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Entire Extremal Solutions for

Elliptic Inclusions of Clarke’s Gradient Type

Patrick Winkert

Abstract. We consider multivalued quasilinear elliptic problems of hemivariational
type in all of R

N given by

−∆pu + ∂j(·, u) ∋ 0 in D′,

and show the existence of entire extremal solutions by applying the method of sub- and
supersolutions without imposing any condition at infinity. Due to the unboundedness
of the domain, standard variational methods cannot be applied. The novelty of our
approach is on the one hand to obtain entire solutions and on the other hand that
Clarke’s generalized gradient need only satisfies a natural growth condition. In the
last section conditions are provided that ensure the existence of nontrivial positive
solutions.

Keywords. Elliptic inclusions, Clarke’s generalized gradient, p-Laplacian, Sub-super-
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1. Introduction

This paper deals with quasilinear elliptic differential inclusions of Clarke’s gra-
dient type defined in all of R

N in the form

−∆pu+ ∂j(·, u) ∋ 0 in D′, (1.1)

where −∆pu = − div(|∇u|p−2∇u), 1 < p < ∞, is the negative p-Laplacian and
the function j : R

N × R → R is assumed to be measurable in x ∈ R
N for all

s ∈ R, and locally Lipschitz continuous in s ∈ R for almost all (a.a.) x ∈ R
N .

The multivalued function s 7→ ∂j(x, s) stands for Clarke’s generalized gradient
of the locally Lipschitz function s 7→ j(x, s) and is given by

∂j(x, s) = {ξ ∈ R : jo(x, s; r) ≥ ξr,∀r ∈ R},
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for a.a. x ∈ R
N , where jo(x, s; r) is the generalized directional derivative of j

at s in the direction r defined by

jo(x, s; r) = lim sup
y→s,t↓0

j(x, y + tr) − j(x, y)

t
,

(see [10, Chapter 2]). We denote by D = C∞
0 (RN) the space of all infinitely

differentiable functions with compact support in R
N and by D′ its dual space.

This type of hemivariational inequalities has been studied by various au-
thors on bounded domains. For Dirichlet boundary conditions under local
growth conditions, we refer, e.g., to [8] and for hemivariational inequalities
with measure data on the right-hand side see [6]. Single valued problems in the
form (1.1) for Neumann boundary conditions of Clarke’s gradient type are con-
sidered in [5]. In [4] the author discussed our problem (1.1) with a multivalued
term in form of a state-dependent subdifferential in all of R

N which turns out
to be a special case of problem (1.1). Let Ω ⊂ R

N be a bounded domain and
consider problem (1.1) under Dirichlet boundary values. Let f : Ω×R → R be
a Carathéodory function. If j is a primitive of f , meaning that

j(x, s) :=

∫ s

0

f(x, t)dt,

then s 7→ j(x, s) is continuously differentiable and hence, ∂j(x, s) =
{

∂j(x,s)
∂s

} =
{f(x, s)

}
. Thus, problem (1.1) is simplified to the elliptic boundary value prob-

lem

u ∈ W 1,p
0 (Ω) : − ∆pu+ f(·, u) = 0 in (W 1,p

0 (Ω))′,

for which the method of sub- and supersolutions is well known (see [7, Chap-
ter 3]). Comparison principles for general elliptic operators A, in particular for
the negative p-Laplacian −∆p, and Clarke’s gradient s 7→ ∂j(x, s) satisfying a
one-sided growth condition in the form

ξ1 ≤ ξ2 + c1(s2 − s1)
p−1, (1.2)

for all ξi ∈ ∂j(x, si), i = 1, 2, for a.a. x ∈ Ω, and for all s1, s2 with s1 < s2

can also be found in [7, Chapter 4]. Recently, a new comparison result for
inclusions of the form (1.1) for bounded domains without the condition (1.2)
has been obtained in [9].

