variable and tangent to M in the second one. Given p ∈ M , consider
in M the following (initial value) problem:

{

x′(t) = g(t, x(t)), t > 0

x(0) = p .
(3.6)

Define the following open subset of M :

R =
{

p ∈ M : the maximal solution of problem (3.6) is defined on [0, T ]
}

.

Given p ∈ R, denote by ζp the maximal solution of problem (3.6) and let
Φ0 : R → M be the Poincaré T -translation operator defined as Φ0(p) = ζp(T ).

Let W be a relatively compact open subset of M such that W ⊆ R. Define
k : W̃ → M by k(ϕ) = ϕ(0) and h : W → M̃ by h(p)(t) = ζp(t+T ), t ∈ [−1, 0].
Notice that k−1(W ) = W̃ and h−1(W̃ ) = {p ∈ W : ζp(t + T ) ∈ W for all t ∈
[−1, 0]}. Observe that the composition kh : h−1(W̃ ) → M coincides with the
restriction to h−1(W̃ ) of the (finite dimensional) Poincaré operator Φ0, and the
composition hk : W̃ → M̃ coincides with the restriction to W̃ of the infinite
dimensional Poincaré-type operator associated with the undelayed problem

{

x′(t) = g(t, x(t)), t > 0

x(0) = ϕ(0)

that we will denote by Φ1.

Assume now that the set of fixed points
{

ϕ ∈ W̃ : Φ1(ϕ) = ϕ
}

is compact.

Consequently, the set
{

p ∈ h−1(W̃ ) : Φ0(p) = p
}

is compact as well, and the
commutativity property of the index implies that

indM̃(Φ1, W̃ ) = indM̃(hk, k−1(W )) = indM(kh, h−1(W̃ )) = indM(Φ0, h
−1(W̃ )).

We summarize this argument in the following lemma.

Lemma 3.9. Let W be a relatively compact open subset of M such that W ⊆
R. If indM̃(Φ1, W̃ ) is defined, then indM(Φ0, h

−1(W̃ )) is defined as well and

indM̃(Φ1, W̃ ) = indM(Φ0, h
−1(W̃ )).
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We are now in the position to state and prove the last lemma needed in the
proof of Theorem 3.4.

Lemma 3.10. For λ > 0 sufficiently small, indM̃(Π(λ, ·, 0), Ũ) = deg(−w,U).

Proof. Let us apply Lemma 3.9 with (t, p) 7→ λf(t, p, p) in place of (t, p) 7→
g(t, p) and λ > 0 small. Given p ∈ M , consider in M the following (initial
value) problem:

{

x′(t) = λf(t, x(t), x(t)), t > 0

x(0) = p.
(3.7)

Define

O =

{

(λ, p) ∈ [0, +∞) × M :
the maximal solution of problem
(3.7) is defined on [0, T ]

}

.

Observe that O is an open subset of [0, +∞) × M containing {0} × M . Given
(λ, p) ∈ O, denote by y(λ,p) the maximal solution of problem (3.7) and consider
the map Q : O → M defined as Q(λ, p) = y(λ,p)(T ).

Choose ε so small that [0, ε]×U ⊆ O. Given 0 < λ ≤ ε, define hλ : U → M̃
by hλ(p)(t) = y(λ,p)(t + T ), t ∈ [−1, 0]. Notice that h−1

λ (Ũ) =
{

p ∈ U :
y(λ,p)(t + T ) ∈ U for all t ∈ [−1, 0]

}

.

As in the proof of Lemma 3.8, one can show that, when λ is sufficiently
small,

{

ϕ ∈ Ũ : Π(λ, ϕ, 0) = ϕ
}

is a compact subset of Ũ . Thus, by Lemma 3.9
we get

indM̃(Π(λ, ·, 0), Ũ) = indM(Q(λ, ·), h−1
λ (Ũ)).

