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Dynamic Adhesive Contact of a Membrane

R. S. R. Menike, K. L. Kuttler, and M. Shillor

Abstract. This work presents a dynamic model for adhesive contact between a
stretched viscoelastic membrane and a reactive obstacle that lies beneath it. The
adhesion is described by a bonding field, and the model allows for failure, that is
complete debonding in finite time. It is two-dimensional, but retains the essential
mathematical structure of the full three-dimensional model. It is set as a hyperbolic
equation for the vibrations of the membrane coupled with a nonlinear ordinary dif-
ferential equation for the evolution of the bonding field. Existence and uniqueness
of regular solutions are established in the case of positive viscosity, and in the case
of no viscosity, existence of weak solutions is obtained, while the uniqueness of the
solutions remains unresolved.
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1. Introduction

Adhesion processes are of considerable importance in industry since nonmetal-
lic parts and components cannot be joined by welding and so an adhesive is
often utilized, especially when bolting is impractical, or expensive. This is
especially important in laminates and in the joining of plastic components. Re-
cently, composite materials, made of layers of simple materials with different
fiber orientations, reached prominence since they are strong and light weight
and, therefore, of considerable usefulness in aviation, space exploration, and the
automotive industry, among many other industries.
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In recent mathematical publications (see, e.g., [1–3,5–7,9, 11,13,14,18,20–
23], and the monographs [12, 24, 27], and references therein) the adhesion pro-
cess has been modeled by introducing the bonding field, which measures the
surface fractional density of active bonds, as an additional internal variable. As
a result of the forces acting in the system its mechanical state evolves in time;
in particular, the bonds may break and reform, or permanently break. The
mathematical formulation of contact problems with adhesion is in the form of
a hyperbolic variational equality or inequality for the mechanical behavior of
the system coupled with an ODE for the bonding field. When the mechanical
process is slow, the quasistatic approximation may be employed and the equa-
tion of motion reduces to a parabolic-like equality (if viscosity is included) or
an elliptic variational equality or inequality (if viscosity is excluded).

The connection between models of quasistatic contact and elliptic varia-
tional inequalities is well understood and existence, uniqueness and regularity
results for their solutions can be found in such monographs as [15,24] and refer-
ences therein. By contrast, there are fewer results involving obstacle problems
and hyperbolic variational inequalities with adhesion. To obtain insight into the
behavior of such models we use in this work a simpler setting which consists of a
membrane and a deformable obstacle beneath it. As a result of the forces in the
system the bonding deteriorates and may reach complete failure. The new fea-
ture in the model studied here is the choice of the adhesion rate exponent which
allows for complete debonding of the membrane from the support, see [18] for
a related one-dimensional model of an adhesive rod. Mathematically, the rate
function is not Lipschitz which makes it necessary to study the ODE for the
bonding field more carefully. We use the normal compliance contact condition,
since we assume that the foundation is reactive.

In view of the simplicity and relative ease of computing numerical approxi-
mations of the model of an adhesive membrane or the one with an adhesive rod
([18]), they may be used as benchmarks for engineers to calibrate the system pa-
rameters needed if one wishes to numerically simulate the full three-dimensional
model.

Following this introduction, we present the classical formulation of the prob-
lem of adhesive contact between a viscoelastic membrane and a reactive founda-
tion in Section 2, Problem PNC . For the sake of completeness, we also present
the model when the foundation is rigid, which uses a modified Signorini-type
contact condition, Problem PS. The weak formulation of the problem, Problem
PNC , is provided in Section 3, where the assumptions on the problem data are
given, and the existence of the unique weak solution is stated in Theorem 3.1.
The proof of the theorem is done in Section 4, and is based on the study of
a truncated problem. Once the necessary a priori estimates are derived, the
solution follows. In Section 5 we use these estimates to pass to the limit of
vanishing viscosity, ν → 0, and obtain a week solution of the inviscid problem.
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The paper concludes in Section 6, where some unresolved issues are de-
scribed, too.

2. The model

We construct, following [2], a model for the dynamic process of adhesive contact
between a membrane and an obstacle or foundation. We refer the reader there
for additional modeling details, as well as the literature cited above. The mem-
brane is attached to a rigid rim, and is in adhesive contact with a reactive or
deformable obstacle. For the sake of generality, we assume that the membrane
is viscoelastic, with viscosity coefficient ν, very small in practice.

Let Ω denote the projection of the membrane on the xy plane, let z = φ(x, y)
represent the location of the obstacle, and let ΩT = Ω× (0, T ). The membrane
is being acted upon by a vertical force or load f . Adhesion is assumed to take
place over all of Ω. The case where the adhesive is spread only over a part of Ω
is also described shortly below, as it is a straightforward modification of the
model. The setting is depicted in Figure 1.
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Fig. 1. The membrane and the obstacle

Let u = u(x, y, t) represent the vertical displacement of the membrane,
denote by ξ = ξ(x, y, t) the reaction force of the obstacle, and let η = η(x, y, t)
represent the tensile adhesive force, which is described shortly. The problem is
rescaled so that the membrane surface density ρ and its elastic constant k equal
one. The evolution of the state of the membrane is governed by the equation
of motion

u′′ − ∆u− ν∆u′ = f + ξ + η, in ΩT .