The main goal of this paper is to prove the existence of entire extremal
solutions for the inclusion (1.1) within a sector of an ordered pair of sub- and
supersolutions u, u without assuming any conditions as in (1.2).

The paper is organized as follows. In Section 2 we formulate our notations
and hypotheses and in Section 3 we prove our main result about the existence
of extremal solutions. In the end of Section 3 we consider the relation to the
problem in [4] and finally, we give an example of the construction of sub- and
supersolutions in Section 4.
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2. Notations and Hypotheses

Let W = W 1,p
loc (RN) be the local Sobolev space of all functions u : R

N → R,
which belong to the Sobolev space W 1,p(Ω) for every compact domain Ω ⊂
R

N . The topology of the locally convex space W is described by the family of
seminorms {hk : k = 1, 2, . . .} given by hk(u) = ‖u‖W 1,p(Bk), where Bk ⊂R

N is
the ball of radius k. A sequence (un) ⊂ W converges to u if and only if

hk(un − u) → 0, as n→ ∞, for all k = 1, 2, . . . .

Since the space W has a countable fundamental system of seminorms, there
exists a metric d on W for which (W , d) is a complete metric vector space.
Such spaces are called Frechét spaces (see [12, Theorem 25.1, Corollary 25.2]).
For fixed k we denote Wk = W 1,p(Bk) and by ik : W → Wk the mapping
defined by W ∋ u 7→ u|Bk

∈ Wk, where u|Bk
denotes the restriction of u

to Bk. Analogously, we define the local Lebesgue space Lq := Lq
loc(R

N), where
q satisfies the equation 1

p
+ 1

q
= 1. Note that Lq is equipped with the natural

partial ordering ≤ defined by u ≤ v iff v − u ∈ Lq
+ := Lp

loc,+(RN) which stands
for the set of all nonnegative functions of Lq.

Definition 2.1. A function u ∈ W is said to be a solution of (1.1), if there
exists a function γ ∈ Lq such that

(i) γ(x) ∈ ∂j(x, u(x)), for a.a. x ∈ R
N ,

(ii)
∫

RN |∇u|p−2∇u∇ϕdx+
∫

RN γϕdx = 0, for all ϕ ∈ D.

Definition 2.2. A function u ∈ W is said to be a subsolution of (1.1), if there
exists a function γ ∈ Lq such that

(i) γ(x) ∈ ∂j(x, u(x)), for a.a. x ∈ R
N ,

(ii)
∫

RN |∇u|p−2∇u∇ϕdx+
∫

RN γϕdx ≤ 0, for all ϕ ∈ D+.

Definition 2.3. A function u ∈ W is said to be a supersolution of (1.1), if
there exists a function γ ∈ Lq such that

(i) γ(x) ∈ ∂j(x, u(x)), for a.a. x ∈ R
N ,

(ii)
∫

RN |∇u|p−2∇u∇ϕdx+
∫

RN γϕdx ≥ 0, for all ϕ ∈ D+.

Here, D+ := {ϕ ∈ D : ϕ ≥ 0} stands for all nonnegative functions of D.
In order to formulate our main results we suppose the following hypotheses for
the function j and its Clarke’s gradient ∂j(x, ·) in problem (1.1).

(j1) The mapping x 7→ j(x, s) is measurable for all s ∈ R and s 7→ j(x, s) is
locally Lipschitz continuous for a.a. x ∈ R

N .

(j2) There is a constant c > 0 such that

ξ ∈ ∂j(x, s) : |ξ| ≤ c(1 + |s|p−1),

for a.a. x ∈ R
N and for all s ∈ R.
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3. Main results

Now, we want to show that the assumptions (j1) and (j2) are sufficient to ensure
the existence of entire extremal solutions of (1.1) within the interval [u, u]. Our
main result in this paper is given in the following theorem.