Let now V be a relatively compact open subset of M containing the compact
set {p ∈ U : w(p) = 0} and such that V ⊆ U . Let us show that for λ > 0
sufficiently small the following properties hold: V is contained in h−1

λ (Ũ) and
contains the fixed points of Q(λ, ·) in h−1

λ (Ũ). Indeed, assume by contradiction
that there exist sequences {λn} in (0, ε] and {pn} in U\V such that

1. pn ∈ h−1
λn

(Ũ);

2. λn → 0;

3. Q(λn, pn) = pn.

By arguing as in the proof of Lemma 3.8, we get the existence of a point
p0 ∈ U\V with w(p0) = 0, which is a contradiction since V contains the set
{p ∈ U : w(p) = 0}. Then by the excision property of the fixed point index, for
λ > 0 small we get indM(Q(λ, ·), h−1

λ (Ũ)) = indM(Q(λ, ·), V ).

Finally, as shown in [9], if λ > 0 is sufficiently small we get

indM(Q(λ, ·), V ) = deg(−w, V )

and, by the excision property of the degree, deg(−w, V ) = deg(−w,U). Hence,
for λ > 0 small, indM̃(Π(λ, ·, 0), Ũ) = deg(−w,U), and this completes the
proof.
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Proof of Theorem 3.4. Since P (λ, ·) = Π(λ, ·, 1), Lemma 3.8 above implies that
indM̃(P (λ, ·), Ũ) is well defined and equals indM̃(Π(λ, ·, 0), Ũ). Moreover, by
Lemma 3.10, if λ>0 is sufficiently small we have indM̃(P (λ, ·), Ũ)=deg(−w,U),
which is the assertion.

From now on, given a subset X of [0, +∞)×M̃ and λ ≥ 0, we will denote by
Xλ the slice

{

ϕ ∈ M̃ : (λ, ϕ) ∈ X
}

and by X̌0 the subset {p ∈ M : (0, p̂) ∈ X}
of M .

Let G be an open subset of Dν , and assume that deg(w, Ǧ0) is different
from zero. Lemma 3.12 below regards the existence of a noncompact subset
of G which is the closure (in G) of a connected set of nontrivial T -starting pairs
for equation (3.1) and which, in some sense, emanates from the set of zeros of w
in Ǧ0 (recall that a T -starting pair (λ, ϕ) ∈ [0, +∞) × M̃ is nontrivial when
λ > 0).

The following topological lemma is needed.

Lemma 3.11 ( [12]). Let Z be a compact subset of a locally compact metric

space Y . Assume that any compact subset of Y containing Z has nonempty

boundary. Then Y \Z contains a connected set whose closure is not compact

and intersects Z.

Lemma 3.12. Let G be an open subset of Dν. Assume that deg(w, Ǧ0) is

different from zero. Then the equation (3.1) admits a connected branch of non-

trivial T -starting pairs whose closure in G is not compact and intersects the set
{

(0, p̂) ∈ G : p ∈ M, w(p) = 0
}

.

Proof. Denote S =
{

p ∈ Ǧ0 : w(p) = 0
}

and

Σ+
G =

{

(λ, ϕ) ∈ G : λ > 0, (λ, ϕ) is a T -starting pair of (3.1)
}

,

and define Z = {0} × Ŝ =
{

(0, p̂) ∈ G : p ∈ M, w(p) = 0
}

and Y = Z ∪ Σ+
G.

Notice that Σ+
G is locally compact as the intersection of the open set {(λ, ϕ)∈

G : λ > 0} with the set
{

(λ, ϕ) ∈ Dν : P (λ, ϕ) = ϕ
}

which is locally compact
since, by Lemma 3.3, the map P is eventually locally compact. Consequently,
Y is locally compact as well, being the union of Σ+

G and the compact set Z =

{0}×Ŝ (observe that S is compact since, by assumption, deg(w, Ǧ0) is defined).

We apply Lemma 3.11 to the metric spaces Y and Z. Assume, by contra-
diction, that there exists a compact set Y ′ ⊆ Y containing Z and with empty
boundary in Y . Thus, Y ′ is also open in Y . Hence, there exists a bounded open
subset A of G such that Y ′ = A∩Y . Since Y ′ is compact, the generalized homo-
topy invariance property of the fixed point index implies that indM̃(P (λ, ·), Aλ)
does not depend on λ > 0. Moreover, the slice Y ′

