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Local Energy Decay Estimate of Solutions
to the Thermoelastic Plate Equations in
Two- and Three-Dimensional Exterior Domains

Robert Denk, Reinhard Racke, and Yoshihiro Shibata

Abstract. In this paper we prove frequency expansions of the resolvent and local
energy decay estimates for the linear thermoelastic plate equations:

ug + A%u+ A0 =0 and 6; — A — Au; =0 in Q x (0,00),

subject to Dirichlet boundary conditions: u|r = Dyu|r = €|r = 0 and initial condi-
tions (u, ug, 0)|t=0 = (uo, vo, Oo). Here 2 is an exterior domain (domain with bounded
complement) in R"” with n = 2 or n = 3, the boundary I' of which is assumed to be
a C*-hypersurface.
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1. Introduction and main results

Let Q be an exterior domain (domain with bounded complement) in R™ with
n =2 or n = 3, the boundary I' of which is assumed to be a C*-hypersurface.
In this paper, we consider the linear thermoelastic plate equations

Uy + A’u+A0=0 and 6, — A — Ay, =0 in Q xR, (1.1)
subject to the initial conditions
u(z,0) = ug(x), u(x,0)=1vo(z), 0(x,0)=6b)(x) (x€Q) (1.2)
and Dirichlet boundary conditions

u|r = D,,u|p = 9|I‘ = 0. (13)
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Here D, = ", v;D; (D; = 92;), and v = (1,...,v,) denotes the unit outer
normal to I'.

In (1.1), u stands for a mechanical variable denoting the vertical displace-
ment of the plate, while 6 stands for a thermal variable describing the tem-
perature relative to a constant reference temperature #. The thermal effect
introduces a damping. In fact, when € is a bounded reference configuration,
the exponential stability of the associated semigroup under several different
kind of boundary conditions have been proved by Kim [5], Munéz Rivera and
Racke [18], Liu and Zheng [14], Avalos and Lasiecka [1], Lasiecka and Trig-
giani [7-10] and Shibata [22]. Also, the analyticity of the semigroup has been
shown, cf. Liu and Renardy [12] and then it has been studied by Russell [20],
Liu and Liu [11], Liu and Yong [13], Munoz Rivera and Racke [19] in the Lo or
Hilbert space setting (see also the book of Liu and Zheng [15] for a survey). In
the L,-setting this was investigated in our paper [4], where sufficiently strong
a priori estimates for the resolvent in L,-spaces have been proved. Before [4],
Denk and Racke [3] studied the Cauchy problem for (1.1) in the whole space R",
also giving decay rates of solutions, and Naito and Shibata [16] studied the ini-
tial boundary value problem for (1.1) with Dirichlet boundary condition in the
half-space R”.

There were not yet any decay estimates for exterior domains under the
Dirichlet type boundary conditions (1.3) or for the general exterior domains
discussed here. In [18], the simpler boundary conditions for u given by u =
Au = 0 were studied, and for the restricted class of exterior domains with star-
shaped complement, polynomial decay rates were obtained. The purpose of this
paper is to study the local energy decay of solutions to problem (1.1)—(1.3). The
main task for this is the investigation of the expansion formula for the resolvent
at the origin, see Sections 2 and 4 below. In [4] we obtained results on the
spectral properties of the operator and resolvent estimates. The combination
of these results and the expansion formula of the present paper will enable us
to obtain the local energy estimate.

To formulate the problem (1.1)—(1.3) in the semigroup setting, introducing
the unknown function v = w;, we rewrite it in matrix form:

Uy=AU inQxRy, Ul==U, BU|r=0, (1.4)
where we have set
U U 0 1 0 U
U=|v s U(] = 1| v |, A= —A? 0 —A , BU = Dl,u
0 0o 0 A A 0

To study the initial boundary value problem (1.4), we consider the correspond-
ing resolvent problem:

M-—AU=F inQ, BU=0,
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where I denotes the 3 x 3 unit matrix. We shall give an expansion of the
resolvent with respect to the frequency parameter A (Theorem 1.3). Then,
representing the semigroup via the resolvents (essentially: Laplace transform)
will give the local energy decay result (Theorem 1.4).

To state our main results precisely, we introduce several spaces and some
symbols at this point. Throughout this paper, let n € {2,3}. For a general
domain O C R, p € (1,00) and any integer m, L,(O) and W;*(O) stand for
the usual Lebesgue space and Sobolev space, respectively. Let || - ||z, o) and
| - ||W;n(@) denote their norms. For a general domain O with C!' boundary 90,
we introduce the spaces W7 (O) and W)™, (O) (m = 2,4) as follows:

Wpo(O) = {u € WJ(O) | uloo = 0}
Win(0) ={u € W*(O) | ulpo = Dyulso =0} (m = 2,4),

where v = (v1,...,1,) denotes the unit outer normal to 00. Let H,(O) and
D,(O) be the spaces defined by the following formulas:

Hp(O) = {F ="(f,9,h) | [ € W} p(O), g € Ly(O), h € Ly(O)}
Dy(0) ={U ="(u,v,0) | ue W, ,(0), ve W;,(0), 0 € W,(0)}.

Here and hereafter, M denotes the transposed of M. We define the norms
| - [|#,(0) and || - ||,y by the following formulas:

1F N, 0) = 1fllwzco) + 1g, M, 00 (F="(F,9,h) € H,(O))
1Ullpy0) = llullwgo) + I (v, 6) (U ="(u,v,0) € Dy(0)).

vz 0
Let Ap be the operator whose domain is D,(O) and whose operation is defined
by the formula:

AoU = AU for U € D,(0).

In [4] we proved the following theorem.

Theorem 1.1. Let 1 < p < oo. Let p(Agq) be the resolvent set of Aq. Let
Ci = {X € C| ReX > 0} where C denotes the set of all complex numbers.
Then, p(Aq) D Cy \ {0}. Moreover, for any Ao > 0 there exists a constant
C' depending on Ao, p and Q such that for any X\ € C, with |A\| > A and
F € H,(2) there holds the estimate

ML = Ap) ™ Flla, ) + (A = Ap) " Flip,0) < ClIF [, 0)-

In view of Theorem 1.1, by standard arguments in the theory of analytic
semigroups (cf. Vrabie [24]) we know that for any o > 0 there exists a 6, € (0, )
such that

p(Aq) D{NE Xy, | [N > o}, (1.5)
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where we have set
Y.={ e C\ {0} | |arg A < 7 —€}. (1.6)
Moreover, there exists a constant C, depending on ¢ such that

ML = Ag) " FL, o) + 1A = Aa) " Fllp, ) < Coll Fllr, @) (1.7)

Hp(92)

for any A\ € ¥y, with |A\| > 0 and F' € H,(f2). Let us define a set U by the
formula

U= J{resy, | A >0} (1.8)
>0
From (1.5) we see that
p(Aq) D U. (1.9)

By (1.7), we have the following theorem.

Theorem 1.2. Let 1 < p < oco. Then, Aq generates an analytic semigroup
{Ta(t) }izo in Hp(S2).

Let b be a number such that B, D R™\ €2, where B, = {x € R" | |z| < b}.
Set ), = B, N ). We introduce the following spaces:

Lpp(Q) = {f € Ly(Q) | f(x) = 0 for [z > b},
Hp() = H,(Q) N (Lpy ()
={F="(f.9.0) | [ € Wyp(Q) N Lpp(Q), g, € Lpp()}.

Replacing © by R”, we define L,;(R") and H,,(R™). For functions U =
", v,6) we will write Ul , (2, = [Ulay lp, o0

For Banach spaces X and Y, £(X,Y") denotes the set of all bounded linear
operators from X into Y and £(X) = £(X,X). For any domain w in C,
Anal (w, X') denotes the set of all holomorphic functions defined on w with their
values in X. We set w, :={A € C ||| <7}, w, :=w; \ (—00,0].

The following two theorems are our main results.

Theorem 1.3. Let n € {2,3}, 1 < p < oo and let b be a number such
that By—3 D R™\ Q. Let U be the same set as in (1.8). Set L,,(Q) =
*C(Hpvb(Q% Dp,loc(Qb))'
(a) In the case n = 2 there exist a constant T > 0 and an operator-valued
function G € Anal(w,, L£,,(2)) such that for any F € H,p(2) and X €
w; NU there holds the equality

M — Ag) ' F=G\F in .
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Moreover, there exist operators Gi, Gy € L,,(§2) and an operator-valued
function G3 € Anal(w,, £,,(Q2)) such that
G(\) = Gy + (log\)"'Gy + G3()\)  for any X\ € W,
< Cllog A| 2| F| for any A € w-, » (1.10)
Fe Hp7b(Q).

||G3()\>F||’Dp7loc(ﬂb) Hp(Q)

(b) In the case n = 3 there exist a constant T > 0 and operator-valued func-
tions G; € Anal(w;, £,,(2)) (j = 1,2) such that for any F' € H,,(2) and
A € w, NU there holds the equality:

(AT — AQ) ' F = A2GL (A F + Go(MF  in Q.

For wave equations, elasticity or Maxwell equations, a collection of refer-
ences for results on low frequency asymptotics is given in the work of Pauly [17].

With the expansion of the resolvent in terms of the frequency parameter
above, we shall obtain the following local energy decay result.

Theorem 1.4. Let1 < p < oo and let b be the same constant as in Theorem 1.3.
Let {To(t)}i>0 be the semigroup associated with problem (1.1)—(1.3) which is
given in Theorem 1.2. Then, we have

Gyt~ (log t)‘QHFIIHp(m ifn=2

To(t)F <
|| Q() ||D;Dloc Qb —{ pbt 2||F||,H an:?)

foranyt > 1 and F € H,,(£2).