Theorem 3.1. Let conditions (j1)–(j2) be satisfied and let u, u be a pair of sub-

and supersolutions of problem (1.1) satisfying u ≤ u. Then there exist extremal

solutions of (1.1) belonging to the interval [u, u].

Proof. First we select a sequence of open balls (Bk) ⊂ R
N , k = 1, 2, . . . , whose

union is equal to R
N , that is,

⋃∞

k=1Bk = R
N . We construct a sequence

(Uk,Γk) ⊂ W × Lq as follows: By means of the given supersolution accord-
ing to Definition 2.3, one defines

U0 := u, Uk(x) =

{
uk(x) for x ∈ Bk

u(x) for x ∈ R
N \Bk

Γ0 := γ, Γk(x) =

{
γk(x) for x ∈ Bk

γ(x) for x ∈ R
N \Bk,

(3.1)

where the pair (uk, γk) ∈ W 1,p(Bk) × Lq(Bk) denotes the greatest solution of
the differential inclusion

−∆puk + ∂j(·, uk) ∋ 0, in Bk

uk = u, on ∂Bk

(Pk)

in the order interval [u|Bk
, u|Bk

]. We recall that a pair (uk, γk) ∈ W 1,p(Bk) ×
Lq(Bk) is a solution of (Pk) if the following holds:

(1) uk = u on ∂Bk,

(2) γk(x) ∈ ∂j(x, uk(x)), for a.a. x ∈ Bk,

(3)
∫

Bk
|∇uk|

p−2∇uk∇ϕdx+
∫

Bk
γkϕdx = 0, for all ϕ ∈ C∞

0 (Bk).

Obviously, the functions u|Bk
, u|Bk

create an ordered pair of sub- and superso-
lutions to the auxiliary problem (Pk) and the existence of a greatest solution
uk ∈ [u|Bk

, u|Bk
] of (Pk) follows directly from [9, Theorem 4.1, Corollary 4.1].

The extensions (Uk, Vk) of (uk, vk) are well-defined and belong to W ×Lq.

By the construction of Uk one sees immediately that U1 ≤ U0 is true. The
function u2 ∈ W 1,p(B2) is the greatest solution of (P2) in the interval [u|B2

, u|B2
].

Furthermore, u2|B1
is a subsolution of (P1) in B1, and u|B1

is a supersolution
of (P1) in B1 satisfying u2|B1

≤ u|B1
. Since u1 ∈ W 1,p(B1) is the greatest

solution of (P1) in [u|B1
, u|B1

] ⊃ [u2|B1
, u|B1

], we obtain u2|B1
≤ u1 and therefore

U2 ≤ U1. In order to generalize this result, we argue per induction and have
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by definition of Uk that uk+1|Bk
is a subsolution of (Pk) and uk is the greatest

solution in [u|Bk
, u|Bk

] ⊃ [uk+1|Bk
, u|Bk

]. This yields

u ≤ · · · ≤ Uk+1 ≤ Uk ≤ · · · ≤ U1 ≤ U0 = u,

and consequently,

lim
k→∞

Uk(x) = U∗(x), for almost all x ∈ R
N .

To show that U∗ belongs to W , let Ω ⊂ R
N be any compact set, which implies

the existence of an open ball Bk satisfying Ω ⊂ Bk. Due to the fact that u, u
generate lower and upper bounds for Ul, we obtain the boundedness of Ul with
respect to the norm in Lp(Bk), that is,

‖Ul‖Lp(Bk) ≤ ck, for all l = 1, 2, . . . , (3.2)

where ck are some positive constants depending only on k. Now we are going
to prove the boundedness of ∇Ul in Lp(Bk). One observes that each Ul with
l ≥ k + 1 fulfills in Bk+1

−∆pUl + ∂j(·, Ul) ∋ 0,

which by Definition 2.1 means

∫

Bk+1

|∇Ul|
p−2∇Ul∇ϕdx+

∫

Bk+1

Γlϕdx = 0, for all ϕ ∈ C∞
0 (Bk+1), (3.3)

where we have

Γl(x) ∈ ∂(x, Ul(x)), for almost all x ∈ R
N .

