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Abstract. We introduce a class of measures of noncompactness in Banach algebras
satisfying certain condition and we prove a fixed point theorem for the product of two
operators being contractions with respect to such measures of noncompactess. We also
indicate measures of noncompactness in some Banach function algebras which satisfy
the mentioned condition. The obtained results are applied to prove a few theorems
on the existence of solutions of nonlinear integral equations in Banach algebras. Some
characterizations of solutions of considered integral equations are also derived.
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1. Introduction

The paper is devoted to the study of the solvability of some operator equations
in Banach algebras. The main tool used in our investigations is the technique
associated with measures of noncompactness.

Assuming that measures of noncompactness used in investigations satisfy
certain condition we are able to prove that functional-operator equations con-
sidered in suitable Banach algebras are solvable under some imposed conditions.
The results we are going to prove in this paper generalize a lot of ones obtained
previously in other papers and monographs (cf. [8–10,17–19], for example).

It is worthwhile mentioning that the approach presented in this paper per-
mits us to generalize a lot of fixed point theorems proved earlier in some special
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cases. On the other hand applying the mentioned theorems to functional in-
tegral equations studied in Banach algebras we prove not only the existence
of solutions of considered equations but we also obtain some characterizations
of those solutions. Obviously those characterizations depend on measures of
noncompactness which are used in our considerations.

The main idea of our investigations depends on the indication of a class
of measures of noncompactness in Banach algebras satisfying certain condition
called here the condition (m). That condition was used first in the paper [8]
in the case of the Hausdorff measure of noncompactness in the Banach algebra
C(I) consisting of real continuous functions defined on a closed and bounded
interval I.

In this paper we indicate a wide class of measures of noncompactness satis-
fying condition (m). Those measures will be considered in the Banach algebra
C(I) and in the Banach algebra BC(R+) defined further on.

2. Preliminary results concerning measures
of noncompactness

Assume that E is a given real Banach space with the norm ‖·‖ and the zero ele-
ment θ. Denote by B(x, r) the closed ball in E centered at x and with radius r.
We will write Br to denote the ball B(θ, r). If X is a subset of E, then the
symbols X, ConvX stand for the closure and convex closure of X, respectively.
Moreover, by the symbol ‖X‖ we will denote the norm of a bounded set X, i.e.,
‖X‖ = sup{‖x‖ : x ∈ X}.

Further, let us denote by ME the family of all nonempty and bounded
subsets of E and by NE its subfamily consisting of all relatively compact sets.

In what follows we will accept the following definition of the concept of a
measure of noncompactness [5].

Definition 2.1. A mapping µ : ME → R+ = [0,∞) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

1. the family ker µ = {X ∈ ME : µ(X) = 0} is nonempty and ker µ ⊂ NE;

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y );

3. µ(X) = µ(Conv X) = µ(X);

4. µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for λ ∈ [0, 1];

5. if (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for
n = 1, 2, . . . and if limn→∞ µ(Xn) = 0, then the set X∞ =

⋂∞
n=1 Xn is

nonempty.

The family ker µ described in 1o is called the kernel of the measure of non-

compactness µ.
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It can be shown that the set X∞ from the axiom 5o is a member of the
kernel ker µ. This fact will be important in our further considerations.

Now, let us assume that Ω is a nonempty subset of a Banach space E and
F : Ω → E is a continuous operator which transforms bounded subsets of Ω
onto bounded ones. Suppose that µ is a measure of noncompactness given in E.

Definition 2.2 (see [5]). We say that F satisfies the Darbo condition with a
constant k with respect to a measure of noncompactness µ provided µ(FX) ≤
kµ(X) for each X ∈ ME such that X ⊂ Ω. If k < 1, then F is called a

contraction with respect to µ.

Starting from now on we assume that the space E has the structure of
Banach algebra. For given subsets X,Y of a Banach algebra E let us denote

XY = {xy : x ∈ X, y ∈ Y } .

We will say that the measure of noncompactness µ defined on the Banach
algebra E satisfies condition (m) if for arbitrary sets X,Y ∈ ME the following
inequality is satisfied:

µ(XY ) ≤ ‖X‖µ(Y ) + ‖Y ‖µ(X) .

In what follows we indicate measures of noncompactness satisfying condition(m)
in some Banach algebras.

First of all let us mention that this condition was used for the first time in
the paper [8] for measures of noncompactness defined on the Banach algebra
C[a, b] with help of a sequence of functionals [23]. Particulary, the so-called
Hausdorff measure of noncompactness χ (cf. [5]) satisfies condition (m). Let us
recall some details.

Namely, denote by C[a, b] the Banach space of real functions defined and
continuous on the interval [a, b] with the standard maximum norm. Obviously
the space C[a, b] has the structure of Banach algebra with usual product of
functions.

Further, fix arbitrarily ε > 0 and a set X ∈ MC[a,b]. For x ∈ X denote by
ω(x, ε) the modulus of continuity of x, i.e.,

ω(x, ε) = sup{|x(t) − x(s)| : t, s ∈ [a, b], |t − s| ≤ ε} .

Further, let us put

ω(X, ε) = sup{ω(x, ε) : x ∈ X} and ω0(X) = lim
ε→0

ω(X, ε) .

It is well-known that ω0(X) is a measure of noncompactness in C[a, b] such that
the Hausdorff measure χ may be expressed by the formula χ(X) = 1

2
ω0(X)
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(see [5]). Apart from this it is easy to check that the measure ω0(X) satisfies
condition (m) [8].

Now we indicate another measure of noncompactness in the Banach algebra
C[a, b] which satisfies condition (m) on some subfamily of the family MC[a,b].
To do this let us take a set X ∈ MC[a,b]. For x ∈ X let us consider the following
quantities (cf. [7]):

d(x) = sup{|x(s) − x(t)| − [x(s) − x(t)] : t, s ∈ [a, b], t ≤ s}
i(x) = sup{|x(s) − x(t)| − [x(t) − x(s)] : t, s ∈ [a, b], t ≤ s} .

The quantity d(x) represents the degree of decrease of the function x while
i(x) represents the degree of increase. Moreover, d(x) = 0 if and only if x is
nondecreasing on [a, b] and analogous characterization holds for the quantity
i(x). Further, let us put

d(X) = sup{d(x) : x ∈ X}
i(X) = sup{i(x) : x ∈ X} .

Obviously the mappings d(X) and i(X) can be characterized in the same way
as the quantities d(x) and i(x). Finally, let us denote

µd(X) = ω0(X) + d(X) (1)

µi(X) = ω0(X) + i(X) . (2)

It can be shown that these mappings are measures of noncompactness in the
space C[a, b] (cf. [7]). Moreover, ker µd is the family consisting of all sets X

belonging to MC[a,b] such that all functions from X are equicontinuous and
nondecreasing on [a, b]. Similarly we may characterize the family kerµi.

Now, we show that measures of noncompactness µd and µi satisfy ”partly”
condition (m).