Here and below, a prime denotes differentiation with respect to time.
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We describe the reaction force ξ of the deformable obstacle with the normal
compliance condition, which allows for the interpenetration of the obstacle,
u < φ, but penalizes it,

ξ = cN(φ− u)+,

where cN is the normal compliance coefficient, very large when the obstacle is
relatively rigid; (r)+ = max{r, 0} is the positive part of r; and the reaction
force is active, ξ > 0, only when u < φ. Actually, we may choose a much more
general condition, see, e.g., [24], however, for the sake of simplicity we use this
one.

The adhesion process in this work is assumed to be either irreversible, i.e.,
severed bonds do not regenerate, or reversible, so that severed bonds do re-
generate. The rebonding process can be found in many systems, such as those
with velcro, where cycles of debonding and rebonding may go for long time
periods (e.g., [14]). Irreversible adhesion processes were studied in [2, 13, 21],
and references therein.

Let β = β(x, y, t) denote the bonding field, which measures the pointwise
fractional density of active bonds between the membrane and the obstacle.
When β = 1 the bonding at the point is complete; when β = 0 there is no
bonding and all the bonds are broken. Partial bonding is represented by 0 <
β < 1. Thus, the bonding field has to satisfy

0 ≤ β ≤ 1 in ΩT .

The adhesive restoring force η = η(x, y, t) is directed downward, trying
to prevent the separation of the membrane from the obstacle, and is assumed
proportional to the distance from the obstacle and to β1+α (cf. [13]); thus,

η = −κ(u− φ)+β
1+α in ΩT ,

where κ is the bonding coefficient or the adhesive stiffness and κβ1+α is the
system’s ‘spring constant’. We use (u−φ)+ since when there is interpenetration,
the adhesive is assumed to be inert, not providing any opposing traction, i.e.,
η = 0.

The evolution of the bonding field is governed by the ordinary differential
equation

β′ = Had(u− φ, β), in ΩT .

Unlike the cases in [2, 18], here the adhesive rate function Had = Had(·, ·) is
rather general. In particular, no assumption is made about its sign and so
cycles of debonding and rebonding may occur. Moreover, it is a generalization
of the irreversible condition

β′ = −γβα
+(u− φ)2

+.
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We note that, as was explained in [20], complete failure or debonding can take
place only when 0 ≤ α < 1, since if 1 ≤ α there is no complete debonding in
finite time (as can be seen for β′ = −γβα

+).
Therefore, we assume that Had satisfies the condition

|Had(a2, b2) −Had(a1, b1)| ≤ LH(|a2 − a1| + |bα2 − bα1 |),

for some constant LH . Here, 0 ≤ α, however, the interesting case is 0 ≤ α < 1,
and thenHad is only Hölder continuous (with exponent α) in the second variable,
and Lipschitz continuous in the first one.

Initially β(x, y, 0) = β0(x, y), where β0 is a given adhesive intensity distri-
bution.

To complete the model we assume that u(x, y, t) = g(x, y, t) on Γ, for 0 ≤
t ≤ T . However, for technical reasons it is convenient to formulate the problem
so that the boundary condition on Γ is homogeneous. To that end assume
that g(x, y, t) is the restriction to Γ of a function in g̃ ∈ H2(Ω × [0, T ]), which
we also denote by g, and g ≥ φ in Ω. Now, we introduce the new variable
ũ = u − g, and then ũ(0) = u0 − g(0) and ũ′(0) = v0 − g′(0), where u0 is the
prescribed initial displacement and v0 is the prescribed initial velocity. Finally,
let f̃ = f + ∆g + ν∆g′ − g′′ and φ̃ = φ− g, and below we omit the tildes.

Collecting the equations and conditions above, the classical formulation of
the problem of dynamic adhesive contact between a viscoelastic membrane and
a reactive obstacle is:

Problem PNC. Find a pair of functions {u, β} such that

u′′ − ∆u− ν∆u′ + κ(u− φ)+β
1+α − cN(u− φ)− = f in ΩT (1)

u = 0 on Γ × (0, T ) (2)

u(0) = u0, u′(0) = v0 in Ω (3)

β′ −Had(u− φ, β) = 0 in ΩT (4)

β(0) = β0 in Ω. (5)

The variational formulation of the problem is given in the next section.

We note that it is straightforward to modify the model to the case where
the adhesive is spread only an open subset Ωad ⊂ Ω, assumed to have a regular
boundary. Indeed, in this case equation (4) holds on Ωad× [0, T ], instead of ΩT ,
condition (5) holds on Ωad, and if we denote by χ(Ωad) the indicator function
of Ωad, then we have to replace the adhesive force term κ(u − φ)+β

1+α in (1)
with κ(u−φ)+β

1+αχ(Ωad). All the results below hold true in this case provided
Ωad is open in Ω.