Since W 1,p
0 (Bk+1) is the closure of C∞

0 (Bk+1) in W 1,p(Bk+1) (see [1]), the va-
lidity of (3.3) for all ϕ ∈ W 1,p

0 (Bk+1) can be proven easily by using completion
techniques. With the aid of [11, Theorem 1.2.2] we introduce a function ϑ ∈ D
given by the following properties:

1. 0 ≤ ϑ(x) ≤ 1 for all x ∈ R
N ,

2. ϑ(x) = 0 for all x ∈ R
N \Bk+1,

3. ϑ(x) = 1 for all x ∈ Bk.

Additionally, it holds

max

(
sup
Bk+1

ϑ, sup
Bk+1

|∇ϑ|p
)

≤ c, (3.4)
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where c is a positive constant. By using the special test function ϕ = Ul · ϑ
p ∈

W 1,p
0 (Bk+1) in the left term of (3.3), one gets along with Young’s inequality

∫

Bk+1

|∇Ul|
p−2∇Ul∇(Ulϑ

p)dx

=

∫

Bk+1

ϑp|∇Ul|
pdx+ p

∫

Bk+1

|∇Ul|
p−2∇UlUlϑ

p−1∇ϑdx

≥

∫

Bk+1

ϑp|∇Ul|
pdx− p

∫

Bk+1

ε|∇Ul|
p|ϑ|pdx− p

∫

Bk+1

C(ε)|Ul|
p|∇ϑ|pdx

≥

∫

Bk+1

(1 − pε)ϑp|∇Ul|
pdx− p

∫

Bk+1

C(ε)|Ul|
p|∇ϑ|pdx,

where ε is selected such that ε < 1
p
. Applying (j2) along with (3.4) and (3.2)

yields

∫

Bk+1

(1 − pε)ϑp|∇Ul|
pdx ≤ p

∫

Bk+1

C(ε)|Ul|
p|∇ϑ|pdx+

∫

Bk+1

ΓlUlϑ
pdx

≤ p

∫

Bk+1

C(ε)|Ul|
p|∇ϑ|pdx+

∫

Bk+1

(c+ c|Ul|
p−1)|Ul|ϑ

pdx

≤ c̃,

where c̃ is a positive constant which depends only on k. The boundedness of
the gradient ∇Ul in Lp(Bk) follows directly by the estimate

∫

Bk

|∇Ul|
pdx ≤

∫

Bk+1

ϑp|∇Ul|
pdx for any l ≥ k + 1,

which implies along with (3.2) that ‖Ul‖W 1,p(Bk) ≤ ĉk for all l = 1, 2, . . .. The
reflexivity of W 1,p(Bk), 1 < p <∞, ensures the existence of a weakly convergent
subsequence of Ul. Due to the compact imbedding W 1,p(Bk) →֒ Lp(Bk) and the
monotony of Ul we get, for the entire sequence Ul,

Ul |Bk
⇀ U∗ |Bk

in W 1,p(Bk) and Ul |Bk
→ U∗ |Bk

in Lp(Bk).

We have U∗ ∈ W 1,p(Bk) and since Ω ⊂ Bk it follows U∗ ∈ W 1,p(Ω). As Ω is a
freely selected compact domain in R

N , we obtain U∗ ∈ W. Our aim is to show
that U∗ is the greatest solution of (1.1) in [u, u]. Due to (3.1) it holds

Γk ∈ ∂j(x, Uk(x)) a.a. in R
N and for all k. (3.5)

Immediately, the boundedness of Γk in Lq is a consequence of condition (j2) and
by using the diagonal process of Cantor one shows the existence of a weakly
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convergent subsequence of (Γk), still denoted by Γk. In fact, since Lq is a
reflexive Fréchet space for 1 < q <∞ (see [12, Theorem 25.15]), we have

∫

RN

Γkϕdx→

∫

RN

Γ∗ϕdx ∀ϕ ∈ D as k → ∞. (3.6)

Due to (3.5) we get, for any ball Bk,

Γl(x) ∈ ∂j(x, Ul(x)), a.a. x ∈ Bk, l = 1, 2, . . . ,

which implies

∫

Bk

Γlϕdx ≤

∫

Bk

jo(x, Ul;ϕ)dx, for all ϕ ∈ C∞
0 (Bk).