Theorem 2.3. The measures of noncompactness µd and µi satisfy condition

(m) on the subfamily of the family MC[a,b] consisting of sets of functions being

nonnegative on the interval [a, b].

Proof. Let us take arbitrary sets X,Y ∈ MC[a,b] such that functions belonging
to these sets are nonnegative on [a, b]. Further, fix arbitrarily x ∈ X and y ∈ Y

and take t, s ∈ [a, b] with t < s. Then we have

|x(s)y(s) − x(t)y(t)| − [x(s)y(s) − x(t)y(t)]

≤ |x(s)y(s) − x(s)y(t)| + |x(s)y(t) − x(t)y(t)| − {[x(s)y(s) − x(s)y(t)]

+ [x(s)y(t) − x(t)y(t)]}
= |x(s)‖y(s) − y(t)| + |y(t)‖x(s) − x(t)| − x(s)[y(s) − y(t)] − y(t)[x(s) − x(t)]

= |x(s)|{|y(s) − y(t)| − [y(s) − y(t)]} + |y(t)|{|x(s) − x(t)| − [x(s) − x(t)]}
≤ ‖x‖d(y) + ‖y‖d(x) .
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This implies that d(XY ) ≤ ‖X‖d(Y ) + ‖Y ‖d(X). Linking the above obtained
assertion with the fact that the measure of noncompactness ω0(X) satisfy con-
dition (m), we get:

µd(XY ) ≤ ‖X‖µd(Y ) + ‖Y ‖µd(X) .

In the same way we may show that the measure of noncompactness µi

satisfies condition (m) for sets from the family MC[a,b] consisting of functions
being nonnegative on [a, b]. This completes the proof.

Now, let us consider the Banach space BC(R+) consisting of all functions
x : R+ → R which are continuous and bounded on R+. This space is furnished
with the standard norm ‖x‖ = sup{|x(t)| : t ∈ R+}. Obviously BC(R+) has also
the structure of Banach algebra with the standard multiplication of functions.

Further, fix a set X ∈ MBC(R+) and numbers ε > 0 and T > 0. For an
arbitrary function x ∈ X let us denote by ωT (x, ε) the modulus of continuity
of x on the interval [0, T ], i.e.,

ωT (x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, T ], |t − s| ≤ ε} .

Next, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X}
ωT

0 (X) = lim
ε→0

ωT (X, ε)

ω∞
0 (X) = lim

T→∞
ωT

0 (X) .

Now, let us define the following set mappings:

a(X) = lim
T→∞

{

sup
x∈X

{

sup{|x(t)| : t ≥ T}
}

}

b(X) = lim
T→∞

{

sup
x∈X

{

sup{|x(t) − x(s)| : t, s ≥ T}
}

}

.

Moreover, if t ∈ R+ is a fixed number, let us denote

X(t) = {x(t) : x ∈ X}
diam X(t) = sup{|x(t) − y(t)| : x, y ∈ X}

c(X) = lim sup
t→∞

diamX(t) .

With help of the above mappings we define the following measures of non-
compactness in BC(R+) (cf. [5, 6]):

µa(X) = ω∞
0 (X) + a(X) (3)

µb(X) = ω∞
0 (X) + b(X) (4)

µc(X) = ω∞
0 (X) + c(X) . (5)
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Let us mention that the kernel ker µa of the measure µa consists of all sets
X ∈ MBC(R+) such that functions from X are locally equicontinuous on R+ and
vanish uniformly at infinity, i.e., for any ε > 0 there exists T > 0 such that
|x(t)| ≤ ε for all x ∈ X and for any t ≥ T . For description of the kernels ker µb

and ker µc we refer to [6].

In the sequel we prove the following theorem.

Theorem 2.4. The measures of noncompactness µa, µb and µc satisfy condi-

tion (m).

Proof. In the light of the facts quoted earlier it is easy to infer that the term
ω∞

0 (X) satisfies condition (m). Thus, it is sufficient to show that the quantities
a(X), b(X) and c(X) satisfy this condition. We show that the quantity c(X)
satisfies condition (m).

To do this fix arbitrarily sets X,Y ∈ MBC(R+). Choose arbitrary functions
z1, z2 ∈ XY . This means that there exist functions x1, x2 ∈ X and y1, y2 ∈ Y

such that z1 = x1y1, z2 = x2y2.
Next, for t ∈ R+ we get:

|z1(t) − z2(t)| = |x1(t)y1(t) − x2(t)y2(t)|
≤ |x1(t)y1(t) − x1(t)y2(t)| + |x1(t)y2(t) − x2(t)y2(t)|
= |x1(t)‖y1(t) − y2(t)| + |y2(t)‖x1(t) − x2(t)|
≤ ‖X‖ diam Y (t) + ‖Y ‖ diam X(t) .

Hence we obtain diam(X(t)Y (t)) ≤ ‖X‖ diam Y (t) + ‖Y ‖ diamX(t) and con-
sequently c(XY ) ≤ ‖X‖c(Y ) + ‖Y ‖c(X). This implies that the measure of
noncompactness µc satisfies condition (m).

The proof that the quantities a(X) and b(X) satisfy condition (m) is similar
and is omitted.

In what follows assume that E is a Banach algebra. Let µ be a measure of
noncompactness in E satisfying condition (m). Then we have following theorem.

Theorem 2.5. Assume that Ω is nonempty, bounded, closed and convex subset

of the Banach algebra E, and the operators P and T transform continuously

the set Ω into E in such a way that P (Ω) and T (Ω) are bounded. Moreover, we

assume that the operator S = P · T transforms Ω into itself. If the operators P

and T satisfy on the set Ω the Darbo condition with respect to the measure of

noncompactness µ with the constants k1 and k2 respectively, then the operator S

satisfies on Ω the Darbo condition with the constant

‖P (Ω)‖k2 + ‖T (Ω)‖k1 .

Particularly, if ‖P (Ω)‖k2 + ‖T (Ω)‖k1 < 1, then S is a contraction with respect

to the measure of noncompactness µ and has at least one fixed point in the set Ω.
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Proof. Let us take an arbitrary nonempty subset X of the set Ω. Then in view
of the assumption that µ satisfies condition (m) we obtain

µ(S(X)) ≤ µ(P (X) · T (X))

≤ ‖P (X)‖µ(T (X)) + ‖T (X)‖µ(P (X))

≤ ‖P (Ω)‖µ(T (X)) + ‖T (Ω)‖µ(P (X))

≤ ‖P (Ω)‖k2µ(X) + ‖T (Ω)‖k1µ(X)

= [‖P (Ω)‖k2 + ‖T (Ω)‖k1]µ(X) .

Hence it follows that the operator S satisfies the Darbo condition with the
constant ‖P (Ω)‖k2 + ‖T (Ω)‖k1. Moreover, if ‖P (Ω)‖k2 + ‖T (Ω)‖k1 < 1, then
in view of a modified version of Darbo fixed point theorem [5] we infer that
the operator S has at least one fixed point on the set Ω. This completes the
proof.