The difficulty in proving Theorem 1.3 arises from the facts that the expan-
sion formula of the resolvent operator (A — A)~! in R? has the singularity log A
and that of (A — A?)~! in R™ has the singularities A™'log A\ when n = 2 and
A"z when n = 3, respectively. Therefore, we can not use the usual compact
perturbation method to obtain the expansion formula in the exterior domain.
To prove Theorem 1.3, first of all employing the Seeley argument [21] about the
invertibility of I + K, K, being a compact operator valued holomorphic func-
tion in A, we shall show that (A — Agq)~! has an expansion formula near A = 0
which starts from A*(log A\)? in two dimensional case and A2 in three dimen-
sional case for some integers s and (3. Then, by a contradiction argument based
on the uniqueness theorem we shall show that s = 0 and 3 = 0. Our strategy of
the proof of Theorem 1.3 follows R. Kleinmann and B. Vainberg [6] and W. Dan
and Y. Shibata [2], where the low frequency expansions of the Laplace operator
and Stokes operator in the two dimensional case were obtained.

We will prove Theorems 1.3 and 1.4 in Sections 2-3 for the (somewhat

simpler) case n = 3. Modifications for the case n = 2 are indicated in Sections 4
and 5.
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2. Expansion formulas in three dimensions

We start with the three-dimensional case by showing an expansion formula of
the resolvent in the whole-space.

Theorem 2.1. Let 1 < p < oo and b > 0. Let L,,(R3) be the set of all
bounded linear operators from H,,(R?) into Dpjoc(By) and p(Ags) the resolvent

set of Ags. Then, there exist constants e € (0,%) and operator-valued functions

H;(\) € Anal (C, £,,(R?)) (j = 1,2) such that p(Ags) D X and
(AL — Ags)™'F = A\ 26 F + E.F + AH{ (A F + MHo(MF  in B, (2.1)
for any X\ € ¥, and F € H,,(R*). Here, 3. is the set defined in (1.6),

o [os gdx + 0 [os hdx Eisx(=Af+g+h)
EF = 0 , & F = —f . (2.2)
0 Ej* (h—Af)
where FE3(x) = 47T|I‘, Ei(z) = —g, « stands for the convolution operator, € is

given in (2.5), and o and [ are non-zero constants given in (2.9) in the proof
below.

Remark 2.2. E}(z) and E?(z) are fundamental solutions to —A and A? in
R3, respectively.
Proof. For F € H,(R?), we set U(N) = (A — Aps)"'F. Let U\)(E) =

T(tx(€), 9x(€),01(€)) be the Fourier transform of U(\). Then, from Naito and
Shibata [16], we have the following formulas:

o A+ A+ A AV AL
B (8) ‘Z [mma ekl O+ et

AO .

h
* oreer©

R e A+ Al a1 Y
”(@_;{_ s O O )
. B 3 A0|§|2 Al A AO+A2
9)\(6)_; {)“F%‘fpf(g) )‘+ij‘£’2 (5) )\_i_%‘gph(f)]

Here, v; (j = 1,2, 3) are numbers such that H?zl(t—i—’yj) = 1341242t +1 for any
teC,0<m <1, s is the complex conjugate of 75 and Revy, = 5(1 —1) > 0;
and A, A} and A3 (j = 1,2,3) are complex numbers such that

N 3 Ak
3 Z (A 4-2k
Hj:1()‘+7j’£| — +7J’£| )I¢]

7j=1

(k=1,2,3)
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for any ¢ € R* and A € C with A\+;[¢]* # 0 (j = 1,2, 3). We have the following
formulas:

}}@jZN—o}}M_Liﬂ

Since v, and 73 are complex conjugate and Revy, > 0, we may assume that
0 < argvy, < 5. Let us define ¢ by the formula

€ = argys. (2.5)

Since A + 7;|¢]* # 0 for any A € ¥, and £ € R3 by Fourier multiplier theorem
we have U(X) = T(uy, va,0\) € Dy(R?). Moreover, for any ¢ with e < € < %
there exists a constant C' depending on € such that

2

DIV ur ox 01, o) < CUFIL,
2 (2.6)

ANVl o+ APlasll, o < CHOMS 9.,

for any A € X (cf. Naito-Shibata [16]), where V/w = (D%w | |a| = j). From
these observations, we see that p(Ags) D ..
Now, restricting ourselves to the case where F' € H,,,(R?), we shall derive

an expansion formula of (Al — Ags)™'F by using the formula (2.3). Let ]-'gl
denote the Fourier inverse transform, and then we have

e~ Vx|
FAF P ) =
e~ Vx|
fzw@+wa%IM|ﬂ@>=—Al(4ﬂﬂ _4ﬁx0

for any A € C\ (—00,0]. Since we have e~ VAl = =% J.( V|z])?, we have

1 X MI
— - HIzl”) +

Fe lOA+[EP) ™ (@)= Hy(Nz[?) (2.7)

47 |x|
Xz |z] A|z? Az|?
-1 D P N S | 2 2
= #E )~ 2L B30, @29
where we have set Hi(z) = > (2j+3),, H3(2) = 3275, (2J+4),, Hi(z) =1+

2zH?(2), Hy(2) = 1+ 22zH3(z). Now, we assume that F € H,,(R?). Since
A+ €17 = (Mt + [€7), using (2.8) and (2.4), from (2.3) we have
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UA(I)Z[(gA?\;—JA;)%/ gdx+(zi:\/—?_)—/ hda:])té

+ E; % (—Af+g+h)
o[l A e ) EL L ag)

2
j=1 7

3
A%+ Al B x|?
+ { (Z%Hf(% 1/\|$|2))%} * g
=1
A e ) P
(S S )
Jj=1 7]2
[ (S A A A e )L g
’ 2 47
J=1 J
AY + Aj B |2
=1 T
3
A0
(XS0 \))‘ Eha)
=1 i
Setting 3
A9+ A 2, A
a=>y 11 Z—J (2.9)
=" ek
we have the first line of the formula (2.1) w h (2.2). Using the fact that
Ei % (—Af) = f to obtain the formula for vy(x), by (2.3), (2.4) and (2.7) we
have
| A} 4 Aj
o) = £+ (S A i ) (-
j=1 Amy}
3 3
A+ A3 Al
(SR e ) g - (X6 ) ) 1]
j=1 47rfy j=1 4my?

{( 3 > BB e i) i -an

{( + 3 M) ) 1 g

7=1

{(moran) i)+
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and
e~ A
r(o) = B}« (1= Af) = 3| (30 S Vel ) (<81
j=1 4my?
3 1 3 0 1
Al + A
- (X P )*g+(2 BB e ) )+
j=1 4my} =1 7w]
A | |
FAS (D T H (7 Al *(—Af)
=
3
Al x
(S o) 2
j=1 7 8w
3
A+ A;
+{< JHw—uum)E%*ﬂ.
= fyj 8
This completes the proof of Theorem 2.1. [l

The next step in the proof of our main results consists in an expansion
formula for the resolvent operator in {2 near A = 0. We will show the following
theorem.

Theorem 2.3. Let 1 < p < o0 and b be a positive number such that By 3 D
R*\ Q. Let U and L,,(Q) be the same sets as in (1.8) and Theorem 1.3,
respectively. Then, there exist a constant T > 0, an integer s and operators

G;(A) € Anal (w,, £,5(22)) (4 = 1,2) such that

(A — Ag)"'F = A2GI(AF + A2 Go(\F  in Q,

for any A € w. NU and F € H,p, ().

In what follows, we shall prove Theorem 2.3. For a given function f de-
fined on Q, +f denotes the zero extension of f to the whole space R? and rf
denotes the restriction of f to the domain €2, = 2 N B,. From Denk, Racke
and Shibata [4] (also Simader [23]), we know the unique existence of a solution
Uo = T (ug, vo, 00) € Dy(2) of the equation

—AUO =F in Qb, BUO‘BQb =0
for any F € H,(%), Here, 09, = TUS,, S, = {x € R® | |z| = b} and

BUylsq, = 0 means that ug = D,ug = 0y = 0 on " and S,, where D, = (z/|z|)-V
on Sp. Let us define the operator Sg, by the formula: S, F' = Uy and write
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So, F' = (uq,,vq,,0q,) as long as no confusion occurs. Let &, &, Hi(A) and
Ho(\) be the same operator as in Theorem 2.1 and set

HA) = A 26 + & + A H1(\) + XHa(A). (2.10)

In what follows, we write H(A)F = (uygs, Uxgrs,0rgrs). Let ¢ be a function in
C§°(R?) such that p(z) =1 for || < b— 2 and p(x) =0 for |z| > b— 1. With
these preparations, we introduce the operator ® as follows:

PN F = (1 — o) H(A)F + ¢Sq,rF. (2.11)
By Theorem 2.1, we have
PNF = (1 — )M — Ap2) "o F + 0Sq,rF (2.12)
when A\ € ¥.. And therefore, applying A\l — A to ®(\)F, we have
AN —-—A)PNF=F+TW\F inQ, BOMNF|r=0 (2.13)
for any A € X, where T'(A\)F is defined by the formula

0
TNF = | —L(urge — ug,) — Ly(Org: — 0o, | | (2.14)
Ly (Oxz2 — 0a,) + Ly(vrz2 — v0,)

L (w) = A%(pw) — pA*w, and L (w) = A(pw) — pAw. If we consider (2.13)
only on €, the operators in both sides of (2.13) are analytic with respect to
A € C\ (—o0,0], and therefore by analytic continuation we have

(M — A)DNF = F+T(\)F inQy, BONFr=0  (2.15)

for any A € C\ (—o0,0]. If (I +T()\))~! exists, then ®(\)(I + T(\)) "' F solves
equations (2.13) and (2.15).

Lemma 2.4. Let U and 3. be the same sets as in (1.8) and Theorem 2.1,
respectively. Then, (I +T(X))™! exists as a bounded linear operator on H, ()
forany A e d N X..

Proof. Let A € ¥.NU. Since the second and third components of T'(A\)F' belong
to W, (Q2) and supp T(A\)F C Dy_94-1 = By—1 \ By_2, by Rellich’s compactness
theorem T'(\) is a compact operator on H,,(2). Therefore, to prove the lemma
it suffices to show that I+7'(\) is injective. Let F' be an element of H,,,(€2) such
that (I+7(X\))F = 0. Set U = ®(\)F, and then by (2.15) we have (A\I—A)U = 0
in Q, BU|r = 0. Since So,rF € D,() and (A —Ags) " F € D,(R?) for \ € 3,
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(cf. (2.6)), by (2.12) we have U € D,(Q2). Since U C p(Agq) as follows from
(1.9), we have U = 0, which implies that

(1 — )M — Ags) " "WF + pSq,rF =0 in Q. (2.16)

Recalling that ¢(z) =1 for |z| < b—2 and ¢(z) = 0 for |z| > b— 1, by (2.16)
we have (A — Ags) 1 F =0 for |z| > b—1, Sq,rF =0 for x| < b—2. If we
set V(x) = (Sq,rF)(z) for x € Q and V(z) = 0 for = & Q, then V(z) belongs
to D,(B,) and satisfies the equation:

(M — A)V =.F in By, BVlg, =0.