For the sake of completeness, we also describe a completely rigid obstacle.
Then, the membrane is restricted to lie above it, so u ≥ φ and the obstacle’s
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reaction force ξ is directed upward and exactly cancels the applied force. When
in contact u = φ implies ξ ≥ 0; when there is no contact the reaction force
vanishes, thus, u > φ implies ξ = 0. We combine these statements into the
following linear complementarity condition:

φ ≤ u, 0 ≤ ξ, ξ(u− φ) = 0.

The last condition prevents both inequalities from being simultaneously strict
since when contact takes place φ = u and in the absence of contact ξ = 0.

To describe the obstacle’s reaction force ξ using the language of differential
inclusions, we introduce the indicator function χ(−∞,0] of the interval (−∞, 0],
so that χ(−∞,0](r) = 0 when r ≤ 0 and χ(−∞,0](r) = ∞ when r > 0. Its
subdifferential is

∂χ(−∞,0](r) =





0 r < 0

[0,∞) r = 0

∅ r > 0 .

Then we may rewrite the condition in the concise form ξ ∈ ∂χ(−∞,0](φ−u), and
ξ represents the obstacle’s physical reaction that prevents u < φ.

The classical formulation of the problem of dynamic adhesive contact be-
tween a viscoelastic membrane and a rigid obstacle is:

Problem PS. Find a pair of functions {u, β} such that

u′′ − ∆u− ν∆u′ − f + κ(u− φ)β1+α ∈ ∂χ(−∞,0](φ− u) in ΩT

u ≥ φ, in ΩT

u = 0 on Γ × (0, T )

u(0) = u0, u′(0) = v0 in Ω

β′ −Had(u− φ, β) = 0 in ΩT

β(0) = β0 in Ω.

Formally, Problem PS is obtained from Problem PNC in the limit cN → ∞,
and we plan to study it in the future.

3. Weak formulation

We obtain the variational formulation of the problem, describe the assumption
on the problem data, and state the existence result for Problem PNC .

We assume that the boundary of the domain Ω is C1,1 and hence the
embedding H1

0 (Ω) → L2(Ω) is compact and, also, the usual elliptic regular-
ity theorems are available. We use the notation W = H1

0 (Ω), H = L2(Ω),
W = L2(0, T ;W ),H = L2(0, T ;H) = L2(ΩT ). For the sake of convenience, we
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choose the norm in W to be ‖u‖W ≡
∫
Ω
|∇u|2 . Here and below, we use the

Lebesgue measure on Ω. The inner product on W is denoted by (u, v)W , and
the duality pairing between W and its dual W ′ = H−1(Ω) is denoted by 〈·, ·〉W ,
however, below we omit the subscript W , as it is clear from the context.

We also need the set of admissible adhesion functions

Kad = {w ∈ H : 0 ≤ w ≤ 1 a. e. in Ω},

which is a closed and convex set in H.

A straightforward derivation leads to the following variational formulation
of Problem PNC , (1)–(5).

Problem PNCV . Find a pair {u, β} such that

u, u′ ∈ W, u′′ ∈ W ′ (6)

β, β′ ∈ H, β(t) ∈ Kad, (7)

and, for a.a. t ∈ (0, T ) and for each w ∈ W ,

〈u′′(t), w〉 +

∫

Ω

∇u(t) · ∇w + ν

∫

Ω

∇u′(t) · ∇w

+κ

∫

Ω

(u(t) − φ)+β
1+αw − cN

∫

Ω

(u(t) − φ)−w =

∫

Ω

f(t)w

(8)

u(0) = u0, u′(0) = v0 (9)

β′(t) = Had(u(t) − φ, β(t)) (10)

β(0) = β0. (11)

Next, we list the assumptions on the problem data:

f ∈ H (12)

φ ∈ H, φ ≤ 0 on ∂Ω (13)

u0 ∈W, u0 ≥ φ a.e. Ω, v0 ∈ H (14)

β0 ∈ Kad. (15)

For the sake of simplicity, cN and κ are chosen as positive constants. Note that
in the original variables, we must assume g ∈ L2(0, T ;H2(Ω)) ∩H2(0, T ;H).

The adhesion rate function Had : R × [0, 1] → R satisfies the following
conditions: There is a constant LH so that, for all (a, b) ∈ R × [0, 1],

|Had(a2, b2) −Had(a1, b1)| ≤ LH(|a2 − a1| + |bα2 − bα1 |) (16)

Had(·, b) ≥ 0 for b ≤ 0, Had (·, b) ≤ 0 for b ≥ 1. (17)
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There exists a positive constant cH such that

(Had(a, b1) −Had(a, b2)) (b1 − b2) ≤ cH (b1 − b2)
2 , (18)

i.e., −Had is monotone. Finally, for all b ∈ [0, 1],

Had(0, b) = 0. (19)

These assumptions on Had guarantee that if β (0) ∈ [0, 1], the differential
equation will cause β to remain in [0, 1]. Moreover, the debonding rate function
Had(u − φ, β) = −γβα

+(u − φ)2
+ locally satisfies them and to use it one must

truncate the factor (u− φ)2
+.