Remark 2.6. It may be shown [5] that the set Fix S of all fixed points of the
operator S on the set Ω is a member of the kernel ker µ.

3. Existence of monotonic solutions of a functional
integral equation of fractional order in the Banach
algebra C(I)

In this section we will work in the Banach algebra C(I), where I is a bounded
and closed interval. For simplicity we assume that I = [0, 1]. We will use the
measure of noncompactness µd defined previously by formula (1).

The object of our study is the following functional integral equation:

x(t) = f(t, x(t))

(

p(t) +
1

Γ(α)

∫ t

0

v(t, s, (Gx)(s))

(t − s)1−α
ds

)

, (6)

where t ∈ I, α is a fixed number from the interval (0, 1) and Γ(α) denotes
the gamma function. Moreover, G is an operator acting from C(I) into itself.
Observe that the above equation may be written in the product form x(t) =
(Fx)(t)(V x)(t), where F is the so-called superposition operator [3] defined by
the formula

(Fx)(t) = f(t, x(t)), t ∈ I ,

and V is the Volterra integral operator of fractional order having the form

(V x)(t) = p(t) +
1

Γ(α)

∫ t

0

v(t, s, (Gx)(s))

(t − s)1−α
ds , t ∈ I .

It is worthwhile mentioning that integral and differential equations of fractional
order play recently a very important role in mathematical investigations. The
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mathematical literature concerning mentioned equations is very extensive and
includes both research papers [4, 10,13,15] and monographs [21,25,26].

In what follows we will consider equation (6) assuming that the following
conditions are satisfied:

(i) p ∈ C(I) and p is nondecreasing and nonnegative function on the inter-
val I.

(ii) The function f : I×R → R is continuous with f(I×R+) ⊆ R+. Moreover,
the function t → f(t, x) is nondecreasing on I for any fixed x ∈ R+ and
the function x → f(t, x) is nondecreasing on R+ for any fixed t ∈ I.

(iii) There exists a nondecreasing function k(r) = k : R+ → R+ such that

|f(t, x1) − f(t, x2)| ≤ k(r)|x1 − x2|

for t ∈ I and for all x1, x2 ∈ [−r, r].

(iv) v : I × I ×R → R is a continuous function such that v : I × I ×R+ → R+

and v(t, s, x) is nondecreasing with respect to each variable t, s and x,
separately.

(v) There exists a continuous and nondecreasing function Φ : R+ → R+ such
that |v(t, s, x)| ≤ Φ(|x|) for t, s ∈ I and for all x ∈ R.

(vi) The operator G transforms continuously the space C(I) into itself and
there exists a nondecreasing function ϕ : R+ → R+ such that ‖Gx‖ ≤
ϕ(‖x‖) for any x ∈ C(I). Moreover, for each function x ∈ C(I) which is
nonnegative on I, the function Gx is nonnegative and nondecreasing on I.

(vii) There exists a positive solution r0 of the inequality

(rk(r) + F )

(

‖p‖ +
Φ(ϕ(r))

Γ(α + 1)

)

≤ r ,

where F = max{f(t, 0) : t ∈ I}. Moreover, the number r0 is such that

k(r0)
(

‖p‖ + Φ(ϕ(r0))
Γ(α+1)

)

< 1.

Now we can formulate the existence result concerning the functional integral
equation (6).

Theorem 3.1. Under assumptions (i)–(vii) equation (6) has at least one solu-

tion x(t) = x ∈ C(I) which is nonnegative and nondecreasing on I.

Proof. At first let us observe that in view of assumption (ii) we have (cf. [3]) that
the operator F transforms the Banach algebra C(I) into itself and is continuous.
We show that the operator V has also the same properties.

To do this let us fix ε > 0 and take arbitrarily t1, t2 ∈ I such that |t2−t1| ≤ ε.
Without loss of generality we may assume that t1 < t2. Then, for arbitrarily
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fixed x ∈ C(I) we obtain

|(V x)(t2) − (V x)(t1)|
≤ |p(t2) − p(t1)|

+
1

Γ(α)

∣

∣

∣

∣

∫ t2

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t2

0

v(t1, s, (Gx)(s))

(t2 − s)1−α
ds

∣

∣

∣

∣

+
1

Γ(α)

∣

∣

∣

∣

∫ t2

0

v(t1, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t2 − s)1−α
ds

∣

∣

∣

∣

+
1

Γ(α)

∣

∣

∣

∣

∫ t1

0

v(t1, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t1 − s)1−α
ds

∣

∣

∣

∣

≤ ω(p, ε) +
1

Γ(α)

∫ t2

0

v(t2, s, (Gx)(s)) − v(t1, s, (Gx)(s))

(t2 − s)1−α
ds

+
1

Γ(α)

∫ t2

t1

|v(t1, s, (Gx)(s))|
(t2 − s)1−α

ds

+
1

Γ(α)

∫ t1

0

|v(t1, s, (Gx)(s))|
∣

∣

∣

∣

1

(t2 − s)1−α
− 1

(t1 − s)1−α

∣

∣

∣

∣

ds

≤ ω(p, ε) +
1

Γ(α)

∫ t2

0

ωϕ(‖x‖)(v, ε)

(t2 − s)1−α
ds +

1

Γ(α)

∫ t2

t1

Φ(ϕ(‖x‖))
(t2 − s)1−α

ds

+
1

Γ(α)

∫ t1

0

Φ(ϕ(‖x‖))
[

1

(t1 − s)1−α
− 1

(t2 − s)1−α

]

ds

≤ ω(p, ε) +
ωϕ(‖x‖)(v, ε)

αΓ(α)
tα2 +

Φ(ϕ(‖x‖))
αΓ(α)

(t2 − t1)
α

+
Φ(ϕ(‖x‖))

αΓ(α)
[tα1 − tα2 + (t2 − t1)

α]

≤ ω(p, ε) +
ωϕ(‖x‖)(v, ε)

Γ(α + 1)
+

2Φ(ϕ(‖x‖))
Γ(α + 1)

εα ,

(7)

where we denoted

ωd(v, ε) = sup{|v(t2, s, y) − v(t1, s, y)| : t2, t1, s ∈ I, |t2 − t1| ≤ ε, y ∈ [−d, d]} .

Hence, taking into account the uniform continuity of the function v(t, s, x) on
the set I × I × [−ϕ(‖x‖), ϕ(‖x‖)] we infer that the function V x is continuous
on I. Thus V transforms the Banach algebra C(I) into itself.

On the other hand, for a fixed x ∈ C(I) and t ∈ I we get

|(Fx)(t)| ≤ |f(t, x(t)) − f(t, 0)| + |f(t, 0)|
≤ k(‖x‖)‖x‖ + f(t, 0)

≤ ‖x‖k(‖x‖) + F .