Since (M — Ags) ! F also satisfies the above equation, by the uniqueness of
solutions we have V' = (M — Ags)""tF in By, and therefore S, FF = (A —
Ags) "' F in €, which inserted into (2.16) implies that

0= (M — Ags) "F + (S, F — (Al — Ags) " "F) = (A — Ags) " F  in Q.

Therefore, F' = (A — A)(Al — Ags)""tF = 0 in §, which completes the proof
of the lemma. O

By Lemma 2.4 we have
M —Aqg) P =d\)I +T\) ! for A€ X, NU. (2.17)

Now, we shall discuss the invertibility of (/ +7'(\)) for A € w, with some o > 0,
where we have set w, = {A € C\ {0} | |\| < 0 and |arg \| < 7}. For this
purpose, we introduce an auxiliary operator

(I)()F = (1 — gﬁ)gle + (,DSQbTF

for ' € H,,(2), where & is the same operator as in Theorem 2.1. Note
that —AELF = «F in R We write £10F = T(uggrs, vors, 0o rs) unless any
confusion may occur. Applying A to ®oF, we have —APyF = F + TyF in €,
B®F|r = 0, where

0
ToF = —Li(uo,Rg — qu) — L;(907R3 — 9%)
LQID(QO,R?’ — egb) + L;(UO,Ri” — UQb)

Since the second and third members of TyF belong to W} (Q) and supp ToF C
Dy_sp-1, by Rellich’s compactness theorem Tj is a compact operator on H,, 5(£2).
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According to Theorem 2.1, we set

UNR3 = UQ,R3 + AiéT(Ckg + ﬁh) + U)\JR3
UzR3 = Ugr3 + VyRs
Oxrs = Oprs + Oxrs,

where Ta = fR3 adr and
T(Uygs, Vags, Onps) = A2Hi(A)oF + AHa(A)LF. (2.18)
Then, we have
(I+T\)F = (I +Tp)F + A 2(A2)7(0, (g + Bh),0) + RN F,

where

0
ROF = | —L{(Uxgs) — Ly(Oxps) | . (2.19)
L;(@A,J}@) + L;(VA,Ri”)

In view of (2.18) and (2.19), there exist operators R;(\) € Anal (C, L(H,5(£2)))
(7 = 1,2) such that

R(NF = A2R (AN F + ARy(\)F (2.20)
for any A € C\ (—o00,0]. In particular, we have

lim || R()) 0. (2.21)

HL(prb(Q)) =

Here, || - [, denotes the operator norm of L£(H,;(€2)). Since Tj is a

()
compact operator on H,,(2), by Seeley’s lemma [21] there exists a finite range
operator B such that I + Ty — B has an inverse operator (I + Ty — B)™! €
L(H,pp(2)). Set Gy =1+Ty — B+ R(\) and Gy = I + T — B, and then

(I +T(\)F = G\F + BF + A 2(A%0)7(0, T (ag + Bh),0)
Gy = (I + R(\)Gy")Go.

By (2.21) there exists a 75 > 0 such that ”R()\)GalHL(HPb(Q) <3
A € Wy, and therefore by Neumann series expansion we have Gyl =Gy +
RNG )™ =G Y2 (—R(NG ) (X € ). In view of (2.20), we see that
there exist a 7y > 0 and operators G,;(\) € Anal (w,,, L(H,,(€2)) (j = 1,2) such
that

for any

Gyl =A2Gy(N) + Go(\)  for any A € &y, (2.22)
We define the operator B by the formula BF = (A2p)7(0, [,5(ag + 8h) dz,0).
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As both operators B and B are finite range operators, we can choose hy, ..., h,,
€ Hpp(Q2) which are linearly independent over C in such a way that BF =
>y Bi(F)hy, BE = 370, B;(F)hy with 8;(F), B;(F) € C. To represent
B,(F), B;(F) € C in more convenient way, we introduce h}, ..., h% € H,,(Q)*
such that (h;, h;) = 0,,, where (-,-) is the dual paring between H,;(€2) and
its dual space H,;(€2)* and ¢;; denote the Kronecker delta symbols. By using
these symbols, we write B;(F) = (BF, h;) = (F, B*hj), 3;(F) = (BF, hY) =
(F, B*h}). Setting ¢;; = B*h} and (}; = B*h}, we have

BF + A"2(A%)7(0, T(ag + Bh),0) = Y (F, €5, + A2 0;)hy,

Jj=1

and therefore we have

Q

(I +TN)F =GrF+ > (F. 05+ A20;)h;. (2.23)

Jj=1

Applying G to the both side of (2.23), we have

7(1]'

G +TO)F = F+ Y (F.6;+ X 20;)Gyhy = (I + NO)F - (2.24)
j=1
where we have defined the operator N, by the formula
NAF =Y (F, 0+ A"20;;)G5 ' h;. (2.25)
j=1

Now, we shall show the existence of the inverse operator of I + N,. For the
notational simplicity, we set G 'h; = v, ; and ﬁzj—i—/\_%ézj = Ay;. Since {h;}7,
is linearly independent, so is {vm}ﬁl. Let us consider the m X m matrix
M) = (05 + (Vag, Arj)). By (2.22) the (j, k) component &5 + (Vax, Ax;)
is of the form: A~2my;5(N) 4+ majk(N), where myjr(X) and mo;x(\) are complex
valued holomorphic functions defined on w,,. Let D(\) be the determinant
of M(\). In particular, we can say that D(A\) = 0 on w,, or there exist an
integer ¢, and functions D;(A) (j = 1,2) such that

q1+1

2 Dy(N) for A € Wy, (2.26)

D(N\) = AT Dy(\) + A

Dy(0) # 0, and D;(\) (j = 1,2) are both holomorphic in w,,. We shall show
that

D(A)#0 inw,,. (2.27)
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In fact, let A\ € U N X, Nw,, and assume that D(A\) = 0. Then there exists a
vector oy = T(za1,- .., Tam) € R™\ {0} such that

= (k4 (Vo ) Tak = a5 + Z Vaks Ax )Tk (2.28)
k=1 -

for j=1,...,m. Set F\ =Y ;" zxxVar € Hpp(2), and then F) # 0, because
{vrr}i, is linearly independent. On the other hand, by (2.25) and (2.28)

m

N/\F/\:Z<FA,A>\J Vaj = Zl’,\k ka,A,\] \ oW Zx,\ij]:—FA,

j=1 J,k=1

which implies that (I + N,)Fy = 0. And therefore, by (2.24) and (2.23) (I +
T(N)Fy = 0. On the other hand, by Lemma 2.4 I + T'(\) is invertible when
A € UNX,., and therefore we have F), = 0. This leads to a contradiction.
Therefore, we have (2.27), and then (2.26) holds.

From (2.26), there exist a constant 7 (0 < 7 < 71) and holomorphic
functions E;(\) (j = 1,2) defined on w,, such that

DA = AT E (A + A 2B, (\) for A € W, (2.29)
By using this fact, we shall show the existence of (I + N,)~'. We may assume

that D™1()\) # 0 when \ € w,, \ {0}. Let us denote the (j, k) cofactor of M ()
by M (A), which has the similar formula to D~!()) in (2.29). We observe that

7j=1 k:l
=G-D\)™! Z (G, Ay k) M (M) v
k=1
+ NG —-D ! Z(G,A,\k> k(A Nava s = (%)
k=1

Since Nyvy; = Y01 (Vi Axe)Vae as follows from (2.25) and our short nota-
tion: £7; + )\’%f,ﬁ] = A, ;, we can proceed as follows:

(*) = G — D()\>_1 Z <G, Ak,k>Mjk()\)V)\,j + Z(G, A)\’k>V)\7k
7,k=1 k=1

m

— DY (G Ak Mie(N) (Va gy Ane) Vs

Gk, l=1
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NE

=G+ (G, Ax k) Vak

- D(A)_l( D G+ (v, Ax)) Mo (MG, A/\,k>) Vi

J,k =1

+ (G, Ar ) Vg — Z 3G, Ax k) Vs

k=1 k=1

From this observation and our short notations: G5 'h; = v, ; and C; —l—)\_%é;‘j =
Ay, we have (T+N (X)) 71G = G—=D(\) "L 3270 (G, e+ A" 205, ) M (\) G My
for A € wy, \ {0}. By (2.27), we see that (I +T(\))~! = (I + N,)"*G;" which
combined with (2.22) and (2.29) implies that there exist an integer ¢, and
operators Tj(\) € Anal (wy,, L(H,p5(2))) (5 = 1,2) such that (I + T(\))™! =
AETI(N) + )\qz;lTQ()\) for any A € w,, \ {0}. Combining this fact with (2.17),
(2.11) and Theorem 2.1 implies Theorem 2.3.

3. The proofs of Theorems 1.3 and 1.4 in the three-
dimensional case

In what follows, b denotes a large number such that B, 3 D R3\ . To prove
Theorem 1.3, we start with the following lemmas.

Lemma 3.1. Let { be a positive integer and n € {2,3}. Ifu € S'(R") N
L1 10c(R™) satisfies the homogeneous equation

Afu=0 inR" (3.1)
and the radiation condition
u(z) = O(|z|™) as |x| — oo, (3.2)
for some non-negative integer m, then wu is a polynomial of order m.