λ = Aλ ∩ Yλ is empty for some
positive λ. This implies that indM̃(P (λ, ·), Aλ) = 0 for any λ > 0.
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Notice that A0 is an open subset of G0 containing the compact set Ŝ. Let
now U be a relatively compact open subset of M containing S and such that
U ⊆ Ǎ0. Let us show that there exists ε > 0 with the following properties:

Y ′

λ ⊆ Ũ for any 0 < λ ≤ ε and [0, ε] × Ũ ⊆ A. Indeed, if this is not the case

there exist sequences {λn} in (0, +∞), {ϕn} in Ũ , {tn} in [−1, 0] such that

1. ϕn(tn) ∈ Fr U ;

2. λn → 0;

3. P (λn, ϕn) = ϕn.

Analogously to the proof of Lemma 3.10, we follow the ideas in the proof of
Lemma 3.8 obtaining the existence of a point p0 ∈ Fr U with w(p0) = 0, and
this cannot happen because of the choice of U .

Now, by Theorem 3.4, by taking into account the excision properties of
the fixed point index and the degree and by recalling equality (2.4), for λ >
0 small we get 0 = indM̃(P (λ, ·), Aλ) = indM̃(P (λ, ·), Ũ) = deg(−w,U) =
deg(−w, Ǧ0) 6= 0, which is a contradiction. Therefore, because of Lemma 3.11,
there exists a connected subset of Y whose closure in Y intersects Z and is not
compact. This implies our assertion.

We are finally in the position to present the main result of this paper:
Theorem 3.13 below which deals with T -periodic pairs instead of T -starting
pairs (as in Lemma 3.12). Assuming that f is merely continuous and given an
open subset Ω of [0, +∞)×CT (M), the result regards a sufficient condition for
the existence in Ω of a global bifurcating branch of nontrivial T -periodic pairs
of (3.1).

In the sequel we will denote by Ω̌0 the subset
{

p ∈ M : (0, p̄) ∈ Ω
}

of M
(recall that, given p ∈ M , p̄ denotes the constant map t 7→ p, t ∈ R).

Theorem 3.13. Let M ⊆ R
k be a boundaryless smooth manifold, f a vector

field on M which is T -periodic in the first variable, and w : M → R
k the

autonomous tangent vector field given by

w(p) =
1

T

∫ T

0

f(t, p, p) dt.

Let Ω be an open subset of [0, +∞) × CT (M), and assume that deg(w, Ω̌0) is

different from zero. Then there exists a connected subset of Ω of nontrivial T -

periodic pairs of equation (3.1) whose closure in Ω is not compact and intersects

the set
{

(0, p̄) ∈ Ω : p ∈ M, w(p) = 0
}

.

Proof. The proof will be divided into two steps. In the first one f is assumed
to be C1 (so that Lemma 3.12 applies) and in the second one f is merely
continuous.
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Step 1. Assume that f is of class C1. Let Γ ⊆ [0, +∞) × CT (M) denote
the set of the T -periodic pairs of (3.1) and Σ ⊆ [0, +∞) × M̃ the set of the
T -starting pairs. As already pointed out, the map ρ : Γ → Σ, which asso-
ciates to any T -periodic pair (λ, x) the corresponding T -starting pair (λ, ϕ),
is a homeomorphism. Moreover, given p ∈ M , one has ρ(0, p̄) = (0, p̂). In
other words, the restriction of ρ to {0} × {p̄ : p ∈ M} ⊆ Γ as domain and to
{0}×{p̂ : p ∈ M} ⊆ Σ as codomain can be regarded as the identity on M (one
may identify M in a natural way both with {0} × {p̄ : p ∈ M} ⊆ Γ and with
{0} × {p̂ : p ∈ M} ⊆ Σ).

Let now ΣΩ = ρ(Ω∩Γ). Since Σ is contained in Dν and ΣΩ is an open subset
of Σ, there exists an open subset G of Dν such that ΣΩ = G∩Σ. Observe that
{0} × Ǧ0 = ρ({0} × Ω̌0). Therefore, the two subsets Ω̌0 and Ǧ0 of M coincide.
Thus, by assumption, deg(w, Ǧ0) 6= 0, and one can apply Lemma 3.12 to the
set G ⊆ Dν .