(8)
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Moreover, we obtain

|(V x)(t)| ≤ |p(t)| + 1

Γ(α)

∫ t

0

|v(t, s, (Gx)(s))|
(t − s)1−α

ds

≤ ‖p‖ +
Φ(ϕ(‖x‖))

Γ(α)

∫ t

0

ds

(t − s)1−α

≤ ‖p‖ +
Φ(ϕ(‖x‖))
Γ(α + 1)

.

(9)

In what follows let us observe that linking (8), (9) and assumption (vii)
we can deduce that there exists a positive number r0 such that the operator
W = F · V transforms the ball Br0

into itself. On the other hand let us notice
that from estimates (8) and (9) and from the fact established above we infer
that the following inequalities are satisfied:

‖FBr0
‖ ≤ r0k(r0) + F (10)

‖V Br0
‖ ≤ ‖p‖ +

Φ(ϕ(r0))

Γ(α + 1)
. (11)

Further, let us consider the set Q consisting of all nonnegative functions
x ∈ Br0

. Then, keeping in mind our assumptions we deduce that the operator
W transforms the set Q into itself. Moreover, from (10) and (11) we obtain:

‖FQ‖ ≤ r0k(r0) + F (12)

‖V Q‖ ≤ ‖p‖ +
Φ(ϕ(r0))

Γ(α + 1)
. (13)

In the sequel we show that the operator W = F · V is continuous on the
set Q. To do this let us first observe that the continuity of the operator F

is an easy consequence of the assumptions (ii), (iii) and a well known result
concerning the continuity of the superposition operator [3].

Next, we show that the operator V is continuous on the set Q. Thus, let
us fix arbitrarily ε > 0 and x0 ∈ Q. In view of assumption (vi) we can find
δ > 0 such that for an arbitrary x ∈ Q such that ‖x − x0‖ ≤ δ we have that
‖Gx − Gx0‖ ≤ ε. Hence, for arbitrarily fixed t ∈ I we get

|(V x)(t) − (V x0)(t)| ≤
1

Γ(α)

∣

∣

∣

∣

∫ t

0

v(t, s, (Gx)(s))

(t − s)1−α
ds −

∫ t

0

v(t, s, (Gx0)(s))

(t − s)1−α
ds

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t

0

|v(t, s, (Gx)(s)) − v(t, s, (Gx0)(s))|
(t − s)1−α

ds

<
1

Γ(α)

∫ t

0

ω(v, ε)

(t − s)1−α
ds

≤ ω(v, ε)

Γ(α + 1)
,



Measures of Noncompactness 485

where we denoted

ω(v, ε) = sup{|v(t, s, a) − v(t, s, b)| : t, s ∈ I, a, b ∈ [0, ϕ(r0)], |a − b| ≤ ε} .

Obviously, in view of assumption (iv) we have that ω(v, ε) → 0 as ε → 0.
This implies the desired continuity of the operator V on the set Q. Finally we
conclude that W is continuous on the set Q.

Now, let us fix a nonempty subset X of the set Q. Next, choose a number
ε > 0 and take t1, t2 ∈ I such that |t2 − t1| ≤ ε. Without loss of generality we
may assume that t1 < t2. Then we have

|(Fx)(t2) − (Fx)(t1)| ≤ |f(t2, x(t2)) − f(t2, x(t1))| + |f(t2, x(t1)) − f(t1, x(t1))|
≤ k(r0)|x(t2) − x(t1)| + ωr0

(f, ε)

≤ k(r0)ω(x, ε) + ωr0
(f, ε) ,

where we denoted

ωr0
(f, ε) = sup{|f(t2, x) − f(t1, x)| : t1, t2 ∈ I, |t2 − t1| ≤ ε, x ∈ [−r0, r0]} .

Hence we infer ω(Fx, ε) ≤ k(r0)ω(x, ε) + ωr0
(f, ε) and consequently

ω0(FX) ≤ k(r0)ω0(X) . (14)

Further, evaluating similarly as in estimate (7), we obtain

|(V x)(t2) − (V x)(t1)| ≤ ω(p, ε) +
ωϕ(r0)(v, ε)

αΓ(α)
tα2 +

Φ(ϕ(‖x‖))
αΓ(α)

(t2 − t1)
α

+
Φ(ϕ(‖x‖))

αΓ(α)
[tα1 − tα2 + (t2 − t1)

α]

≤ ω(p, ε) +
ωϕ(r0)(v, ε)

Γ(α + 1)
+

Φ(ϕ(r0))

Γ(α + 1)
εα +

Φ(ϕ(r0))

Γ(α + 1)
εα

= ω(p, ε) +
1

Γ(α + 1)
[ωϕ(r0)(v, ε) + 2Φ(ϕ(r0))ε

α] .

This implies ω(V X, ε) ≤ ω(p, ε) + 1
Γ(α+1)

[ωϕ(r0)(v, ε) + 2Φ(ϕ(r0))ε
α] and conse-

quently
ω0(V X) = 0 . (15)

Further on, assume (similarly as above) that t1, t2 ∈ I and t1 < t2. Then,
taking an arbitrary function x ∈ X we get

|(V x)(t2) − (V x)(t1)| − [(V x)(t2) − (V x)(t1)]

≤ |p(t2) − p(t1)| − [p(t2) − p(t1)]

+
1

Γ(α)

∣

∣

∣

∣

∫ t2

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t1 − s)1−α
ds

∣

∣

∣

∣

− 1

Γ(α)

[
∫ t2

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t1 − s)1−α
ds

]

.

(16)
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Observe that keeping in mind our assumptions we have
∫ t2

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t1 − s)1−α
ds

=

∫ t1

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t1 − s)1−α
ds +

∫ t2

t1

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds

≥
∫ t1

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t2, s, (Gx)(s))

(t1 − s)1−α
ds +

∫ t2

t1

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds

=

∫ t1

0

v(t2, s, (Gx)(s))

[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds +

∫ t2

t1

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds.

Hence, taking into account the fact that the term 1
(t2−s)1−α

− 1
(t1−s)1−α

is negative,
we get
∫ t2

0

v(t2, s, (Gx)(s))

(t2 − s)1−α
ds −

∫ t1

0

v(t1, s, (Gx)(s))

(t1 − s)1−α
ds

≥
∫ t1

0

v(t2, t1, (Gx)(s))

[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds +

∫ t2

t1

v(t2, t1, (Gx)(s))

(t2 − s)1−α
ds

≥
∫ t1

0

v(t2, t1, (Gx)(t1))

[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds +

∫ t2

t1

v(t2, t1, (Gx)(t1))

(t2 − s)1−α
ds

= v(t2, t1, (Gx)(t1))

{
∫ t1

0

[

1

(t2 − s)1−α
− 1

(t1 − s)1−α

]

ds +

∫ t2

t1

ds

(t2 − s)1−α

}

= v(t2, t1, (Gx)(t1))
tα2 − tα1

α
≥ 0 .