The following is the main result in this work.

Theorem 3.1. Under the assumptions (12)– (19), there exists a unique solution
{u, β} of (6)– (11), and

u ∈ L∞(0, T ;W ) ∩ C(0, T ;H), u′ ∈ L∞(0, T ;W ), u′′ ∈ L∞(0, T ;H) (20)

β, β′ ∈ H, β(t) ∈ Kad for 0 ≤ t ≤ T. (21)

We conclude that Problem PNC has a unique weak solution. The proof,
based on truncation, follows.

We note, as is shown below, that when the data is assumed sufficiently regu-
lar, then the solutions have higher regularity. In fact, we first consider this case
and obtain classical solutions, i.e., solutions which have classical derivatives.
Then, we obtain the weak solutions described above as limits of the regular
solutions.

4. Proof of Theorem 3.1

We use of the following fundamental theorem of Simon ( [26]) that is an infinite
dimensional version of the Arzela–Ascoli theorem.

Theorem 4.1. Let W ⊆ U ⊆ Y be three Banach spaces such that the inclusion
map of W into U is compact and the inclusion map of U into Y is continuous
and let

S =
{
z : ‖z(t)‖W + ‖z′‖Lq(0,T ;Y ) ≤ R for t ∈ [0, T ]

}

for q > 1. Then S is precompact in C([0, T ];U).

Next, for 0 < R, we introduce the truncation operator

ΦR(r) =





R, r > R

r, 0 ≤ r ≤ R

0, r ≤ 0.

We denote ΦR(·) = Φ(·) when R = 1.
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The truncated problem is as follows, and we let v = u′.

Problem PΦ. Find a pair {v, β} ∈ W × C1(0, T ;H) such that

v′ − ∆u− ν∆v + κ(u− φ)+Φ1+α(β) − cN(u− φ)− = f in ΩT (22)

u(t) = u0 +

∫ t

0

v (s) ds, v(0) = v0 in Ω (23)

β′ −Had(u− φ, β) = 0 in ΩT (24)

β(0) = β0 in Ω. (25)

We make a stronger assumption on the initial data:

u0 ∈ H2 (Ω) ∩H1
0 (Ω) , v0 ∈ H1

0 (Ω) = W.

We begin the proof by establishing the solution to (22) and (23) for a given
fixed β.

It is convenient to rewrite the problem in an abstract form, and to that end
introduce the operators J, S(β) : H −→ H, defined by

〈Jw, z〉 = −

∫ T

0

∫

Ω

(w − φ)−z dt

〈S(β)w, z〉 = κ

∫ T

0

∫

Ω

Φ1+α(β)(w − φ)+z dt .

In terms of these operators, problem (22)–(25) may be written as:

Find a pair {u, v} such that v′ ∈ H, ∆u,∆v ∈ H, u(t), v(t) ∈ H2 (Ω) ∩W for
a.a t ∈ [0, T ), and

v′ − ∆u− ν∆v + S(β)u+ cNJu = f in H (26)

v(0) = v0 (27)

u(t) = u0 +

∫ t

0

v(s) ds. (28)

To solve problem (26)–(28) we assume that only v is unknown. Thus, let
v1 be fixed in L2 (0, T ;H2 (Ω) ∩W ), set u1(t) = u0 +

∫ t

0
v1(s) ds, and let w be

the unique solution of the problem

w′(t) − ν∆w(t) = f + △u0 +

∫ t

0

∆v1ds− S (β)u1(t) − cNJu1(t), (29)

for a.a. t ∈ (0, T ), and w (0) = v0. It is a parabolic problem and it follows
from a well known result of Brezis [4] (see also [25]) that the unique solution w
satisfies w′ ∈ H and ∆w ∈ H because the right-hand side is in H.
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Next, let wi, for i = 1, 2, denote the solutions that correspond to vi ∈
L2(0, T ;H2(Ω) ∩ W ), and let Ri = Ri(vi) denote the right-hand side of (29)
corresponding to vi. Then, we subtract (29) for w2 from (29) for w1, multiply the
result by −(∆w1(s)−∆w2(s)) and integrate, and straightforward computations
yield

‖w1 (t) − w2 (t) ‖2
W + ν

∫ t

0

|∆w1 (s) − ∆w2 (s)|2H ds

=

∫ t

0

(
(R1 −R2), (−∆w1(s) − (−∆)w2(s))

)
ds.