Let C ⊆ G be a connected branch of nontrivial T -starting pairs as in the
assertion of Lemma 3.12. Thus, the subset B = ρ−1(C) of Ω∩Γ is connected, it
is made up of nontrivial T -periodic pairs, and its closure in Ω∩Γ (which is the
same as in Ω) is not compact and meets the set

{

(0, p̄) ∈ Ω : p ∈ M, w(p) = 0
}

.

Step 2. Suppose now that f is continuous. Let

Z =
{

(0, p̄) ∈ Ω : p ∈ M, w(p) = 0
}

and Y = Z ∪
(

Ω+ ∩ Γ
)

,

where Ω+ =
{

(λ, x) ∈ Ω : λ > 0
}

and Γ, as in the previous step, denotes the
set of the T -periodic pairs of (3.1).

We apply Lemma 3.11 to the metric spaces Y and Z. Assume, by contra-
diction, that there exists a compact set Y ′ ⊆ Y containing Z and with empty
boundary in Y . Thus, Y ′ is also open in Y and, consequently, both Y ′ and
Y \Y ′ are closed in Ω. Hence, there exists a bounded open subset A of Ω such
that Y ′ ⊆ A and ∂A ∩ Y = ∅. Moreover, since CT (M) is a locally complete
metric space and Y ′ is compact, A can be chosen so that its closure A in CT (M)
is complete and contained in Ω.

Let {fn} be a sequence of C1 vector fields on M , T -periodic in the first
variable, and such that

{

fn(t, p, q)
}

converges to f(t, p, q) uniformly on R ×
M × M . For any n ∈ N, define

wn(p) =
1

T

∫ T

0

fn(t, p, p) dt.

Thus, the sequence {wn(p)} converges to w(p) uniformly on M and, conse-
quently, there exists n̄ ∈ N such that deg(wn, Ω̌0) = deg(w, Ω̌0) 6= 0 for n > n̄.
For any n > n̄, let Γn denote the set of the T -periodic pairs of the equation

x′(t) = λfn(t, x(t), x(t − 1)). (3.8)
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Let Zn =
{

(0, p̄) ∈ Ω : p ∈ M, wn(p) = 0
}

and Yn = Zn ∪
(

Ω+ ∩ Γn

)

. By
the previous step, for n > n̄, any equation (3.8) has in Ω a connected set Bn

of nontrivial T -periodic pairs whose closure in Ω is noncompact and meets the
set Zn.

Since the closure of A is a bounded and complete subset of Ω, for n > n̄
the branch Bn must intersect the complement of A in Ω. This implies that for
n > n̄ there exists a pair (λn, xn) ∈ Bn ∩ ∂A.

We may assume λn → λ0 and, by Ascoli’s Theorem, xn(t) → x0(t) uni-
formly. Since

{

λnfn(t, p, q)
}

converges to λ0f(t, p, q) uniformly on R×M ×M ,
then x0(t) is a T -periodic solution of the equation

x′(t) = λ0f(t, x(t), x(t − 1)).

That is, (λ0, x0) is a T -periodic pair of (3.1) and, consequently, (λ0, x0) belongs
to ∂A ∩ Y , which is a contradiction. Therefore, by Lemma 3.11, one can find
a connected branch of nontrivial T -periodic pairs of (3.1) whose closure in Y
(which is the same as in Ω) intersects Z =

{

(0, p̄) ∈ Ω : p ∈ M, w(p) = 0
}

and
is not compact.

Theorem 3.1 asserts that a necessary condition for p0 ∈ M to be a bifurca-
tion point is that the mean value vector field w vanishes at p0. The following
consequence of Theorem 3.13 provides a sufficient condition for a zero p0 of w
to be of bifurcation.

Corollary 3.14. Let p0 be a zero of the mean value vector field w. Assume

that w is of class C1 and w′(p0) : Tp0
M → R

k is one-to-one. Then p0 is a

bifurcation point of the equation (3.1).

Proof. As we already pointed out, the assumption w(p0) = 0 implies that w′(p0)
maps Tp0

M into itself. Consequently, w′(p0) is an automorphism of Tp0
M and

p0 is an isolated zero of w.