The above obtained inequality in conjunction with (16) allows us to deduce that
d(V x) = 0. Hence

d(V X) = 0. (17)

Further, let us notice that from a result established in [11] we have that

d(FX) ≤ k(r0)d(X) . (18)

Now, linking (14), (15), (17), (18) and the definition of the measure of noncom-
pactness µd given by formula (1), we get

µd(FX) ≤ k(r0)µd(X) (19)

µd(V X) = 0 . (20)

Now, let us notice that taking into account estimates (12), (13), (19), (20)
and assumption (vii) we conclude in view of Theorem 2.5 that the operator W

is a contraction with respect to the measure of noncompactness µd on the set Q.
Thus, the operator W has a fixed point x in the set Q. Observe that in virtue of
Remark 2.6 the function x = x(t) is a nonnegative and nondecreasing solution
of the functional integral equation (6). This completes the proof.
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In what follows we illustrate the result contained in Theorem 3.1 by the
following example.

Example 3.2. Consider the functional integral equation of fractional order
having the form

x(t) =

[

t

t2 + 15
+ x2(t)

]

×
[

t2e−2t +
1

Γ(1
2
)

∫ t

0

ts + max
{
√

|x(τ)| : 0 ≤ τ ≤ s
}

(1 + s2 + t2)(t − s)
1

2

ds

]

,

(21)

where t ∈ I = [0, 1]. Observe that this equation is a particular case of equa-
tion (6), where

p(t) = t2e−2t, f(t, x) =
t

t2 + 15
+ x2, v(t, s, x) =

ts + x

1 + s2 + t2
.

Moreover, α = 1
2

and (Gx)(t) = max
{
√

|x(τ)| : 0 ≤ τ ≤ t
}

. It is easily
seen that for equation (21) there are satisfied the assumptions of Theorem 3.1.
Indeed, we have k(r) = 2r, f(t, 0) = t

t2+15
, F = 1

16
. Apart from this, we have

|v(t, s, x)| ≤ ts + |x|
1 + s2 + t2

≤ ts

1 + s2 + t2
+

|x|
1 + s2 + t2

≤ 1

2
+ |x| .

Hence we see that the function Φ(r) appearing in assumption (v) may be ac-
cepted in the form Φ(r) = 1+2r

2
. Moreover, we have that ‖Gx‖ ≤

√

‖x‖ so we
can put ϕ(r) =

√
r. Additionally we have that ‖p‖ = 1

2e
. Thus the inequality

from assumption (vii) has the form
(

2r2 +
1

16

) (

1

2e
+

1 + 2
√

r

2Γ(3
2
)

)

≤ r .

Taking into account that Γ(3
2
) ≥ 0.8856 . . . (cf. [20]) we can check that the

number r0 = 1
4

satisfies the above inequality. Moreover, we have that

k(r0)

(

1

2e
+

1 + 2
√

r0

2Γ(3
2
)

)

=
1

2

(

1

2e
+

1

Γ(3
2
)

)

< 1 ,

so this shows that the second inequality from assumption (vii) is also satisfied.
Finally we conclude that equation (21) has a solution belonging to the ball B 1

4

and being nonnegative and nondecreasing on the interval I.

It is worthwhile mentioning that the functional integral equation (21) be-
longs to the important class of integral equations called the equations with

supremum (or with maximum). Equations of that type were recently investi-
gated in some research papers (see [2, 12,22], for example).
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4. Existence of solutions of a functional integral equation
in the Banach algebra BC(R+)

This section is devoted to the study of the following operator equation

x(t) = (V x)(t)(Ux)(t), t ∈ R+ , (22)

where the operators V and U are defined on the Banach algebra BC(R+) in
the following way:

(V x)(t) = p1(t) + f1(t, x(t))

∫ t

0

v(t, s, x(s)) ds

(Ux)(t) = p2(t) + f2(t, x(t))

∫ ∞

0

u(t, s, x(s)) ds .

Notice that V represents the so-called quadratic Volterra integral operator and
U is the quadratic Urysohn integral operator. Thus, equation (22) is a nonlinear
integral equation of product type which contains a lot of particular cases of
functional, integral and functional integral equations.

We will investigate the nonlinear integral equation (22) assuming the fol-
lowing hypotheses:

(i) pi ∈ BC(R+) and pi(t) → 0 as t → ∞ (i = 1, 2).

(ii) fi : R+ × R → R is continuous and such that fi(t, 0) → 0 as t → ∞, for
i = 1, 2.

(iii) The functions fi (i = 1, 2) satisfy the Lipschitz condition with respect to
the second variable, i.e., there exists a constant ki > 0 such that

|fi(t, x) − fi(t, y)| ≤ ki|x − y|

for x, y ∈ R and for t ∈ R+ (i = 1, 2).

(iv) v : R+ × R+ × R → R is continuous and there exist a continuous func-
tion g : R+ × R+ → R+ and a continuous and nondecreasing function
G : R+ → R+ such that

|v(t, s, x)| ≤ g(t, s)G(|x|)

for all t, s ∈ R+ and x ∈ R.

(v) u : R+ × R+ × R → R is continuous and there exist a continuous func-
tion h : R+ × R+ → R+ and a continuous and nondecreasing function
H : R+ → R+ such that

|u(t, s, x)| ≤ h(t, s)H(|x|)

for all t, s ∈ R+ and x ∈ R.
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(vi) The function t →
∫ t

0
g(t, s)ds is bounded on R+.

(vii) For each t ∈ R+ the function s → h(t, s) is integrable on R+ and the
function t →

∫ ∞
0

h(t, s)ds is bounded on R+.

(viii) The improper integral
∫ ∞
0

h(t, s)ds is uniformly convergent with respect
to t ∈ R+, i.e.,

lim
T→∞

{

sup
t∈R+

∫ ∞

T

h(t, s)ds

}

= 0 .

Observe that based on assumptions (ii), (vi) and (vii) we may define the fol-
lowing finite constants:

F i = sup
{

|fi(t, 0)| : t ∈ R+

}

, i = 1, 2

G = sup

{
∫ t

0

g(t, s)ds : t ∈ R+

}

H = sup

{
∫ ∞

0

h(t, s)ds : t ∈ R+

}

.

Now we can formulate the last assumption:

(ix) There exists a positive solution r0 of the inequality

[p + kGrG(r) + F GG(r)][p + kHrH(r) + F HH(r)] ≤ r

such that

pk(GG(r0)+HH(r0))+2kF G HG(r0)H(r0)+2k2r0G HG(r0)H(r0) < 1 ,

where p = max{‖p1‖, ‖p2‖}, F = max{F1, F2}, k = max{k1, k2}.