We proceed to estimate the right-hand side. First, the term with ∆vi is domi-
nated by

∣∣∣∣
∫ t

0

∫ s

0

(∆v1 (r) − ∆v2 (r) ,∆w1 (s) − ∆w2 (s)) dr ds

∣∣∣∣

≤

∫ t

0

∫ s

0

|∆v1 (r) − ∆v2 (r)|H |∆w1 (s) − ∆w2 (s)|H dr ds

≤ Cν

∫ t

0

∫ s

0

|∆v1 (r) − ∆v2 (r)|2H dr ds+
ν

8

∫ t

0

|∆w1 (s) − ∆w2 (s)|2H ds.

Next, consider the term with S(β). It is dominated by an expression of the
form

∫ t

0

∣∣∣∣
((∫ s

0

v1(r) − v2 (r) dr

)
, ∆w1 (s) − ∆w2 (s)

)

H

∣∣∣∣ ds

≤ Cν

∫ t

0

∫ s

0

|v1 (r) − v2 (r)|2H dr ds+
ν

8

∫ t

0

|∆w1 (s) − ∆w2 (s)|2H ds.

Similar considerations apply to the remaining term on the right (with cNJ),
yielding a similar estimate.

Then, using the equivalence of the norm in H2(Ω)∩H1
0 (Ω) with |∆u|H , we

obtain the following inequality:

‖w1 (t) − w2 (t) ‖2
W +

ν

2

∫ t

0

‖w1 (s) − w2 (s) ‖2
H2(Ω)ds

≤ Cν

∫ t

0

∫ s

0

‖v1 (r) − v2 (r) ‖2
H2(Ω)dr ds,

(30)

where Cν depends on the problem data but not on v1, v2 or β.

Now, we define the mapping

Θ : L2
(
0, T ;H2 (Ω) ∩W )

)
→ L2

(
0, T ;H2 (Ω) ∩W

)
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by Θ(v1) = w, where v1 ∈ L2 (0, T ;H2 (Ω) ∩W )) and w is the solution of (29)
with w(0) = v0. Estimate (30) shows that a sufficiently high power of Θ is a
contraction map on L2 (0, T ;H2 (Ω) ∩W ) , and so Θ has a unique fixed point
which is the solution of the problem with given β. This has proved the following
lemma.

Lemma 4.2. For each β ∈ H, there exists a unique solution (u, v) of (26)–(28)
which satisfies v′ ∈ H, u, v ∈ H2 (Ω)∩W pointwise for a.a. t, and ∆u,∆v ∈ H.

Next, we consider the equation for β. The following useful lemma follows
from the separability of W = H1

0 (0, T ).

Lemma 4.3. Let u, u′ ∈ H. If (x, y, t) → u (x, y, t) is a measurable represen-
tative, then the mapping t → u(x, y, t) is continuous, on the complement of an
exceptional set of zero measure in Ω.

Everywhere below, we use such a measurable representative of u, whenever
appropriate.

Lemma 4.4. Let u, u′ ∈ H. Then, for a.e. x = (x, y) ∈ Ω, there exists a
unique solution β to the initial value problem

β′ (x, t) = Had(u (x, t) − φ(x), β (x, t))

β (x, 0) = β0(x).
(31)

This solution satisfies t→ β (·, t) lies in C ([0, T ] ;H).
If u1 and u2 satisfy the above conditions, and βi corresponds to ui, for

i = 1, 2, then on the complement of the union of the two exceptional sets,

(β1(x, t) − β2(x, t))
2 ≤ CT

∫ t

0

|u1(x, s) − u2(x, s)|
2 ds,

where CT is a constant which is independent of βi and ui, for i = 1, 2. Further-
more,

|β1 (t) − β2 (t)|2H ≤ CT

∫ t

0

|u1 (s) − u2 (s)|2H ds, (32)

and for u as above, β : (0, T ) → H is the solution of the ordinary differential
equation with values in H,

β′ = Had (u− φ, β) , β (0) = β0.

Proof. The estimates follow from the anti-monotonicity assumption (18), which
justifies the following manipulations, where βi are solutions of (31) correspond-
ing to ui, for i = 1, 2, for x not in the two exceptional sets associated with
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either u1 or u2. Thus,

1

2

(
β1(x, t) − β2(x, t)

)2

+

∫ t

0

(
Had(u1(x, s) − φ(x), β1(s,x)) −Had(u2(x, s) − φ (x) , β2(x, s))

)

×
(
β1(x, s) − β2(s,x)

)
ds

≤ C

∫ t

0

(β1(x, s) − β2(x, s))
2 ds

+

∫ t

0

∣∣Had(u1(x, s) − φ(x), β2(s,x)) −Had(u2(x, s) − φ(x), β2(x, s)
∣∣

×
(
β1(x, s) − β2(s,x)

)
ds

≤ C

∫ t

0

(
β1(x, s) − β2(x, s)

)2
ds

+ LH

∫ t

0

|u1(x, s) − u2(x, s)| |β1(x, s) − β2(x, s)| ds

≤ C

∫ t

0

(
β1(x, s) − β2(x, s)

)2
ds+ LH

∫ t

0

|u1(x, s) − u2(x, s)|
2 ds,

and so by the Gronwall inequality

(β1(x, t) − β2(x, t))
2 ≤ CT

∫ t

0

|u1(x, s) − u2(x, s)|
2 ds. (33)

This also shows the uniqueness of the solution to (31).