Given an open isolating neighborhood U of p0 in M , let Ω be the open set
obtained by removing the “vertical” set

{

(0, p̄) : p ∈ M \ U
}

from the space

[0, +∞)×CT (M). Observe that Ω̌0 = U , and deg(w,U) = sign det(w′(p0)) 6= 0.
Thus, Theorem 3.13 implies the existence of a connected set of nontrivial T -
periodic pairs of (3.1) whose closure meets the singleton

{

(0, p̄) : p ∈ U, w(p) =
0
}

= {(0, p̄0)}, and this shows that p0 is a bifurcation point of (3.1).

The following consequence of Theorem 3.13 will be applied to prove that
any forced constrained mechanical system admits forced oscillations, provided
that the constraint is compact, with nonzero Euler–Poincaré characteristic, and
the frictional coefficient is strictly positive (see Theorem 4.1).
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Corollary 3.15. Let f , w and M be as in Theorem 3.13. Assume that M is

closed as a subset of R
k, and let U be an open subset of M such that deg(w,U)

is nonzero. Then the equation (3.1) admits in [0, +∞) × CT (M) a connected

branch of nontrivial T -periodic pairs whose closure meets the set
{

(0, p̄) : p ∈
U, w(p) = 0

}

and satisfies at least one of the following properties :

1. it is unbounded;

2. it meets the set
{

(0, p̄) : p ∈ M \ U, w(p) = 0
}

.

Proof. Let Ω be the open subset of the space [0, +∞) × CT (M) obtained by
removing (from this space) the “vertical” set

{

(0, p̄) : p ∈ M \ U
}

. Since

Ω̌0 = U , Theorem 3.13 implies the existence, in Ω, of a connected branch B
of nontrivial T -periodic pairs of (3.1) whose closure, in Ω, is not compact and
intersects the set

{

(0, p̄) : p ∈ U, w(p) = 0
}

. Assume that B is bounded. Thus,
because of Ascoli’s Theorem, B is actually totally bounded. Consequently, its
closure B in the complete metric space [0, +∞) × CT (M) is compact (notice
that, M being closed in R

k, CT (M) is closed in the Banach space CT (Rk)).
Since the closure B ∩ Ω of B in Ω is not compact, B must contain an element
(0, p̄0) in the complement

{

(0, p̄) : p ∈ M \ U
}

of Ω. Thus, p0 is a bifurcation
point of the equation (3.1) and, because of Theorem 3.1, w(p0) = 0.

Corollary 3.16 below extends two results: one (obtained in [1]) for T ≥ 1
and manifolds with boundary, and the other (given in [3]) for any T > 0 and
boundaryless manifolds. Its statement needs some preliminary definitions.

Let N ⊆ R
k be a smooth manifold with (possibly empty) boundary ∂N ,

and f : R × N × N → R
k a vector field on N . Following [1], we will say

that f is inward (resp. outward) if for any (t, p, q) ∈ R × ∂N × N the vector
f(t, p, q) points inward (resp. outward) at p. Recall that, given p ∈ ∂N , the set
of vectors which are tangent to N at p and point inward (resp. outward) is a
closed half-subspace of TpN , called inward (resp. outward) half-subspace of TpN
(see, e.g., [17]). We will say that f is strictly inward (resp. strictly outward) if f
is inward (resp. outward) and f(t, p, q) 6∈ Tp∂N for any (t, p, q) ∈ R × ∂N ×N .

Let us recall that, if N is a compact manifold with boundary and v : N → R
k

is a continuous tangent vector field on N satisfying v(p) 6= 0 for all p ∈ ∂N , then
the degree of v in N still makes sense. In fact, it suffices to observe that, in this
case, v is admissible in the boundaryless manifold M = N\∂N . Hence, one can
define deg(v,N) as the degree of the restriction of v to M . The Poincaré–Hopf
theorem asserts that this degree equals the Euler–Poincaré characteristic of N ,
provided v points outward along ∂N .