Remark 4.1. The concept of the uniform convergence of the improper integral
occurring in assumption (viii) is taken from the theory of improper Riemann
integral with a parameter [20]. Namely, in order to adopt this concept to our
situation assume that h(t, s) = h : R+ × R+ → R is a given function such that
the integral

∫ ∞

0

h(t, s) ds (23)

exists for any fixed t ∈ R+. We say that integral (23) is uniformly convergent

with respect to t ∈ R+ [20] if

lim
T→∞

∫ T

0

h(t, s)ds =

∫ ∞

0

h(t, s) ds

uniformly with respect to t ∈ R+. It is easily seen that we may say equivalently
that integral (23) is uniformly convergent with respect to t ∈ R+ if the condition
from assumption (viii) is satisfied.



490 J. Banaś and L. Olszowy

Remark 4.2. It is easy to check that if r0 is a positive solution of the first
inequality from assumption (ix), then the following inequality is satisfied

pk(GG(r0) + HH(r0)) + 2kF G HG(r0)H(r0) + 2k2r0G HG(r0)H(r0) ≤ 1 .

Thus, if we assume that p 6= 0, then the second inequality from assumption (ix)
is automatically satisfied.

Now we can formulate an existence result concerning the functional integral
equation (22).

Theorem 4.3. Under the assumptions (i)–(ix) equation (22) has at least one

solution x = x(t) in the Banach algebra BC(R+) such that x(t) → 0 as t → ∞.

Proof. At first, let us consider the quadratic Volterra integral operator V defined
above and appearing in equation (22).

Suppose x is a fixed function from BC(R+). Obviously we have that V x is
a continuous function on R+ which is a simple consequence of assumptions (i),
(ii) and (iv). Further we show that V x is bounded on R+. In fact, using our
assumptions, for arbitrarily fixed t ∈ R+ we obtain:

|(V x)(t)| ≤ |p1(t)|+|f1(t, x(t))|
∫ t

0

|v(t, s, x(s))| ds

≤ |p1(t)|+[|f1(t, x(t))−f1(t, 0)|+|f1(t, 0)|]
∫ t

0

g(t, s)G(|x(s)|) ds

≤ |p1(t)|+[k1|x(t)|+|f1(t, 0)|]G(‖x‖)
∫ t

0

g(t, s) ds .

(24)

Hence we get

|(V x)(t)| ≤ ‖p1‖ + k1G‖x‖G(‖x‖) + F 1GG(‖x‖) . (25)

The above estimate yields that the function V x is bounded on R+. Joining
this fact with the continuity of V x on R+ we conclude that the operator V

transforms the Banach algebra BC(R+) into itself. Moreover, from (25) we
obtain

‖V x‖ ≤ p + kG‖x‖G(‖x‖) + F GG(‖x‖) . (26)

We now proceed to the investigation of the quadratic Urysohn integral op-
erator U defined above on BC(R+). Thus, fix a function x ∈ BC(R+). We
show that the function Ux is continuous on R+.

To prove this fact let us fix T > 0 and ε > 0. Next, take arbitrary numbers
t, s ∈ [0, T ] such that |t − s| ≤ ε. Then, keeping in mind our assumptions, we
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get

|(Ux)(t) − (Ux)(s)|
≤ |p2(t) − p2(s)|

+

∣

∣

∣

∣

f2(t, x(t))

∫ ∞

0

u(t, τ, x(τ)) dτ − f2(s, x(s))

∫ ∞

0

u(t, τ, x(τ)) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

f2(s, x(s))

∫ ∞

0

u(t, τ, x(τ))dτ − f2(s, x(s))

∫ ∞

0

u(s, τ, x(τ)) dτ

∣

∣

∣

∣

≤ ωT (p2, ε) + [|f2(t, x(t))−f2(t, x(s))|

+ |f2(t, x(s))−f2(s, x(s))|]
∫ ∞

0

h(t, τ)H(|x(τ)|) dτ

+ [|f2(s, x(s))−f2(s, 0)| + |f2(s, 0)|]
∫ ∞

0

|u(t, τ, x(τ))−u(s, τ, x(τ))| dτ

≤ ωT (p2, ε)+[k2|x(t) − x(s)| + ωT
‖x‖(f2, ε)]H(‖x‖)

∫ ∞

0

h(t, τ) dτ

+ [k2|x(s)|+|f2(s, 0)|]
∫ ∞

0

|u(t, τ, x(τ))−u(s, τ, x(τ))| dτ ,

(27)

where we denoted

ωT
d (f2, ε) = sup{|f2(t, y) − f2(s, y)| : t, s ∈ [0, T ], y ∈ [−d, d], |t − s| ≤ ε} .

Obviously, in the above calculations we should put ‖x‖ instead of d.

Now, from estimate (27) we obtain

|(Ux)(t) − (Ux)(s)|
≤ ωT (p2, ε) + k2HH(‖x‖)ωT (x, ε) + HH(‖x‖)ωT

‖x‖(f2, ε)

+ (k2‖x‖ + F 2)

{
∫ T

0

|u(t, τ, x(τ)) − u(s, τ, x(τ))| dτ

+

∫ ∞

T

[|u(t, τ, x(τ))| + |u(s, τ, x(τ))|] dτ

}

≤ ωT (p2, ε) + k2HH(‖x‖)ωT (x, ε) + HH(‖x‖)ωT
‖x‖(f2, ε)

+ (k2‖x‖ + F 2)

{
∫ T

0

ωT
‖x‖(u, ε) dτ +

∫ ∞

T

(h(t, τ) + h(s, τ))H(‖x‖) dτ

}

,

where we denoted

ωT
d (u, ε) = sup{|u(t, τ, y) − u(s, τ, y)| : t, s, τ ∈ [0, T ], y ∈ [−d, d], |t − s| ≤ ε} .

Observe that ωT
‖x‖(f2, ε) → 0 and ωT

‖x‖(u, ε) → 0 as ε → 0, which is a simple

consequence of the uniform continuity of the function f2 on the set [0, T ] ×
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[−‖x‖, ‖x‖] and the function u on the set [0, T ]× [0, T ]× [−‖x‖, ‖x‖]. Further,
from the above estimate we derive

|(Ux)(t)−(Ux)(s)|≤ ωT (p2, ε) + k2HH(‖x‖)ωT (x, ε)

+HH(‖x‖)ωT
‖x‖(f2, ε) + (k2‖x‖ + F 2)TωT

‖x‖(u, ε)

+(k2‖x‖+F 2)2H(‖x‖) sup

{
∫ ∞

T

h(t, τ)dτ : t ∈ R+

}

.

(28)

Now, let us notice that in virtue of assumption (viii) we can choose a number T

so big that the last term of estimate (28) is sufficiently small. Hence, taking
into account the facts established above we deduce that the function Ux is
continuous on the interval [0, T ] for any T > 0 which is sufficiently big. This
allows us to conclude that Ux is continuous on R+.

In what follows we show that Ux is bounded on R+. Indeed, in view of
assumptions for arbitrarily fixed t ∈ R+ we have

|(Ux)(t)|≤ |p2(t)|+|f2(t, x(t))|
∫ ∞

0

|u(t, s, x(s))| ds

≤ |p2(t)|+[|f2(t, x(t))−f2(t, 0)|+|f2(t, 0)|]
∫ ∞

0

h(t, s)H(|x(s)|)ds

≤ |p2(t)|+k2HH(‖x‖)|x(t)| + HH(‖x‖)|f2(t, 0)| .