The existence of a solution of (31), for a.e. x, follows from the usual proof
of the Peano existence theorem (see, e.g., [8]) along with the continuity of Had

for x outside of the exceptional set of u. Thus, for a.e. x,

β (x, t) = β0 (x) +

∫ t

0

Had(u (x, s) − φ(x), β (x, s))ds.

The proof of the existence of β is based on retarding the second argument
of Had and passing to the limit as the retardation parameter h vanishes. This is
accomplished by using the Arzela–Ascoli theorem to get compactness of the βh.
The retardation operator is given by τhβ (t) ≡ β (t− h) if t ≥ h, and τhβ (t) ≡
β0 for t < h, where h is small. We let βh denote the solution of the retarded
problem

βh (x, t) = β0 (x) +

∫ t

0

Had(u (x, s) − φ(x), τhβh (x, s))ds.

Then, β is the uniform limit βh → β as h → 0. The difficulty is that the
subsequence might depend on x.
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However, since the solution of (31) is unique, we can choose a sequence,
(say hn = 1

n
), and obtain β as a uniform limit of βhn

= βn for all x outside of
the set of measure zero mentioned earlier. Thus, β(x, t) is the uniform limit
in C ([0, T ]) of the functions βn and x → βn (x, t) is measurable for each n.
Hence, β (x, t) = limn→∞ βn (x, t) , uniformly for t ∈ [0, T ], and therefore, the
limit function x → β (x, t) is also measurable. It follows from the properties
of Had that 0 ≤ β ≤ 1. Hence, for each t we have β (·, t) ∈ H. Also, β is
continuous with values in H since

β′ (t) = (Had(u (·, t) − φ(·), β (t))

and t→ Had(u (·, t)−φ(·), β (t)) is in H so this shows β ∈ C ([0, T ] ;H), actually,
β ∈ H1 (0, T ;H) .

Since x → β (x, t) is measurable, integrating both sides of (33) over Ω yields

|β1 (t) − β2 (t)|2H ≤ CT

∫ t

0

|u1 (s) − u2 (s)|2H ds.

This completes the proof of the lemma.

Recalling that for a fixed β there exists a unique solution of (26)–(28), we
now consider in more detail the term cNJ (u). We define the function Ψ (z, φ)
by

Ψ (z, φ) =
1

2

∫

Ω

(z − φ)2
−
.

We let the term act on vχ(0,t) = u′χ(0,t), where χ(0,t) is the characteristic function
of the interval (0, t), and obtain

〈cNJu, v〉 =
1

2
cNΨ (u(t), φ) −

1

2
cNΨ (u0, φ) =

1

2
cNΨ (u (t) , φ) ,

since u0(x, y) ≥ φ(x, y), and so Ψ(u0, φ) = 0.

Multiplying (26) by v and integrating from 0 to t yields

1

2
|v (t)|2H +

1

2
‖u (t) ‖2

W + ν

∫ t

0

‖v‖2
Wds+

1

2
cNΨ (u (t) , φ)

≤
1

2
‖u0‖

2
W +

1

2
|v0|

2
H +

∫ t

0

|u− φ|H |v|H ds+
1

2

∫ t

0

|v|2H ds+
1

2

∫ t

0

|f |2H ds.

Using the Gronwall inequality and the definition of u leads to the estimate

|v (t)|2H + ‖u (t) ‖2
W + 2ν

∫ t

0

‖v‖2
Wds+ cNΨ (u (t) , φ) ≤ C. (34)

Here, the constant C = C(f, u0, v0) is independent of cN , β or ν.
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Next, we use another fixed point argument to establish the existence of
the unique solution of Problem PNCV . To that end we construct the mapping
Λ : H → H as follows. Given v ∈ H, we denote by u the function given in (28),
and so u, u′ ∈ H. Now, let βv denote the solution to the initial value problem
(31) with these v and u. Then Λ (v) = wβv

denotes the solution of to (26)–(28)
with βv.

The following lemma is the main remaining step.

Lemma 4.5. The operator Λ : H → H has a unique fixed point.

Proof. Let vi be two solutions of (26)–(28) corresponding to βi, for i = 1, 2.
Then,

1

2
|v1 (t) − v2 (t)|2H +

1

2
‖u1 (t) − u2 (t) ‖2

W + ν

∫ t

0

‖v1 − v2‖
2
W ds

≤

∫ t

0

|〈S (β1)u1 − S (β2)u1, v1 − v2〉| ds+

∫ t

0

|〈S (β2) (u1 − u2) , (v1 − v2)〉| ds

+ cN

∫ t

0

|u1 − u2|H |v1 − v2|H ds.