Corollary 3.16. Let N ⊆ R
k be a compact manifold with (possibly empty)

boundary, whose Euler–Poincaré characteristic χ(N) is different from zero. Let

f : R × N × N → R
k be an inward (or outward) vector field on N which is
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T -periodic in the first variable, and w : N → R
k the autonomous tangent vector

field given by w(p) = 1
T

∫ T

0
f(t, p, p) dt. Then the equation

x′(t) = λf(t, x(t), x(t − 1)) (3.9)

admits an unbounded connected branch in [0, +∞) × CT (N) of nontrivial T -

periodic pairs whose closure meets the set
{

(0, p̄) : p ∈ N, w(p) = 0
}

. In

particular, since CT (N) is bounded, the equation (3.9) has a T -periodic solution

for any λ ≥ 0.

Proof. Assume first that the vector field f is strictly inward (or outward). No-
tice that, in this case, deg(w,N) is well defined since w(p) 6= 0 for all p ∈ ∂N .

If N is boundaryless, then deg(w,N) = χ(N) 6= 0. If ∂N 6= ∅ and f
points strictly outward along ∂N , then w points strictly outward as well, so
that again one has deg(w,N) = χ(N) 6= 0. If f is strictly inward, then
the tangent vector field −w is strictly outward. Therefore, by recalling that
deg(−w,N) = (−1)dim N deg(w,N), still in this case one obtains deg(w,N) 6= 0.
Hence, considering the boundaryless manifold M = N\∂N , Theorem 3.13 yields
the existence of a connected branch B ⊆ Ω := [0, +∞) × CT (M) of nontrivial
T -periodic pairs whose closure, in Ω, meets the set

{

(0, p̄) : p ∈ M, w(p) = 0
}

and is not compact. It remains to show that B is unbounded.

If ∂N = ∅, the unboundedness of B follows from Corollary 3.15 since, in this
case, the manifold M = N is closed in R

k. If, otherwise, ∂N 6= ∅, the fact that
the vector field f is never tangent to ∂N implies that there are no T -periodic
orbits of (3.9) which hit ∂N . Therefore, the closures of B in [0, +∞)×CT (M)
and in [0, +∞) × CT (N) coincide. Thus, B is a complete metric space, which
cannot be bounded since, otherwise, because of Ascoli’s Theorem, it would be
totally bounded and, therefore, compact.

Assume now that f is merely inward (or outward). Then one can find a
sequence {fn} of strictly inward (or outward) vector fields on N , T -periodic in
the first variable, and such that

{

fn(t, p, q)
}

converges to f(t, p, q) uniformly
on R×N ×N . Hence, the previous step applies to any vector field fn, and the
existence of the required branch can be deduced as in the proof of Theorem 3.13
(step 2).

4. Applications to second order delay differential equa-
tions on manifolds

In this section we provide an application of the results obtained above to some
motion problems for forced constrained systems.

Let X ⊆ R
s be a boundaryless manifold. Given q ∈ X, let TqX and

(TqX)⊥ denote the tangent and the normal space of X at q, respectively. Since
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R
s = TqX ⊕ (TqX)⊥, any vector u ∈ R

s can be uniquely decomposed into the
sum of the parallel (or tangential) component uπ ∈ TqX of u at q and the
normal component uν ∈ (TqX)⊥ of u at q. By

TX =
{

(q, v) ∈ R
s × R

s : q ∈ X, v ∈ TqX
}

we denote the tangent bundle of X which is a smooth manifold containing a
natural copy of X via the embedding q 7→ (q, 0). The natural projection of TX
onto X is just the restriction (to TX as domain and to X as codomain) of the
projection of R

s × R
s onto the first factor.

Given a vector field F : R × X × X → R
s which is T -periodic in the first

variable, consider the following delay motion equation on X:

x′′

π(t) = F (t, x(t), x(t − 1)) − εx′(t), (4.1)

where

1. x′′

π(t) stands for the parallel component of the acceleration x′′(t) ∈ R
s at

the point x(t);

2. the frictional coefficient ε is a positive constant.

By a solution of (4.1) we mean a continuous function x : J → X, defined on
a (possibly unbounded) interval, with length greater than 1, which is of class
C2 on the subinterval (inf J + 1, sup J) of J and verifies x′′

π(t) = F (t, x(t), x(t−
1)) − εx′(t) for all t ∈ J with t > inf J + 1. A forced oscillation of (4.1) is a
solution which is T -periodic and globally defined on J = R.