Proof. Since u € S'(R"), applying the Fourier transform to (3.1) we have
€*0(¢) = 0, which implies that supp@(¢) C {0}. By the structure theo-
rem of distributions, @(¢) is represented as follows: a(§) = >, < Cad @ (€)
for some non-negative integer k, where § denotes the Dirac delta function and
¢, are complex numbers. By the Fourier inverse transform, we have u(z) =
> laj<k Ca(—i2)*, which combined with (3.2) implies that u = u(z) should be a
polynomial of order m. This completes the proof of the lemma. O]
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Lemma 3.2. Let & be the same operator as in Theorem 2.1. Given F =

T(f,9,h), we set U =EF =T(u,v,0). If F € Hyp(R?) and
/ (9(z) + h(x)) dz =0, (3.3)
R3

then, as |z| — oo,

u(z) = O(1), Vu(z) = O(|z|™), )

0(z) = O(|z|™)
Proof. Smce fR3 y) + h( ) —Af(y))dy = 0 as follows from (3.3), by (2.2) we
have u(z)= fR3 |x —z)(g(y) + h(y) — Af( ))dy By Taylor’s formula
we have ]x — y\ lz| = fo Lo —0y|do = — > 1f0 x; — 0y )yi|x — Oy|~* do,

and therefore

> [ )+ 00 - 500 i,

which combined with the fact that g(y) + h( ) —Af(y) = 0 vanishes for |y| > b
implies (3.4). Since § = E3* (h—Af) = * (h—Af) and since h(y) — Af(y)

vanishes for |y| > b, we have (3.5), which completes the proof of the lemma. [

47r\a:|

Lemma 3.3. Let 1 < p < oo.
(1) If 0 € W2, (Q) satisfies the homogeneous equation

AO=0 nQ, 0Or=0
and the radiation condition
0(x) = O(lx|™") (3.6)

as |x| — oo, then 6§ = 0.
(2) Ifu €

ploc(ﬁ) satisfies the homogeneous equation

A?u =0 inQ, ulp = Dyulp =0 (3.7)
and the radiation condition
u(z) = O(1) (3.8)

as |x| — oo, then u = 0.
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Proof. (1) By L, (1 < p < 00) solvability in any C? bounded domain for the
Dirichlet problem of the Laplace operator (cf. Simader [23]) and Sobolev’s
imbedding theorem, we see that 6 € W3, .(Q). Let p be a function in C§°(R?)
such that p(z) = 1 for |z| < 1 and p(z) = 0 for |z| > 2. Set pr(x) = p(F) for
L > b. Then, we have

0 = (MG, prf)a = —(V0, prV0)0 + (%) 0, (App)0)a (3.9)

where (a,b)q = [, a(z)b(x) dz. Since
6. (3p)0)al < 1801, o L7 [ 6@
L<|z|<2L

and therefore by (3.6) we see that lim; . (0, (ApL)#)a| = 0. Letting L — oo
in (3.9), we have ||V9Hi2m) = 0, which implies that VO = 0, that is € is a
constant. But, #|r = 0, which means that 6 = 0.

(2) By L, (1 < p < 00) solvability in any C* bounded domain for the
Dirichlet problem of the biharmonic operator (cf. Simader [23]) and Sobolev’s
imbedding theorem, we see that u € Wy, (Q). First, we shall prove that u = 0
assuming that u satisfies the radiation condition

u(z) = O(1), Vu(z)=O(|z|™) (3.10)

as |z| — oo. Let py be the same function as in the proof of (1), and then we
have

0=(Au, pru)a=—(Vu,(VApL)u)o—2(Vu,(Vr)Vu)o+ (Au,prAu)g (3.11)

where Vu(V2p)Vu = Zik:l(DjDk,oL)DjuDku. The radiation condition (3.10)
implies that limz_..(Vu, (VApr)u)g = 0, limy o (Vu, (VZpr)Vu)g = 0, and
therefore letting L — oo in (3.11), we have [|Aul, , = 0, which implies
that Au = 0 in €. Since ulr = D,ulr = 0, the zero extension uy of u to
the whole space R? satisfies the Laplace equation: Auy = 0 in R3. Since
up(z) = u(z) = O(1) as |z| — oo, from Lemma 3.1 we see that ug is a constant.
But, ug(z) = 0 for € R?\ 2, which means that ug = 0.

Finally, we shall show that the condition (3.8) together with (3.7) implies
(3.10). Let ¢ be a function in C*°(R?) such that ¢(x) = 1 for |z| > b+ 1 and
(x) =0 for |z| < b. Then, by (3.7) we have

A*(Yu) = f in R?, (3.12)

where f(x) = A?(¢u) — 9 A?u. Since supp f C Byi1 \ By, we have f € Lo(R3).
Setting v(z) = —(8m)~!|z| * f, by (3.12) and the fact that —(87)7!|z| is a
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fundamental solution to the biharmonic operator A% we have A%(u—v)=0 in R?
Employing the same argument as in the proof of Lemma 3.1, we have u(z) —
0(x) = 32 |41<m Cax® for some non-negative integer m and complex numbers c,.

If we write 0(2) = =42 [oo f(4) dy — &= Jpa (|2 — y| = |2])f(y) dy, then by (3.8)
we have

>t~ [ 1@ dy=ute)+ 5= [ (o=l - D) dy = O

as |z| — oo, which implies that u(z) = ¢o — &= [os (|2 — y| — |2]) f(y) dy as
|z| — oo, which implies that |Vu(x)| = O(|z]™!) as |z| — oo. This completes
the proof of the lemma. O]

After these preparations, we are now able to prove our main results Theo-
rem 1.3 and Theorem 1.4 in the case n = 3.

Proof of Theorem 1.3 for n = 3. Let s, G1(\) and Gy(\) be the same as in The-
orem 2.3 and set G(A) = A2G; () + A2 Go()A). Let 1 be a function in C'°°(R3)
such that n(z) = 1 for |z > b — 1 and n(zx) = 0 for |z| < b — 2. Given
F e H,,(2) and X € w,, we set U(A\) = G(A\)F. When A € w, NU, by (2.17)

we have U(X\) = (A\] — Aq) ' F € D,(Q), and

M —-AUN) =F inQ, BU\r=0. (3.13)
Therefore, nU () € D,(R?) and nU(\) satisfies the equation
(A = A)(U(N)) =nF +g(U(N)) in R,
where for U = T(u, v, §) we have set

0
g(U) = A?(nu) — nA%u + A(nd) —nAb | . (3.14)
—(A(nd) —nAd) — (A(nv) — nAv)

Note that supp ¢(U) C Dp—2p—1. Since X, C p(Ags) as follows from Theorem 2.1,
we have

nUN) = (AT = Ags) " (nF + g(U(N))) (3.15)

whenever A € w, NUNXE,. Let &, &, Hi(A) and Ha(A) be the same operators
as in (2.1) of Theorem 2.1 and let H(A) be the same operator as in (2.10). By
(3.15) and Theorem 2.1 we have

nUN) = HO)F + g(U(N))  in (3.16)
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whenever A € w, NU N X,. But, the both sides in (3.16) are analytic in w,, and
therefore (3.16) holds for any A € w,. In view of Theorem 2.3, we write

U\ =XV +0(NF) i@ (3.17)

as |A\| — 0. We shall show that s = 0 by contradiction. Since (A\I —A)U(\) = F
in , BF|r = 0 for any A € w, as follows from (3.13) and Theorem 2.3, we
have

s+1

M(-AV)+ONT) =F inQ, (MBV+OWNT)) =0  (3.18)

If s > 0, then letting A — 0, we have F' = 0, which leads to a contradiction.
Therefore, s < 0. Assume that s < 0. We choose F' € H,;(2) such that V # 0.
Multiplying (3.18) by A= and letting A — 0, we have

—AV =0 inQ, BV|=0. (3.19)

On the other hand, inserting (3.17) into (3.16) and using (3.14), we have

MV HONE) = [V 280+ 8+ A HI(A) + XHa(N)] (F +A2g(V) +O(X'F)),
and equating the terms A3, A373, we have

Eog(V) =0 (3.20)
T]V = glg(V) + go??Fl in Qb; (321)

Pl F s=—1
0 s < —=2.
We extend V' by the formula V' = &£ g(V) + EnF for |z| > b — 1. By the
definitions of & and &, we have

where we have set

—AV =¢g(V)=0 for|z|>b—-1 (3.22)
because supp g(V) C Dy_gp1. If we write V = T (ug, v, Op), then noting that
n(z) =1 for || > b—1, by (3.21) ug € W ,,.(Q), vo, 6o € W7,,.(Q). Moreover,
by (3.19) and (3.22), V satisfies the homogeneous equation

AV =0 inQ, BV|=0. (3.23)

On the other hand, if we set g(V) = T(0, go, ho) and F' = T(f, g, h), then by
(3.21) and Theorem 2.1 we have

V(z) ="(E} x (g0 + ho) + aTng + BTnh, 0, E5 x hg) (3.24)
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for |x| > b— 1. By (3.20) we have

a/ godz+ [ | hodx =0. (3.25)
R3 R3

In particular, by (3.23) we have vy = 0.