Since estimate (34) for ‖u (t) ‖W is independent of β, there exists a constant C,
also independent of β, such that

1

2
|v1 (t) − v2 (t)|2H +

1

2
‖u1 (t) − u2 (t) ‖2

W + ν

∫ t

0

‖v1 − v2‖
2
W ds

≤ C

∫ t

0

|β1 − β2|H |v1 − v2|H ds+ (1 + cN)

∫ t

0

|u1 − u2|H |v1 − v2|H ds.

Using routine manipulations, the Cauchy inequality with ε, and the Gronwall
inequality lead to

|v1 (t)−v2 (t)|2H + ‖u1 (t)−u2 (t) ‖2
W +

∫ t

0

‖v1−v2‖
2
Wds ≤ C(ε, T )

∫ t

0

|β1−β2|
2
H ds.

This estimate and (32) yield

|Λ (v1) (t) − Λ (v2) (t)|2H +

∫ t

0

‖Λ (v1) − Λ (v2) ‖
2
Wds

≤ C(ε, T )

∫ t

0

|βv1
(s) − βv2

(s)|2H ds

≤ C(ε, T )

∫ t

0

∫ s

0

|u1 (r) − u2 (r)|2H dr ds

≤ C(ε, T )

∫ t

0

∫ s

0

∫ r

0

|v1 (τ) − v2 (τ)|2H dτdr ds.
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Therefore, by iterating this inequality, we obtain that the mapping Λn is a
contraction, for a sufficiently high n, and so it has a unique fixed point in H.
This fixed point is also the fixed point of Λ.

This proves the following theorem on the existence of the unique solution
of PΦ.

Theorem 4.6. Let u0 ∈ H2 (Ω)∩H1
0 (Ω) and v0 ∈ H1

0 (Ω) . Then there exists a
unique solution (v, β) to (22))–(25)).

Proof. The result follows from the observation that in the definition of Φ the
truncation is inactive when R > 1, and this is the case due to the properties of
Had and the assumption β0 ∈ Kad.

To complete the proof of Theorem 3.1 we need to generalize the result to
the weaker initial conditions, namely u0 ∈ W and v0 ∈ H. To that end, we first
write this problem in an abstract form. Define the operator A : W → W ′ by

〈Au, v〉 ≡

∫

Ω

∇u · ∇v.

Then, Problem PNCV is: Find v ∈ W and β ∈ C1([0, T ] : H), such that v′ ∈ W ′,
and the following abstract evolution equation is satisfied:

v′ + Au+ νAv + S (β)u+ cNJu = f in W ′ (35)

β′ −Had (u− φ, β) = 0 in H (36)

v (0) = v0, β (0) = β0, (37)

where u (t) ≡ u0 +
∫ t

0
v (s) ds.

Since H = H′⊆ W ′, the solution (v, β) to Problem PNCV is also a solution
to (35)–(37). Let {v0n} be a sequence in W which converges to v0 in H and
let {u0n} be a sequence in H2 (Ω) ∩W which converges to u0 in W . Denote
by (vn, βn) the solutions to (35)–(37) corresponding to these more regular ini-
tial data, which exists by Theorem 4.6. Estimate (34) implies that there is a
constant C, independent of n, such that

|vn (t)|2H + ‖un (t) ‖2
W + ν

∫ t

0

‖vn‖
2
Wds+ cNΨ (un (t) , φ) ≤ C.

To obtain a bound on v′ we apply (35) to ψ ∈ W and get

|〈v′n, ψ〉| ≤

∫ T

0

‖∇un(t)‖H‖∇ψ(t)‖H dt+ ν

∫ T

0

‖∇vn(t)‖H‖∇ψ(t)‖H dt

+ κ

∫ T

0

‖un(t) − φ‖H‖ψ(t)‖H dt+ cN

∫ T

0

‖un(t) − φ‖H‖ψ(t)‖H dt

+

∫ T

0

‖f(t)‖H‖ψ(t)‖H dt,
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and hence

|〈v′n, ψ〉| ≤

∫ T

0

(c0 + c1‖un(t)‖W + c2‖vn(t)‖W ) ‖ψ(t)‖W dt.

Here, c0, c1 and c2 depend on the problem data but are independent of n. Also,
c0, c1 depend on cN . Using the Hölder inequality and dividing both sides by
‖ψ(t)‖W , we find that there is a constant C, independent of n, such that
‖v′n‖W ′ ≤ C. Therefore, using Theorem 22, there is a subsequence, still indexed
by n, such that the following convergences hold as n→ ∞:

vn → v weak ∗ in L∞ (0, T ;H) (38)

v′n → v′ weakly in W ′ (39)

vn → v weakly in W (40)

un → u weak ∗ in L∞ (0, T ;W ) (41)

un → u strongly in C ([0, T ] ;Hr (Ω)) , (42)

where r ∈ (1
2
, 1) so that Hr(Ω) embeds compactly into H. From (32) we have

that
βn → β strongly in C ([0, T ] ;H) . (43)

This, along with (42), implies there exists a further subsequence such that for
each t,

un (x, y, t) → u (x, y, t) , βn (x, y, t) → β (x, y, t) a.e. in Ω. (44)

Also, from the differential equation satisfied by βn and the properties of Had,
the sequence β′

n is bounded in H and so there exists a subsequence such that,
in addition,

β′

n → β′ weakly in H. (45)

We have βn (t) = β0 +
∫ t

0
Had (un (s) − φ, βn) ds, and it follows now from (42)–

(44), that it is possible to pass to the limit and obtain

β (t) = β0 +

∫ t

0

Had (u (s) − φ, β) ds.