It is known that, associated with X ⊆ R
s, there exists a unique smooth

map r : TX → R
s, called the reactive force (or inertial reaction), with the

following properties:

1. r(q, v) ∈ (TqX)⊥ for any (q, v) ∈ TX;

2. r is quadratic in the second variable;

3. any C2 curve γ : (a, b) → X verifies the condition γ′′

ν (t) = r(γ(t), γ′(t)),
for all t ∈ (a, b), i.e. for each t ∈ (a, b), the normal component γ′′

ν (t) of
γ′′(t) at γ(t) equals r(γ(t), γ′(t)).

The map r is strictly related to the second fundamental form on X and may
be interpreted as the reactive force due to the constraint X. By properties 1
and 3 above, equation (4.1) can be equivalently written as

x′′(t) = r(x(t), x′(t)) + F (t, x(t), x(t − 1)) − εx′(t). (4.2)

Notice that, if the above equation reduces to the so-called inertial equation

x′′(t) = r(x(t), x′(t)),
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one obtains the geodesics of X as solutions. Equation (4.2) can be written as a
first order differential system on TX as follows:

{

x′(t) = y(t)
y′(t) = r(x(t), y(t)) + F (t, x(t), x(t − 1)) − εy(t).

This makes sense since the map

g : R × TX × X → R
s × R

s, g(t, (q, v), q̃) = (v, r(q, v) + F (t, q, q̃) − εv)

verifies the condition g(t, (q, v), q̃) ∈ T(q,v)TX for all (t, (q, v), q̃) ∈ R× TX ×X
(see, for example, [7] for more details).

Theorem 4.1 below extends a result obtained in [2] for the case T ≥ 1. The
proof is based on Corollary 3.15 above.

Theorem 4.1. Let X ⊆ R
s be a compact boundaryless manifold whose Euler–

Poincaré characteristic χ(X) is different from zero. Then the equation (4.1)
has a forced oscillation.

Proof. As we already pointed out, the equation (4.1) is equivalent to the fol-
lowing first order system on TX:

{

x′(t) = y(t)
y′(t) = r(x(t), y(t)) + F (t, x(t), x(t − 1)) − εy(t).

(4.3)

It is convenient to regard system (4.3) as a particular case of the following one,
depending on the additional parameter λ ≥ 0:

{

x′(t) = λ y(t)
y′(t) = λ

(

r(x(t), y(t)) + F (t, x(t), x(t − 1)) − εy(t)
)

.
(4.4)

We point out that, when λ 6= 1, system (4.4) does not represent a second order
equation on X; however, it is still a first order differential equation on TX.

Define f : R × TX × TX → R
s × R

s by

f(t, (q, v), (q̃, ṽ)) = (v, r(q, v) + F (t, q, q̃) − εv).

Notice that the map f is a vector field on TX which is T -periodic in the first
variable. Let w : TX → R

s × R
s be the autonomous tangent vector field given

by

w(q, v) =
1

T

∫ T

0

f(t, (q, v), (q, v)) dt = (v, r(q, v) + ω(q) − εv),

where ω(q) = 1
T

∫ T

0
F (t, q, q) dt, q ∈ X. We apply Corollary 3.15 with U = M =

TX. To this end, we need to show that deg(w, TX) is nonzero. Notice first that
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the zeros of w are contained in the compact subset X × {0} of TX. Therefore,
deg(w, TX) is well defined. Given c > 0, consider the following subset of TX:

Mc =
{

(q, v) ∈ X × R
s : v ∈ TqX, ‖v‖ ≤ c

}

.

It is not difficult to show that Mc is a compact manifold in R
s×R

s with boundary
∂Mc =

{

(q, v) ∈ X × R
s : v ∈ TqX, ‖v‖ = c

}

. Observe that χ(Mc) = χ(X)
since Mc and X are homotopically equivalent (X being a deformation retract
of TX). Since M̊c = Mc\∂Mc is an open subset of TX containing X ×{0}, the
excision property of the degree implies that deg(w, TX) = deg(w, M̊c).