(29)

This yields the estimate

|(Ux)(t)| ≤ ‖p2‖ + k2H‖x‖H(‖x‖) + F HH(‖x‖) , (30)

which means that the function Ux is bounded on R+. Linking the obtained fact
with the continuity of the function Ux on R+ we conclude that the operator U

transforms the space BC(R+) into itself. Further, from (30) we obtain

‖Ux‖ ≤ p + kH‖x‖H(‖x‖) + F HH(‖x‖) . (31)

Now, let us observe that linking estimates (26), (31) and assumption (ix) we
infer that there exists a number r0 > 0 such that the operator W transforms the
ball Br0

info itself, where W is defined as the product of the operators V and U ,
i.e., (Wx)(t) = (V x)(t)(Ux)(t) for x ∈ BC(R+) and for t ∈ R+. Moreover, the
number r0 satisfies the second inequality from assumption (ix).

On the other hand, let us notice that from the above statement and from
estimates (26) and (31) we derive

‖V Br0
‖ ≤ p + kGr0G(r0) + F GG(r0) (32)

‖UBr0
‖ ≤ p + kHr0H(r0) + F HH(r0) . (33)
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In what follows we will work with the measure of noncompactness µa defined
in the Banach algebra BC(R+) by formula (3). So, let us fix a nonempty
subset X of the ball Br0

. Next, choose arbitrary numbers T > 0 and ε > 0.
Then, for x ∈ X and for t, s ∈ [0, T ] with |t − s| ≤ ε we obtain

|(V x)(t) − (V x)(s)|

≤ |p1(t) − p1(s)| + |f1(t, x(t)) −f1(s, x(s))|
∫ t

0

|v(t, τ, x(τ))| dτ

+ |f1(s, x(s))|
∫ t

0

|v(t, τ, x(τ)) − v(s, τ, x(τ))| dτ

≤ |p1(t) − p1(s)| +
[

|f1(t, x(t)) −f1(t, x(s))|

+ |f1(t, x(s)) −f1(s, x(s))|
]

∫ t

0

g(t, τ)G(|x(τ)|) dτ

+
[

|f1(s, x(s)) −f1(s, 0)| + |f1(s, 0)|
]

∫ t

0

|v(t, τ, x(τ)) − v(s, τ, x(τ))| dτ

≤ ωT (p1, ε) + [k1|x(t) − x(s)| + ωT
r0

(f1, ε)]G(r0)

∫ T

0

g(t, τ) dτ

+ (k1|x(s)| + F 1)

∫ T

0

ωT
r0

(v, ε) dτ

≤ ωT (p1, ε) +
[

k1ω
T (x, ε) + ωT

r0
(f1, ε)

]

G(r0)G + (k1r0 + F 1)TωT
r0

(v, ε) ,

(34)

where we denoted

ωT
d (f1, ε) = sup{|f1(t, y) − f1(s, y)| : t, s ∈ [0, T ], y ∈ [−d, d], |t − s| ≤ ε}
ωT

d (v, ε) = sup{|v(t, τ, y) − v(s, τ, y)| : t, s, τ ∈ [0, T ], y ∈ [−d, d], |t − s| ≤ ε} .

Observe that ωT
r0

(f1, ε) → 0 and ωT
r0

(v, ε) → 0 as ε → 0. This fact follows easily
from the uniform continuity of the function f1 on the set [0, T ] × [−r0, r0] and
the function v on the set [0, T ] × [0, T ] × [−r0, r0]. Thus, in view of (34) we
obtain ωT

0 (V X) ≤ Gk1G(r0)ω
T
0 (X), and consequently

ω∞
0 (V X) ≤ kGG(r0)ω

∞
0 (X) . (35)

Further, let us notice that in the similar way as above, from estimate (28)
we obtain

ωT
0 (UX) ≤ Hk2H(r0)ω

T
0 (X) + (k2r0 + F 2)2 sup

{
∫ ∞

T

h(t, τ) dτ : t ∈ R+

}

.

Hence, taking into account assumption (viii), we get

ω∞
0 (UX) ≤ kHH(r0)ω

∞
0 (X) . (36)
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In what follows let us fix T > 0. Then, for an arbitrarily fixed t ≥ T from
estimate (24) we obtain

sup{|(V x)(t)| : t ≥ T} ≤ sup{|p1(t)| : t ≥ T} + Gk1G(r0) sup{|x(t)| : t ≥ T}
+ GG(r0) sup{|f1(t, 0)| : t ≥ T} .

Hence, in view of assumptions (i) and (ii) we get

a(V X) ≤ kGG(r0)a(X) . (37)

In the same way, based on assumptions (i), (ii) and estimate (29) we obtain

a(UX) ≤ kHH(r0)a(X) . (38)

Finally, taking into account estimates (35)–(38) we obtain

µa(V X) ≤ kGG(r0)µa(X) (39)

µa(UX) ≤ kHH(r0)µa(X) , (40)

where µa is the measure of noncompactness defined by formula (3).

Now, let us observe that joining estimates (32), (33), (39), (40) and tak-
ing into account assumption (ix), in view of Theorems 2.4 and 2.5 we deduce
that the operator W = V U is a contraction with respect to the measure of
noncompactness µa, with the constant L expressed by the formula

L = pk(GG(r0) + HH(r0)) + 2kF G HG(r0)H(r0) + 2k2r0G HG(r0)H(r0) .

Obviously L < 1, in view of assumption (ix).

Further, consider the sequence of sets (Bn
r0

), where B1
r0

= ConvW (Br0
),

B2
r0

= ConvW (B1
r0

) and so on. Observe that all sets of this sequence are
nonempty, bounded, closed and convex. Moreover, Bn+1

r0
⊂ Bn

r0
⊂ Br0

for n =
1, 2, . . .. Thus, keeping in mind the above established facts we have µa(B

n
r0

) ≤
Lnµa(Br0

) . This implies that limn→∞ µa(B
n
r0

) = 0. Hence we deduce that the
set Y =

⋂∞
n=1 Bn

r0
is nonempty, bounded, closed and convex. Moreover, by

remark made after Definition 2.1 we infer that Y ∈ ker µa. Let us also notice
that the operator W maps the set Y into itself.