This follows from the properties of Had, along with the observation that each
βn has values in [0, 1].

Next, we pass to the limit in (35). First, we note that from the above
convergences and standard results, since v ∈ C([0, T ];H), v0 = limn→∞ vn (0) =
v (0) , so the initial condition holds. Taking another subsequence if necessary,
the terms Aun and Avn converge to Au and Av, respectively, since A is linear.
The strong convergences above and the fact that βn has values in [0, 1] also
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imply that cNJun converges to cNJu, and S (βn)un converges to S (β)u. We
conclude that the limit (u, v, β) is a solution of Problem PNCV .

The uniqueness of the solution follows in the same manner as above, since
the regularity of the initial data was not used. This completes the proof of
Theorem 3.1.

5. The limit problem without viscosity

Although most materials exhibit a degree of viscosity, some do not, especially
brittle materials. Also, on mathematical grounds, it is of interest to study the
problem without viscosity, that is Problem PNC in which ν = 0. We do it by
passing to the limit ν → 0. For mathematical convenience, we use the notation
ν = ε in this section.

We assume that the initial data satisfies the conditions of Theorem 3.1.
Thus, for each ε > 0 there exists a unique solution (vε, uε, βε) to the problem

v′ + Au+ εAv + S (β)u+ cNJu = f in W ′ (46)

u (t) = u0 +

∫ t

0

v (s) ds, v (0) = v0

β′ = Had (u− φ, β) , β (0) = β0.

It follows from (34) that the term ε 〈Avε, vε〉 is bounded independently of ε,
and so

εAvε → 0 strongly in W ′.

Also, it follows from estimate (34) and Theorem 4.1 that there is a sequence
ε → 0 such that (38)–(42) hold with the subscript n replaced by ε. It follows
from (32) that {βε} is a Cauchy sequence in C ([0, T ] ;H), thus,

βε → β strongly in C ([0, T ] ;H) .

Taking a further subsequence, if necessary, we can also assume (by using mea-
surable representatives) that for all t ∈ [0, T ],

uε(x, t) → u(x, t), βε(x, t) → β(x, t) pointwise a.e. x ∈ Ω.

Now, let Q be the union of all the exceptional sets of measure zero for each ε
in the sequence. Then, for each x /∈ Q, we can pass to the limit in

βε(x, t) = β0(x) +

∫ t

0

Had (uε(x, s) − φ(x), βε(x, s)) ds,
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using the Lebesgue dominated convergence theorem and obtain the limit ex-
pression above but without the ε. These convergences also make it possible to
pass to the limit in (46), thus, the limit (v, β) satisfies

v′ + Au+ S (β)u+ cNJu = f in W ′, (47)

and, for 0 ≤ t ≤ T ,

u (t) = u0 +

∫ t

0

v (s) ds, v (0) = v0, (48)

dβ

dt
= Had (u− φ, β) , β (0) = β0. (49)

The solution to the abstract system (47)–(49) is also the solution to Problem
PNCV with ν = 0. This proves the following theorem.

Theorem 5.1. Let the assumptions of Theorem 3.1 hold. Then, there exists a
solution to Problem PNCV , (6)– (11), with ν = 0.

We conclude that problem PNC , (1)–(5), without the viscosity term has a
weak solution. The uniqueness of the solution is unresolved, yet.

6. Conclusions

A model for the dynamics of a viscoelastic membrane in adhesive contact with
a foundation or obstacle has been derived, and the existence of the unique weak
solution was established for the problem with viscosity.

The novelty in this work is two-fold. The adhesion rate function Had is
assumed to be only Hölder continuous in β, so that the exponent α may
be smaller than one. From the modeling point of view, this allows for com-
plete debonding, i.e., failure, in finite time. Mathematically, since Had is not
Lipschitz, we needed to establish the existence in a non-routine way (Lemma 25),
the difficulty being the measurability in the spacial variables, which was ob-
tained from the uniqueness of the solutions and the usual proof of the Peano
theorem.

The existence of a weak solution when the viscosity vanishes was obtained
as the limit ν → 0.

The uniqueness of the solution of the problem without viscosity remains
unresolved.

The case of a completely rigid obstacle, i.e., in the limit cN → ∞ remains
open. The difficulty is in obtaining any estimate on the acceleration v′ which is
independent of cN , without which one cannot pass to the limit in the equation.

Finally, since the model allows for failure, it may be of interest to obtain
estimates on the time to failure, in terms of the problem data.
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