Now, we shall show that 6y = ug = 0. By (3.24) we have y(z) = ﬁl%\ * hg
for |x| > b — 1. Moreover, by (3.23) we have Afy = 0 in 2, Gy|r = 0. Since
ho(x) = 0 for |z| > b — 1, we have Oy(z) = O(|z|™!) as || — oo, so that by
Lemma 3.3 we see that 0y(z) = 0. Therefore, we have

1 [ holy) 1 | / | 1
= — ——dy = —— h d —_— h dy
AT Jgs |z —y Y A|z| Jrs oly)dy + - Ar Jos \Jz —y| 2] o(y)

when |z| > b. Since the last term of the right hand side = O(|z|~?) as |z| — oo,
we have

/ ho(y)dy = 0. (3.26)
R3
Combining (3.26) with (3.25) implies that

/RS 9o(y)dy =0 (3.27)

because o # 0. By (3.24), ug = E2 x (go + ho) + oTng + BTnh. By (3.26) and
(3.27),

55 (g0 + ho)) ) = —5- [ | = sl(an(o) + holo) dy

g [l = ol = belon(0) + o) d
o> [ )+ hat iy f

when |z| > b. Since go(y) = ho(y) = 0 for |y| > b — 1 and since oT'ng + Tnh
is a constant, we have ug(z) = O(1) as |z| — oo. Since A%ug = 0 in Q
up|r = Dyug|r = 0 as follows from (3.23), by Lemma 3.3 we have uy = 0, and
therefore V' = 0, which leads to a contradiction. This implies that s = 0, which
combined with Theorem 2.3 implies Theorem 1.3. O]

Proof of Theorem 1.4 in the case n = 3. Let 7, Gi(\) and Ga(\) be the same
constant and operators as in Theorem 1.3. And, let U be the same domain in C
as in (1.8). Let ' =I', UT'y UT'_ be a path in C defined by the formulas

T\ =sel™9), $: 00— (g)(cos 0)~!
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FO:A:<;>(0089) e, s:m—0— —(1—0)
I\ =se im0 s (g)(cos 0)"' — oo,
Where 0c(0,%)is chosen so close to 5 that I' C U. By (1.5) and (1.7) we have
= o= [.(A = Ag)"'F dX. To estlmate T(t)F, let us set
1 1
I = — ()J —AQ) 'FdN, Iy=— [ (M —Aq) 'Fd\.
2m T Jr,
By (1.7) we have
I.(+ < C - 50059(7r—9)td F — —(5) F
IOy <0 [ 1Pl = Tegi® P

for any ¢t > 0 and F' € H,(€2). To estimate Iy(t), we restrict ourselves to the
case where F' € H,,(£2). Let C' = C; UCy UC_ UC, be a path defined by the

formulas

T , T
Ch :/\:—<§> +1s, s (§> tanf — 0
Cy:A=e"s, Si%—>0
C_:A=¢e s, S:O—>g
Oy :Az—(%) +1s, s:0— (%) tan 6

Then, by Theorem 1.3 we have

Io( 27”{/01 /3+ / /C} )\91 (A) + Ga(N))FdX in

for any ¢t > 0. We have

’ 2772{/01 /(;2 } )\2(_31 >+g2(>\))Fd)\ Dp ()

- (3)tan6 T (T
<Ce @ [T, < () tmo)e A,

Since Go(A) € Anal (wr, L(H,5(2), Dpi1oc (%)), we have {fcuffc, }eMGo(N) FdX
= 0. On the other hand, we have

H{ /c ’ /C }ewww ax

T

3 |
< C/ sze " ds (R [P
0

Dp 1oc ()

S(Jt—%/ (e~ dC||F|,, o
0

Combining these estimates, we have Theorem 1.4. O]



42 R. Denk et al.

4. Expansion formulas in two dimensions

In the following two sections, we will prove our main results Theorems 1.3 and
1.4 in the two-dimensional case. Although the structure of the proofs is the
same as for n = 3, the asymptotic expansion is more involved. We will start
with the expansion formula for the whole space R2.

Theorem 4.1. Let 1 < p < oo and b > 0. Let L,,(R?) be the set of all
bounded linear operators from H,,(R?) into Dpjoc(By) and p(Agz) the resolvent
set of Agz2. Then, there exist constants e € (0,%) and operator-valued functions

H;(\) € Anal (C, £,,(R?)) (j = 1,2) such that p(Agz) D X, and

(M — Ag2) ' F = N1EF +1og AL F + EF + EF

41
+ Alog AH (M) F + AXHy (W) F (4.1)

in By for any A € 3. and F € H,,(R?). Here, 3. is the set defined in (1.6),
Eo, & and & are operators in L(H,,(R?), Dpioc(By)) defined by the formulas

@ [go gdr + a3 [o, hdx
EoF = 0
0
1:2
By (~Af+g+h)
glF: O
— 1= Jgo hdx a9
CL’2 212 m2 .
VAN + S g B
EF = 03 Jpo gda + 03 [, hda
53 fRQde + 03 ng h dx
Ef* (=Af+g+h)
SBF: _f >
B+ (h— Af)

where B (x) =—5=(log |z|—log 2+7), E3(x) = & |z[*log |z|— 5= (log 2—y+1)|z|?,
% stands for the convolution operator, 7y is the Euler number, € is given in (2.5),
and oy, az, B, B2, B3, 63, 05, 65 and &5 are mon-zero constants which will be
given in the proof below.

Remark 4.2. F}(x) and E3(x) are fundamental solutions of —A and A? in R?,
respectively.

Proof. As in the proof for the three-dimensional case (Theorem 2.1), we have
the representation formulas (2.3) or @y, vy, and 5. But now the inverse Fourier
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transform is given by .7:51[()\ + [ Y(z) = Ko(v/Az|), for X € C\ (00,0,
where K stands for a modified Bessel function of order zero. We know that

Ko(z):%[(—log@;( ( ) Z¢m+1 ( ) ]

where 1(z) is the psi function and for any integer m > 1 we have (1) = —~,

U(m) = —y+ 14+ 5 (m > 2). Setting hi(2) = 30 Gaygyz (5™
ho(2) = Sope G (5)™, we have

1 22 4 2 Z4
Ko@) = 5= |(-tog2) (14 5+ Sga(a) +0(1) + 00T + hala)]- (4)

By (4.3) we have

1 |z|?
1 21 1
Fe [(A+1€°) ](x):—Elog)\+E2(x)—T)\log)\
|z
64T

>‘2L,2| {(log |z| + 1)hi(N|z[*) + ha(Az[*)}.

Using the resolvent formula —A"'(A — A)™! — (=A™ H) = (A= A)H(=A),
by (4.4) we have
F LA+ 1) el (@) = AN (F A+ €1 (@) — Ex (@)

N ] 2P

= E)\ og A + —— 67 log)\+/\log/\? L(Alz?)

+E3(x) + )\3|T|((log 2| + Dh(A|z]*) + hg()\\:c|2)).

— AE2(z) — A2 log Al hy (Az]?) (4.4)

Therefore, setting H2(\,|z|) = EL by (Az[2), H2(A,|z|) = kel L ((log ||+ 1)hy (A|z]?)

64
tho(Nz[?), HEO\ |2]) = =B —NHZ(\, |2]), Hi(\ |2]) = —E3(x) — H3 (X, |2)),
we have
1
FA+ 1) () = ~ 3. log A+ Ey(z) + Mog AH{ (A, |z])

+ AHy (A, [z]),
2 (4.5)
! —Xtlo g)\+| 2] log A\ + E3(x)
47 167
+ Mog NHZ(\, |z|) + NHZ (A, |z]).

Using (4.5) and (2.4), from (2.3) we have

u/\(l"):/\_1(a2/R2gd:U+Oz3/Rth:r) —&—log)\(% (—Af+g+h))

F A+ 1)) () =
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ﬁl|$| Ga|x|? Bslz|?
or T AN+ g et e

+ Alog AK{ (A F + MKy (A F,

xh+ By« (—Af +g+h)

1 —1
where we have set a, = Zj’ 1%, g = Zj 1A212i7j , and (6, =
AV+ AT+ A _ A%+ AL _ Al _
Y S log B = 00, o log ! B = 05, S log
3
A0+A1+A2
NEF =Y L H{ (v '\ Ja]) * (=Af)
J=1
3 AO 3 0
+Z fH? I Jz]) x g+ Z_g (V7N J2]) *
j=1 5
3
A°+A1+A2
KIF = {Z—flog% 2 L)
i1 Ui
3
A? +A1 + A?
D R o b (-8
—i—{ g log v; 1H2( I\ |z))
=1 %

3
AO Al
A 2, |x|>}

= %
3 A0 3 A0

-1
Z—;logwjlm Sl + 3 G A,rxw}*h
o1 Vi j=1 1

Since Ey x (—Af) = f and [p, Afdr =0, by (2.3), (2.4) and (4.5) we have

v,\(x):—f—i-é%/ gdx+5§/ hdx 4+ Mog A\KZ(\)F + AK2(\)F,
R2 2

1
where we have set §3 = 47r ?:1 At = 4 log~;, 03 = ;’ ) 77 log v;,
3 1
A +A
L HI (7N, [z]) = (—Af)
=1
3 A1+A2

3 Al
Hy (v ' Alz]) + g + Z—; (v "\ z])
j=1 7

=1

3
{Z 4 log; " Hi (v; "\ l=)

Jj=1
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3 A e} (-89

j=1 ]
3 Al ¢ A1—|—A
+{Z ! ]log% VHL (v ) +Z 3 L Hy (A |x|)}
— 1 J
3 1 j
+ Z—glog% v A lz)) +Z ]H 7 A |x|)}
j=1 7

Since Ej * (—Af) = f, by (2.3), (2.4) and (4.5) we have

1
QA(x):—Elog)\/whdx—l—E%*(h—Ah)%—(Sg’/Rdix—l—ég/thdx

+ Alog )\K3()\)F + AK3(M\)F,
where we have set 65 = - 1 WJ log;, 65 = = j . A?;;A} log;,
3 () 3 1
Z é H (5 M Jal) + (<A = 3 —; H} (770 lal) +
_ ] j=1 ]
AO—I—A2
Z ]Hl —1)\ ‘.Z‘D
3 3
AV A4 Al
KINF = { S tog H0 A lel) + 30 2L 0 A e b (-)
_ ’y‘j ] 1 ,yj
3 AL oL AL+ A2
{Z—;log% YHl(y 1)\ ]93|)+ L ]H21('Yj_1>\> |$D}*
3 2 3 Al
A + A3
+ { > = Hlogy H (v A ) Z—; (71, |x|)}
j=1 J e
This completes the proof of Theorem 4.1. O]

The analogue of Theorem 2.3 for n = 2 reads as follows.