We claim that, if c > 0 is large enough, then f is a strictly inward vector
field on Mc and, consequently, so is w. To see this, let (q, v) ∈ ∂Mc be fixed,
and observe that the strictly inward open half-subspace of T(q,v)Mc is

T−

(q,v)Mc =
{

(q̇, v̇) ∈ T(q,v)TX : 〈v, v̇〉 < 0
}

,

where 〈·, ·〉 denotes the inner product in R
s. We have to show that, if c > 0

is large enough, then f(t, (q, v), (q̃, ṽ)) belongs to T−

(q,v)Mc for any t ∈ R and

(q̃, ṽ) ∈ TX; that is,

〈v, r(q, v) + F (t, q, q̃) − εv〉 = 〈v, r(q, v)〉 + 〈v, F (t, q, q̃)〉 − ε〈v, v〉 < 0

for any t ∈ R and (q̃, ṽ) ∈ TX. Now, 〈v, r(q, v)〉 = 0 since r(q, v) belongs to
(TqX)⊥. Moreover, 〈v, v〉 = c2 since (q, v) ∈ ∂Mc, and

〈v, F (t, q, q̃)〉 ≤ ‖v‖‖F (t, q, q̃)‖ ≤ K‖v‖,

where K = max
{

‖F (t, q, q̃)‖ : (t, q, q̃) ∈ R × X × X
}

. Thus,

〈v, r(q, v) + F (t, q, q̃) − εv〉 ≤ Kc − εc2.

This shows that, if we choose c > K/ε, then f and thus w are strictly inward
vector fields on Mc, as claimed. Therefore, given c > K/ε, the Poincaré–Hopf
Theorem implies that deg(−w, M̊c) = χ(Mc) = χ(X). Consequently,

deg(w, TX) = (−1)2m deg(−w, M̊c) = χ(X) 6= 0,

where m is the dimension of X. Hence, from Corollary 3.15 it follows that the
equation (4.4) admits in [0, +∞)×CT (TX) an unbounded connected branch of
nontrivial T -periodic triples (λ, x, y), whose closure intersects the subset {0} ×
X × {0} of [0, +∞) × X × R

s.

Now, to prove that system (4.3) admits a T -periodic solution, we show that
a suitable a priori bound holds for the nontrivial T -periodic triples of (4.4).
Indeed, let (λ, x, y) be a nontrivial T -periodic triple of (4.4); that is, (x, y) ∈
CT (TX) is a T -periodic solution of (4.4) corresponding to λ > 0. Since X is
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a compact manifold and x(t) ∈ X for any t ∈ R, it suffices to give a priori

bounds on y. To this end, consider the T -periodic function δ(t) = ‖y(t)‖2 and
let t0 be such that δ(t0) = max{δ(t) : t ∈ R}. We have

0=δ′(t0)= 2〈y(t0), y
′(t0)〉

= 2λ
(

〈y(t0), r(x(t0), y(t0))〉+〈y(t0), F (t0, x(t0), x(t0−1))〉−ε‖y(t0)‖
2
)

≤ 2λ
(

K‖y(t0)‖ − ε‖y(t0)‖
2
)

= 2λ‖y(t0)‖
(

K − ε‖y(t0)‖
)

.

Since λ > 0, this shows that, if we choose c > K/ε, then the T -periodic solutions
of (4.4) corresponding to λ lie entirely in Mc. Hence, the obtained branch
is unbounded with respect to λ and, consequently, system (4.3) admits a T -
periodic solution. This implies that the second order equation (4.1) has a forced
oscillation.

We point out that, in the above theorem, the condition χ(X) 6= 0 cannot
be dropped. Consider for example the equation

θ′′(t) = a − εθ′(t), t ∈ R, (4.5)

where a is a nonzero constant and ε > 0. Equation (4.5) can be regarded as
a second order ordinary differential equation on the unit circle S1 ⊆ C, where
θ represents the angular coordinate. In this case, a solution θ(·) of (4.5) is
periodic of period T > 0 if and only if for some k ∈ Z it satisfies the boundary
conditions

{

θ(T ) − θ(0) = 2kπ

θ′(T ) − θ′(0) = 0.

Notice that the applied force a represents a nonvanishing autonomous vector
field on S1. Thus, it is periodic of arbitrary period. However, simple calculations
show that there are no T -periodic solutions of (4.5) if T 6= 2πε/a.
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