In the sequel we show that the operator W is continuous on the set Y . To
do this let us fix ε > 0 and take functions x, y ∈ Y such that ‖x − y‖ ≤ ε.
Keeping in mind the facts that Y ∈ ker µa and the structure of sets belonging
to ker µa (cf. Section 2) we can find a number T > 0 such that for each z ∈ Y

and t ≥ T we have that |z(t)| ≤ ε. Since W : Y → Y we have that Wx,
Wy ∈ Y . Thus, for t ≥ T we get

|(Wx)(t) − (Wy)(t)| ≤ |(Wx)(t)| + |(Wy)(t)| ≤ 2ε . (41)
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On the other hand, taking an arbitrary number t ∈ [0, T ] we obtain

|(Wx)(t) − (Wy)(t)|
≤ |(Ux)(t)‖(V x)(t) − (V y)(t)| + |(V y)(t)‖(Ux)(t) − (Uy)(t)|
≤ ‖UBr0

‖|(V x)(t) − (V y)(t)| + ‖V Br0
‖|(Ux)(t) − (Uy)(t)| .

(42)

Further, we get

|(V x)(t) − (V y)(t)| ≤ |f1(t, x(t)) − f1(t, y(t))|
∫ t

0

|v(t, s, x(s))| ds

+ |f1(t, y(t))|
∫ t

0

|v(t, s, x(s)) − v(t, s, y(s))| ds

≤ k1|x(t) − y(t)|
∫ t

0

g(t, s)G(|x(s)|) ds + [k1|y(t)|

+ |f1(t, 0)|]
∫ t

0

ωT
r0

(v, ε) ds

≤ kεGG(r0) + (kr0 + F )TωT
r0

(v, ε) ,

(43)

where we denoted

ωT
d (v, ε) = sup{|v(t, s, x) − v(t, s, y)| : t, s ∈ [0, T ] , x, y ∈ [−d, d], |x − y| ≤ ε} .

Obviously we have that ωT
r0

(v, ε) → 0 as ε → 0.

On the other hand, we obtain

|(Ux)(t) − (Uy)(t)|

≤ |f2(t, x(t)) − f2(t, y(t))|
∫ ∞

0

|u(t, s, x(s))| ds

+ |f2(t, y(t))|
∫ ∞

0

|u(t, s, x(s)) − u(t, s, y(s))| ds

≤ εk2

∫ ∞

0

h(t, s)H(|x(s)|) ds

+ (k2|y(t)| + |f2(t, 0)|)
∫ ∞

0

|u(t, s, x(s)) − u(t, s, y(s))| ds

≤ εk2HH(r0) + (k2r0 + F 2)

{
∫ T

0

|u(t, s, x(s)) − u(t, s, y(s))| ds

+

∫ ∞

T

[|u(t, s, x(s))| + |u(t, s, y(s))|] ds

}

≤ εkHH(r0) + (kr0 + F )

{
∫ T

0

ωT
r0

(u, ε) ds + 2

∫ ∞

T

h(t, s)H(r0) ds

}

≤ εkHH(r0) + (kr0 + F )

{

TωT
r0

(u, ε) + 2H(r0) sup
t∈R+

∫ ∞

T

h(t, s) ds

}

,

(44)
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where we denoted

ωT
d (u, ε) = sup{|u(t, s, x) − u(t, s, y)| : t, s ∈ [0, T ], x, y ∈ [−d, d], |x − y| ≤ ε} .

Observe that ωT
r0

(u, ε) → 0 as ε → 0. This is a simple consequence of the
uniform continuity of the function u(t, s, x) on the set [0, T ]× [0, T ]× [−r0, r0].
Moreover, we can choose T in such a way (cf. assumption (viii)) that the last
term in estimate (44) is sufficiently small.

Now, let us notice that taking into account (41), (42), (43) and (44) we
conclude that the operator W is continuous on the set Y .

Finally, linking all above obtained facts concerning the set Y and the op-
erator W : Y → Y and using the classical Schauder fixed point principle we
infer that the operator W has at least one fixed point x in the set Y . Obviously
the function x = x(t) solves the integral equation (22). Moreover, in view of
the fact that Y ∈ ker µa we infer that x(t) → 0 as t → ∞. This completes the
proof.

It is worthwhile mentioning that the result contained in Theorem 4.3 gen-
eralizes a lot of results concerning nonlinear integral equations of various types
(cf. [1, 3, 14,16,24,27]).

Remark 4.4. From the proof of the above theorem we deduce that x(t) → 0
as t → ∞ for any solution x = x(t) of equation (22) such that x ∈ Br0

.

Now we provide an example illustrating the above obtained result.

Example 4.5. Let us consider the integral equation of the form (22), where

(V x)(t) =
t

t2 + 4
+ (x(t) + e−t)

∫ t

0

s
√

|x(s)|
(t + 1)(s2 + 1)

ds

(Ux)(t) = te−2t +
1√
2π

arctg(t + x(t))

∫ ∞

0

e−s(t+1)x2(s)ds .

Observe that V is the quadratic Volterra integral operator appeared in equa-

tion (22), where p1(t) = t
t2+4

, f1(t, x) = e−t + x and v(t, s, x) =
s
√

|x|
(t+1)(s2+1)

. It

is easily seen that ‖p1‖ = 1
4

and f1(t, x) satisfies the Lipschitz condition with

the constant k1 = 1. Moreover, f1(t, 0) = e−t and F 1 = 1. Apart from this
notice that we may put g(t, s) = s

(t+1)(s2+1)
and G(r) =

√
r. Further, we obtain

∫ t

0
g(t, s) = 1

2
ln(t2+1)

t+1
. Hence, in view of the elementary inequality ln(t2 + 1) ≤ t

for t ≥ 0, we obtain that G ≤ 1
2
.

On the other hand we see that for the above defined operator U we have
p2(t) = te−2t and f2(t, x) = 1√

2π
arctg(t + x), u(t, s, x) = e−s(t+1)x2. It is easily

seen that ‖p2‖ = 1
2e

and the function f2(t, x) satisfies the Lipschitz condition
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with the constant k2 = 1√
2π

. Moreover, f2(t, 0) = 1√
2π

arctgt. Hence F 2 = 1
2

√

π
2
.

Further we obtain that the function u(t, s, x) satisfies assumptions (v) and (vii),
where h(t, s) = e−s(t+1), H(r) = r2. It can be calculated that

∫ ∞
0

h(t, s)ds = 1
t+1

.

This implies that assumption (viii) is satisfied with H = 1.

In what follows observe that p=max{‖p1‖, ‖p2‖}= 1
4
, k =max{k1, k2}=1,

F = max{F 1, F 2} = 1. Thus the inequality from assumption (ix) has the form
(

1
4

+ Gr
√

r + G
√

r
) (

1
4

+ r3 + r2
)

≤ r . It is easy to check that the number
r0 = 1

2
is a solution of the above inequality satisfying also the second inequality

imposed in assumption (ix).

Finally we conclude that there are satisfied the assumptions of Theorem 4.3.
This implies that the considered integral equation has a solution x = x(t)
belonging to the ball B 1

2

. Moreover, x(t) → 0 as t → ∞ for any solution

x = x(t) of that equation such that x ∈ B 1

2

(cf. Remark 4.4).
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Rakovschik, S. G. and Stetsenko, V. J., Integral Equations. Leyden: Nordhoff
1975.

Received December 3, 2007; revised June 9, 2008