Theorem 4.3. Let 1 < p < oo and letU be the same set as in (1.8). Then, there
ezist a constant T > 0 and an operator valued function G(\) € Anal (w,, £, ,(2))
such that

(M — A) ' F=G(NF in
for any X € w, NU and F € H,,(2). Moreover, there exist integers s, [3,
a constant coefficient polynomial L(t), a polynomial M (t) whose coefficients
belong to L,,(€2) and a positive constant C' such that

IGVF = X(M(log )/ LUog M) Flly o) < CNF10g N IIF
for any X\ € w, and F € H,,(2).
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Proof. The proof follows the lines of the proof of Theorem 2.3 but now the
expansion formula is more complicated. Instead of (2.10) we now set

H()\) = )\_150 + IOg )\gl + 52 + 53 + /\10g /\Hl()\> + /\HQ(/\), (46)

where the operators &, &1, &, €3, Hi(A) and Hy(\) are given in Theorem 4.1.
Defining again ®(\) by (2.11), we obtain (Al — A)®(N\)F = F +T(\)F in £,
BO(N)F|r = 0 for any A € ., where T'(\)F is defined by (2.14). The proof
of Lemma 2.4 works also for n =2, so (I + T(\))~! exists as a bounded linear
operator on H, ,(€2) for any A € U N 3, and we have

A — Ag) ' =N +T(\)t for A€ X.NU. (4.7)
To discuss the invertibility of I + T'(\) for A € w,, we consider
Oy F = (1 — p)EstF + pSq,rF

for ' € H,,(S2), where & is the same operator as in Theorem 4.1. Note
that —AEyF = F in R%. We write &F = T(ugge, vor2, for2) to avoid any
confusion, if necessary. Applying A to ®yF', we have —APyF = F + THF in (2,
BCI)()F|F = O, where
0
TOF = —L?D(UQH@ — UQb) — L;(HQJRZ — 99,))
L(‘ID(QO’IW — Hﬂb) + L;(U07R2 — ?)Qb)
Since the second and third members of Ty F' belong to WI}(Q) and supp T F' C

Dy 51, by Rellich’s compactness theorem, 7y is a compact operator on
Hpp(€2). According to Theorem 4.1, we set

2
UyR2 = UgRr2 + A"1So(ang + azh) + log )\% * (=Af+g+h)+ Uy

Uarz = Vo g2 + So(059 + 63h) + Vi ge
Orr2 = Opre — log A%Soh + So(659 + 03h) + Oppe,
where Spa = [p, adz and
T(Urgz, Vage, Oarz) = AMog NH1 (N F + AHa (M) F. (4.8)
Then, we have

(I+T(\)F = (I +Ty))F +A"'RoF +1og AR\F + RyF + RIVF,  (4.9)
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where
0
RoF = —(A%p) | So(aag + ash)
0
0
RiF = | =03 (5L« (—Af + g+ 1) + L(Ap)Soh
—ﬁ(ASO)Soh
(4.10)
0
RyF = —(Ap) 0
So(059 + d3h)
0
R\F = | —L(Uyp2) — L,(O5p2)

L;<@A,R2) + L;(V/\,ﬂ@)

In view of (4.8) and (4.10), there exist operators R;(A) € Anal (C, L(H,5(€2)))
(j = 1,2) such that

R\ F = Mog AR (M) F + ARy(\) F (4.11)
for any A € C\ (—o0,0]. In particular, we have

lim | ROV —0. (4.12)

L£(H,, ()

Here, || - [,y ) denotes the operator norm of L(H,,(€2)). Since Tp is a
P,

compact operator on H,;(€2), by Seeley’s lemma [21] there exists a finite range
operator B such that I + Ty — B has an inverse operator (I + Ty — B)™! €
L(H,5(2)). Set Gy =1+Ty — B+ R(\) and Gy = I + Ty — B, and then

(I+T(\)F =G\F +BF +S\F, Gy =(I+R\G3")Go.

By (4.12) there exists a 7 > 0 such that || R(\)G,* [
and therefore by Neumann series expansion we have

Sy S 1 for any A € Wy,

Gyl =Go'(I+ RNG) ™ =Gy Y (—RGGYY (A€ ).

j=0

In view of (4.11), we have

N —i {i(}]k (log \) ] (4.13)

j=0 L k=0
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where Gj; € L(H,5(£2)). The right-hand side of (4.13) is absolutely and uni-
formly convergent with operator norm in w,,, that is

[e.9]

J
S G e o o | AP < 00 (A € ).

=0 k=0

Since B is a finite range operator, there exists a finite number of elements kj,
.., ki € M,p(Q) such that BF = 3% | a;(F)k; (a;(F) € C). On the other
hand, if we define the operators Sy, S; and Sy by the formula

sib= [ Koy Sik= [ s)dy, Sak= [ WPR@ay (110
R2 R2 R2

2 A? VA
L3 (ﬂ*k) - Ff(|x|250k—2$-51k+52k)+7¢-( Sok — Sik) +

Ay
2

Sok,

where - stands for the usual inner product in R%. For the notational simplicity,
now we set Sy = A'Ry + log AR; + R, in the formula (4.9). From above
observation we see that there exists a finite number of k; € H,,(Q) (j =
1,...,0+ 1) such that SyF is written in the form

¢
SAF = X3 (F)ky + log)\Zﬁj(F)kj + Ber1(F)kera  (B;(F) € C).
j=2
There exist hy, ..., h,, € H,;(2) which are linearly independent over C such
that
BE + S\F = X'W'F +log \W?F + W*F
WkEE = Z%'?(F)hj (k=1,2,3; ¥}(F) € C).
j=1
To represent vF(F'), we introduce hy, ..., hZ, € H,,(€2)* such that (h;, h;) = 0
where (-,-) is the dual paring between H,;({2) and its dual space H,;(2)*
and 0;; denotes the Kronecker delta symbol. Using these symbols, we write

VI(F) = (WFFhG) = (F,(W")*h}). Setting (;; = (W*)*h}, we have BF +
SaF =370 < Fy AU +log M + £55)h;, and therefore, we have

(I+T(\)F = G\F+ Y (F, A5, +log M3, + £5,)h;. (4.15)

Jj=1
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Applying G to the both side of (4.15), we have

GMI+T\)F=F+ Z(F, AN+ log My, + 055Gy Thy = (I + N))F,

=1

where we have defined the operator N, by the formula
NAF =Y (F A7 +log M3 + 63) G5 'y,

Now, we shall show the existence of the inverse operator to I + N,. For
the notational simplicity, we set G;lhj = v, ; and )Flﬁj + log M5, + 45, =
Ay Since {h;}7L, is linearly independent, so is {vy;}7.,. Let us consider
the m x m matrix M(X) = (6;x + (Vax, Ar,;)). By (4.13) the (j, k) component
Sik + (Vag, Ax;) is of the form A'mye(N) 4 log Amajr(N) + +majn(N). Here,
mijk(A) are usual complex valued holomorphic functions defined on w;, and
have the expansion formulas

mie(\ Z Lzﬁ”k log \) ]A" (B € C), (4.16)

where the right-hand side is absolutely and uniformly convergent in w,,. Let
D()) be the determinant of M (A). In view of (4.16), we have

det(AM (A Z {Z(sab log \) ]Ab (64 € C),

where the right-hand side is absolutely and uniformly convergent in w,,, and
therefore we have

A=A i {Z 5 (log )\)“} AP (4.17)

for A € w,,. In particular, we can say that D(A) = 0 on U,, or there exists an
integer v such that

b

Z 6% (log N\ =0 (b < ), i: 07 (log \)* £ 0 (4.18)
a=0

a=0

for any A € w,,. In the latter case, choosing 7y smaller if necessary, we may

assume that .,

Z 07 (log A\)* # 0 for any A € w,. (4.19)

a=0
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In the same way as for n = 3, one can show that D(\) #Z 0in U,,. By (4.17)
and (4.18) we write

00 b o)
=AY [Z 5°(log )\)“} A =AY T Ly (log AN,
b=y - a=0 b=0

where we have set L(t) = ZZQ] §20+1te. Since Lo(log\) # 0 (A € w,,) as
follows from (4.19), we write

Ly(log A
D(A) = A Lo(log ) [1+Z v(log U}

Lo(log \)

. ESE}ZE;))‘Z) = 0, there exists a 7 (0 < 7, < 73) such that

1>, Zb)(ﬁi ; M| < 1 (X\ € wr,), and therefore we have

D)1= A" Lo(log \)~ [1+Z{Z§Z Eéi%}]

— A Lo(log )™ {1 +Z { 3" Ly(log A) Lo(log 1)’ 1(@)??

7=1 b=1

Since limy_o )

Since Ly(t)Lo(t)*~! is a polynomial of degree not greater than b(~y + 1), we can
write

|2 ()| e

where Pj(,;1)(t) is a polynomial of degree not greater than j(y +1).

D)™

Similar to the case n = 3, one can show that the inverse of I + N(\) exists
and has the form

(I+NW)'G=G =DM Y (G N5, +log M3, + L) My (M) Gy 'hy
i, k=1

for A\ € w,,, which combined with (4.13) and (4.20) implies that there exists an
integer s such that

I+TO)™ = s 1og y Z@J 1ogA>(@)j, (1.21)

where Qj(y41)(t) is a polynomial of degree not greater than j(y + 1), whose
coefficients belong to L(H,(€2)). In fact, by (4.13) we have

Z{Z%bg%} ZHZGMOM }L()(l"g”j}(m)j-

7=0
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If we set G (v+1)(t) = (31_, Girt®) Lo(t)?, then G,(t) is a polynomial of degree
not greater than j(y+1) and we have G, ' = > e C?j(,yﬂ) (log ) (m)j. And
also, setting M.,y (t) = tLo(t)05;+ Lo(t){3;, we can write A™"05; +log M5, +05; =
A1 [f{j +M,+1(log /\)#(A)] , where M, 11(%) is a polynomial of degree not greater
than v 4+ 1. Therefore, we have (4.21). Combining (4.21) with (2.17), (2.11)
and Theorem 4.1 implies Theorem 4.3. O]

5. The proofs of Theorems 1.3 and 1.4 for n = 2

To prove Theorem 1.3, we start with the following lemmas.

Lemma 5.1. Let E} and E? be the fundamental solutions of —A and A* given
in Theorem 4.1, respectively. Given g,h € L,,(R?), we set u = E3 * g and
0= EL«h. If

S()g = Slg = S()h = 0, (51)
then
u(z) = OQlog|e]),  Vu(z) = O(j| )
Viu(x) = O(lal ), Viu(e) = O(j| ) (52)
o) = Ol ),  Vb(x) = O(la|?) (53)

as |z| — oo, where Sy, Sy and Sy are the same operators as in (4.14).

Proof. From (4.2) we have

1
ulw) = o= [ (o= yPlogle — yl = ile — yPhg(w) dy
T JR2
1
0x) = —5— | (loglz —y| —c2)h(y)dy,
™ JR2

where ¢; = log2 — v+ 1 and ¢ = —log2 + . By Taylor expansion, we have
|z —y|[*log |z —y| — 1]z — y|* = |z|? log |x| — c1|x|* — 2log |x|(x - y) — (1 — 2¢1) (2 -
y) + (log |z])|y|? + O(1) as |z| — oo when |y| < b, and therefore

u(z) = (87) ' ((|z[* log |z])Sog — c1]x]*Sog — 2(xlog |z]) - (S1g)
— (1 =2¢c1)x - (S1g) + (log |x])Sag + ui (),

where () is the function which has the asymptotic behaviour: u;(x) = O(1),
Vui(z) = O(Jz] ™), V2u(z) = O(|z|72), V3u(x) = O(|z|™?) as |z| — oo, and S,
are the same operators as in (4.14). By (5.1) we have u(x) = (log|z|)(S29) +
uy (), which implies (5.2).
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By (5.1) we have 0(z) = —5= [5.(log |z — y| — log|z|)h(y) dy. Since

i gz [
log |z — y| — log |z| = /—1ogya;—9y|d0_/ i (@ — Oy)y do,

we have log |z — y| —log|z| = O(Jz|™"), 5 (log|z — y| —log|z]) = O(|z|7%)
(k=1,2) as |z| — oo when |y| < b, and therefore we have (5.3). This completes
the proof of the lemma. n

Lemma 5.2. Let 1 < p < o0.
(1) If 0 € W2, .(Q) satisfies the homogeneous equation

AO=0inQ, Olr=0

and the radiation condition

as |x| — oo, then 8 = 0.
(2) Ifu e

ploc(ﬁ) satisfies the homogeneous equation

A*u=0inQ, ulp=Dyulr =0 (5.5)

and the radiation condition

u(z) = O(|z[) (5.6)
as |x| — oo, then u = 0.

Proof. (1) By L, (1 < p < 00) solvability in any C? bounded domain for the
Dirichlet problem of the Laplace operator (cf. Simader [23]) and Sobolev’s
imbedding theorem, we see that 6§ € Wiloc(ﬁ). Let 1(t) be a function in
C5°(R) such that ¢(t) = 1 for ¢ < 1 and 9(¢) = 0 for ¢ > 1 and set pr(z) =
Y(log(log |x|)(log(log L)) ') for large L. Then, we have

1
0= (A0, prb)a = —(VO,pLVO)a + 5 (0, (ApL)0)a (5.7)
where (a,b)o= [, a(x)b(x) dz. Since |Apy(z)| < C(log(log L))~ (log |z])~?|z| 2

(L — oo) and supp ApL C {x e R? | eviel < |z| < L}, by (5.4) we have

(0, (Apr)f)a| < Clog(log L)) / L ogn)

< C(log(log L)) *(log L)"2 — 0
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as L — oo. Letting L — oo in (5.7), we have [|VO]|? @ = 0, which implies that
VO = 0, that is 6 is a constant. But, |r =0, which means that § = 0.

(2) By L, (1 < p < o) solvability in any C* bounded domain for the
Dirichlet problem of the biharmonic operator (cf. Simader [23]) and Sobolev’s
imbedding theorem, we see that u € W3 (€). First, we shall show that u = 0,

assuming that
u(@) = O(|z]),  V?u(z) = o(1) (5.8)

as |z| — oo. Let py be the same function as in the proof of (1), and then we
have

0= (A2u> pLu)
1 2 (5.9)
=3 (u, (A%pr)u)o + 2 Z (DjDypr)D;jDyu)o + (Au, prAu)q.

7,k=1
Since |A%py, (x )!<C(10g(10gL))_ (log |2|)~*|x|~%, | D; Dipr(x)| < C(log(log ))
(log |z])~tz| =2 as L — oo and supp A%py, supp D;Dypr, C {z € R? | eVl
|z] < L}, by (5.8) we have
L
(4, (A2p)u)q| < Clog(log L)) / (log )2t dr
VIoE T
< C(log(log L)) *(log L) 2 — 0
and

|(u, (D;Dypr)D;Dyu)q|

L
< C{ sup |DjDku(x)|} (log(log L))_l/ (logr)~'r~tdr
eVREL<|z|<L VBT
<C sup |D;Dyu(x)] — 0
6*/10gL§‘x|§L
as L — oo, letting L — oo in (5.9) we have [|Aul[, , = 0, which implies that

Au =0 in Q. Since u|lr = D,u|r = 0, the zero extension ug of u to the whole
space R? satisfies the Laplace equation Aug = 0 in R?. Since ug(z) = u(z) =
O(|z|) as |x| — oo, from Lemma 3.1 we see that ug is a polynomial of degree 1.
But, ug(z) = 0 for z € R?\ 2, which means that uy = 0.

Finally, we shall show that the radiation condition (5.6) together with (5.5)
implies that the radiation condition (5.8) holds. Let n be a function in C'*°(R?)
such that n(x) =1 for || > b+ 1 and n(z) = 0 for || < b, where b is a large
number such that B, D R3\ Q. Then, by (5.5) we have A%(nu) = 0 in R?, where
f(x) = A%(nu) — nA%u. Since supp f C By \ By, we have f € Ly(R?). Setting
v(z) = B3« f, by (5.8) and the fact that F3 is a fundamental solution to the
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biharmonic operator A% we have A%*(u —v) = 0 in R? Employing the same
argument as in the proof of Lemma 3.1, we have u(z) — v(z) = 37, /<, Ca®®
for some non-negative integer m and complex numbers c¢,. If we write v(x) =

E3(x) [go f(y) dy + [o(E3(x —y) — E3(x)) f(y) dy, we have

> cua” = Ba) [ £ dy = ule) — [ (B ) = B o) dy

laj<m

= O(|z|log |z|)

as [z — oo, which implies that u(z) =37, <; Ca?®+[p (B3 (x—y) = E3(x)) f (y)dy.
Therefore, V2u(z)=o0(1) as |z| — oo. This completes the proof. O

Now, we shall show Theorem 1.3 in the two-dimensional case.

Proof of Theorem 1.3 for n = 2. Let s and G(\) be the same as in Theorem 4.3.
Let n be a function in C*°(R?) such that n(z) = 1 for |x| > b —1 and n(z) =0
for |z] <b—2. Given F' € H,,(2) and A € w,, we set U(X) = G(A)F. We have
UN) =M —Aq) 'FeD,(Q) for A € w, NU and U(N) = G(A)F € Do)
for A € w,. Moreover, by (4.7) we have

M —-AUN=FinQ, BUMN|r=0 (A€wNnU). (5.10)
Since U(A) € Anal (wr, Dp1oc(2)), it follows from (5.10) that
M —-AUN) =FinQ,, BUMN|r=0 (A€w,). (5.11)
From (5.10) it follows that nU(\) satisfies the equation
(AT — A)UN) = nF + g(U () in B?
for A € w, NU, where for U = T (u,v,0) we have set

0
gU)=| A*(qu) —nA’u+ A(nd) —nAb
—(A(n0) —nAbd) — (A(nv) — nAv)

Note that supp g(U) C Dy_2—1. Since X, C p(Ag2) as follows from Theorem 4.1,
we have

nUN) = (AL = Agz) " (nF + g(U(N))) (5.12)

whenever A € W, NU N X,.. Let &, &, &, &, Hi(A\) and Ha(A) be the same
operators as in (4.1) of Theorem 4.1 and let H(\) be the same operator as in
(4.6). By (5.12) and Theorem 4.1 we have

nUA) = HN)(F +g(UQ))) (5.13)
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whenever A € w, NU N .. But, both sides in (5.13) are analytic in w,, and
therefore (5.13) holds for any A\ € w,.

In view of Theorem 4.3, we write
U(N) = NVi(s) + AT Va(s) + O(AIP?|log A7) (A — 0), (5.14)
where s and ~ are integers, Vi(A), Va(A) € Dpioc(§2) and ||V](/\)||Dp o S
Cllog AP Fl,, g for some integer 7; (j = 1,2). We shall show that s = 0 by
contradiction. Since (Al — A)U(N) = F in ,, BU(N)|r = 0 as follows from
(5.11), we have
N(—AVI(N) + O(IX*T (log A\)?]) = F in Q,
(N BVi(A) + O(IX" (log A)*[) }r = 0.
If s > 0, letting A — 0 in (5.15), we have F' = 0, which leads to a contradiction.
Therefore, we may assume that s < 0. By contradiction, we shall prove that

s = 0, so that we assume that s is a negative integer. Equating the term A\° in
(5.15), we have

(5.15)

—AVI(A) =0 inQ,, BVI(A)|r=0. (5.16)

On the other hand, inserting the formula (5.14) into (5.13) and using Theo-
rem 4.1 we have

A VI(A) + O(IXN T (log A\)?]) = (A& + log & + & + E3 + O(| A log A|))
- (F + X g(Vi(N) + X g(Va(N))
+ O(|A(log A)7])).
Equating the terms of A\*, A\*log A and \*~!, we have
NV (A) =E(nF") + Eg(Va(N)) + E29(Vi(N)) + Esg(Vi(N))
Eog(Vi(A) =0, &g(Vi(A)) =0,

Pl F when s = —1
o when s < —2.

Since n = 1 for |z| > b — 1, we extend V;(\) to the domain B® = {z € R? |
|z| > b} by the formula

Vi) = Eo(nFY) + Eg(Va(N)) + E9(Vi(N)) + Esg(Vi(A)) in BY.  (5.18)

Set ‘/1<>‘) = T(U,U,H), 77F1 = T(f07907h0)7 g(‘/l<)\)) = T(Oaglahl) and g(‘/Q()\))
= T(0, go, hy). Then, by Theorem 4.1 we have

u = 25090 + a3Soho + 25092 + a3Sohs

(5.17)

where

+ %WP * g1+ %WP * hy + B3 (g1 + ha)
v = 555091 + (53%50]11
0 = 535’091 + 5§SOh1 + E% * hl

(5.19)
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for |z| > b, where Sok = [g, kdx (cf. (4.14)). On the other hand, by (5.17) we
have asSpg1 + a3Sohy = 0, |z|> * (g1 + hy) = 0 for x € Q, Sphy = 0. Since
[ % (g1 + ha) = [2So(g1 + h1) — 22 - Si(g1 + ha) + Sa(g1 + ), 2] * (g1 + ha)
is a polynomial of degree 2 and vanishes identically in €2, so that we have

So(g1 + h1) = Si(g1 + ha) = Sa(g1 + ha) = 0. (5.20)
Since Sphy = 0, we have
Sogl = Soh1 = 0. (521)
Since
ﬁ\ﬂ?*gl 53 ’$‘2*h1 - &95 (Sig1) — &95 (51h1)+&5291+ﬁ—52h1
167 8 8

as follows from (5.21), from (5.19) and (5.21) we have
u=rci(z) +Es* (g1 +h), v=0, 0=E;*h (5.22)

for x € B, where c;(z) is a constant coefficient polynomial of degree 1 which
is given by the formula cl(:n) = —x- (62 S191 + 3 Slhl) + a1S0g0 + @aSohg +
15092 + 2 Soho + 7 8291 + £ Sghl Noting that E2 and E} are fundamental
solutions of A2 and A respectlvely, we have

0 0
—AVi(A) = [ AW+ A0 | =g | =0 in B, (5.23)
—Af hy

because g = hy = 0 for |z| > b — 1. Combining (5.23) and (5.16) implies that

A*u=0inQ, wulp=Dyulr=0
v=0inQ (5.24)
“AG=0inQ, 6p=0.

Now, we shall show that u = 8 = 0 by using Lemmas 5.1 and 5.2. By (5.20),
(5.21), (5.22) and Lemma 5.1 we have u(z) = O(|z]), Vu(z) = O(1), Viu(z) =
O(lz[7%), Viu(z) = O(|z[7%), 6(z) = O(|z[71), VO(x) = O(|x|™*) as |z| — oo,
which combined with (5.24) and Lemma 5.2 implies that u = 6 = 0. Therefore,
we have V;(\) = 0, which leads to a contradiction. Namely, we have shown that
s=0.

Now, in view of Theorem 4.3, we can write

U(N) = (log \)V; + (log )V, 4+ O(]log A|772) (5.25)
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as A — 0, where V; € D,10.(€%) and HV}”DM“(% < CF [, (G =1,2). We
may assume that V} # 0. Employing the contradiction argument again, we shall
show that d = 0. From (5.11) we have

(log \)4(—AV}) + O(]log \|*™) = F in @,
{(log \)*BV1 + O(|log A|“" ") }r = 0.
If d < 0, then letting A — 0 in (5.26), we have F' = 0, which leads to a

contradiction. Therefore, we may assume that d > 0. Assume that d is a
positive integer. Multiplying (5.26) by (log \)~¢ and letting A — 0, we have

—AV; =0in Q,, BVi|r=0. (5.27)

On the other hand, inserting the formula (5.25) into (5.14) and using Theo-
rem 4.1, we have

n(log \)Vi+ O(| log A|*™)

= (A& +Hlog A& +E+E+O(IX log M) {nF + (log \)?g(V1) + (log A)*g(V3)
+O(|log A[*7%)}

= A" HE&(F) + (log \) &g (V1) + (log M) Eog(Va) + O([log A)|**)}
+1log A1 (nF) + (log \) ™' E19(V1) + (log A)?E1g(Va) + (log \)?E29(V1)
+ (log A)*E3g(V1) + O(|log A|*™1).

Equating the terms of A™%, A} (log \)4, A~!(log \)?~1, (log \)¥*! and (log \)¢,
we have

(5.26)

Eog(V1) = &Iy + g(Va)) = E1g(V1) =0 (5.28)
nVi =& (4 g(Va)) + E29(V1) + E3g(V1), (5.29)
where
0 when d > 2
Fl -
F when d > 1.
Note that now &; appears and & disappears in (5.29), while & disappears
and & appears in (5.18). Again we set Vi = T(u,v,0), nFy = (fo, 90, ho),
g(V1) = 1(0,g1,h) and g(Va) = T(0, g2, ha). By Theorem 4.1 and (5.29), we
have

w= Ll (- Af) g + o o+ ha) + g,

B3 o 9
+ —1|x|* % hy + E5 * +h
16 1 It Ea gy 4 ) (5.30)
v = 655091 + 630y

1 : :
0 = _Eso(nho + hg) + 655091 + 03500 + By * hy
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for x € B®. By (5.28) and (4.2) we have

0425'091 + OégSOhl =0
a@250(ng0 + 92) + azSo(nho + he) =0

ol ¢ g+ hi) =0 (x € ) 30
Sohy = 0.
The first and last formulas in (5.31) implies that
Sog1 = Sohy = 0. (5.32)
Moreover, the third formula in (5.31) implies that
So(gr + h1) = Si(g1 + h1) = Sa(g1 + h1) = 0. (5.33)

By (5.30) and (5.32) we have v = 0 for z € B®, which combined with (5.27)
implies that v = 0 in Q. Since A?|z|> = 0, and Sy(nho + h2), Sog1 and Syhy
are constants, and since E2 and Fi are fundamental solutions of A% and —A,
respectively, from (5.30) we have

ANu=g +hi =0, —A0=h =0 (5.34)

for z € B?, because g; = hy = 0 for |z| > b — 1. Combining (5.34) with (5.27)
implies that

A?u =0 in Q, ul|p = D,ulr =0 (5.35)
—A0=01inQ, Or=0. (5.36)

Since Sphy = 0, by Lemma 5.1 we have §(z) = (|z|7') as |x| — oo, which
combined with (5.36) and Lemma 5.2 implies that § = 0. Since § = —--So(nho+
ho) — 5= Joo(E3(x — y) — E3(2))hi(y) dy as |z| — oo as follows from the third
formula in (5.30) and (5.32), we have

So(nho + ha) =0, (5.37)

because [g. (B3 (x — y) = Ey(x))hi(y) dy = O(|z|™") as |z| — oco. Combining
(5.37) and the second formula of (5.31), we have

So(ngo + g2) = So(nho + h2) = 0. (5.38)

From the first formula of (5.30), we have u = ¢y + ¢; + ug, where we have set

uy = E3 % (g1 + h), co = %(SU(_AO?][O)) + So(ngo + g2) + So(nho + ha)),
a1 = —g5= - (S1(=AMnfo)) + Si(ngo + g2) + S1(nho + ha) + B25191 + B3S1h) +
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Sa(=A(nfo)) + S2(ngo + g2) + S2(nho + ha) + 25291 + B352hy. By (5.33) and
Lemma 5.1 we have

ug(x) = Olog |z]),  Vuo(z) = Olz[™"), Vup(z) =O(z|™*)  (5.39)

as || — oo. Noting that So(—A(nfy)) = 0 as follows from the divergence
theorem of Gauss, by (5.38) we have ¢y = 0. Since ¢; is a polynomial of
degree 1, by (5.39) we have u(x) = O(|z|) as |x| — oo, which combined with
(5.35) and Lemma 5.2 implies that u = 0. Therefore, we have V; = 0, which
leads to a contradiction, and then we have d = 0. This completes the proof of
Theorem 1.3 for n = 2. [

Proof of Theorem 1.4 forn = 2. Let 7, Gy, Gy and G3(\) be the same as in
Theorem 1.3. And, let U be the same as in (1.8). Let ' =T', UTqUT'_ be a
path in C defined by the formulas

Iy A= sel™9), $:00 — %(cos )

Ty )\—2((:089)1’8, s:m—0— —(m—0)

I_:\=se im0, S : g(cos 0)"" — oo,
where ¢ € (0,7%) is chosen so close to £ that I' C U. By (1.5) and (1.7)
we have T(t)F = 5= [(A — AQ) LE d)\. To estimate T'(t)F, let us set I, =
57 o, M — Aq) T Fd\, Iy = 5 [1 (M — Ag) "' FdX. By (1.7) we have

vl

Hp ()

o C .
Lo (t <C (scos(m—0)) d I _ —(5)t Ia
18y 0 < / o o = g P

for any ¢t > 0 and F' € H,(€2). To estimate Iy(t), we restrict ourselves to the
case where F' € H,;,(€2). Let C' = C, UCL UC_ UC, be a path defined by the
formulas

Ch /\:—g—I—s, S gtan9—>0
CL:A=¢e"s, s:g—>0
C_:A=¢e s, S 0—>g

Cy /\:—%—Fs, 5:0—>—Ztan0

Then, by (1.10) in Theorem 1.3 we have

Io( 27”{/01 /C+ / /02} (G1F + (log \) ' GoF + G3(A\)F) dA
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in Q, for any ¢ > 0. Setting Jo(t) = 5={ fcl +f02 }eM(GLF 4 (log \) ' GoF +
G3(\)F) d\, we have

~ %tan@ . i
0y, g < C5 [* dSIF 0, < O tan8)e 2]

Dp,loc<ﬂb) - Hp ()"

Obviously, {fc+ + [ }eMGIFdA=0.
Setting Ji (t) = 5= { fc+ + [ }eM(log \)! dA G, F, we observe that

r/° . . 1 [3 . .
Ji(t) = %/; (log se'™) " te e ™ds Go F + i (log se™™)te e " ds Go
1 [ 1 1
_ ( _ , )e_StdngF
2mi Jy \logs+1im logs —im

P G
__/0 (log s)? 4 m2 5 b2t

Therefore, for ¢t > 1 we have

efst

500,00 <€ | oz 1 e

) e—é
= Ct! dl||F
¢ /0 (logt —log¢)? + w2 | HHP(Q)

<ct /ﬁ I /oo A0
- o (logt—logt)? 2 \/ge Hp ()

Vi

S Ot—1{4(1ogt)—2/ 6_4 dﬁ + e 2 / 6_% df} ||F||Hp(ﬂ)
0 0

2

< Ct™'(logt)* || F|

Hp(2) "
Finally, setting Jo(t) = %m{far—{— Jo }eMG3(N\)FdA, by (1.10) in Theo-
rem 1.3 we have

efst

3
192000, < € [ e Pl

and therefore employing the same argument as in the estimate of J;(¢) we have

172Dl oy < Ct (108 8) | Fll,, q for > 1.

Hp(2)

Combining these estimations, we have Theorem 1.4 for n = 2. O]
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