Using Fatou’s Lemma and the upper semicontinuity of jo yields

lim sup
l→∞

∫

Bk

Γlϕdx ≤

∫

Bk

lim sup
l→∞

jo(x, Ul;ϕ)dx ≤

∫

Bk

jo(x, U∗;ϕ)dx,

which shows in view of (3.6)

∫

Bk

Γ∗ϕdx ≤

∫

Bk

jo(x, U∗;ϕ)dx, ∀ϕ ∈ C∞
0 (Bk). (3.7)

We are going to show that (3.7) implies Γ∗(x) ∈ ∂j(x, U∗(x)) for a.a. x ∈ Bk.
The mapping r 7→ jo(x, s; r) is positively homogeneous and inequality (3.7)
holds, in particular, for all ϕ ∈ C∞

0 (Bk)+. We obtain

∫

Bk

Γ∗ϕdx ≤

∫

Bk

jo(x, U∗; 1)ϕdx, ∀ϕ ∈ C∞
0 (Bk)+.

By [10, Proposition 2.1.2] Clarke’s generalized directional derivative jo fulfills

jo(x, s; r) = max{ξr : ξ ∈ ∂j(x, s)},

and since ∂j(x, s) is a nonempty, convex, and compact subset of R, there exists
a function Γ∗

1 : Bk → R such that

jo(x, U∗(x); 1) = Γ∗
1(x), for a.a. x ∈ Bk, (3.8)

where

Γ∗
1(x) = max{ξ : ξ ∈ ∂j(x, U∗(x))}. (3.9)

Applying the general approximation results in [3] for lower (respectively, upper)
semicontinuous functions in Hilbert spaces yields a sequence of locally Lipschitz
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functions converging pointwise to jo. This implies that s 7→ jo(x, s; 1) is su-
perpositionally measurable, meaning that the mapping x 7→ jo(x, u(x); 1) is
measurable for all measurable functions u : Bk → R. Due to (3.8) and (j2) we
infer Γ∗

1 ∈ Lq(Bk). Using (3.7) proves

∫

Bk

Γ∗ϕdx ≤

∫

Bk

Γ∗
1ϕdx, ∀ϕ ∈ C∞

0 (Bk)+,

which implies

Γ∗(x) ≤ Γ∗
1, for a.a. x ∈ Bk. (3.10)

Testing (3.7) with nonpositve functions ϕ = −ψ, where ψ ∈ C∞
0 (Bk)+, we have

−

∫

Bk

Γ∗ψdx ≤

∫

Bk

jo(x, U∗;−1)ψdx, ∀ψ ∈ C∞
0 (Bk)+. (3.11)

The same arguments as above yield the existence of a function τ ∈ Lq(Bk) such
that

τ(x) = max{−ξ : ξ ∈ ∂j(x, U∗(x))} = −min{ξ : ξ ∈ ∂j(x, U∗(x))}, (3.12)

which implies by setting Γ∗
2 = −τ in (3.11) that

−

∫

Bk

Γ∗ψdx ≤ −

∫

Bk

Γ∗
2ψdx, ∀ψ ∈ C∞

0 (Bk)+,

and therefore one gets

∫

Bk

Γ∗ψdx ≥

∫

Bk

Γ∗
2ψdx, ∀ψ ∈ C∞

0 (Bk)+.

From the last inequality we infer

Γ∗(x) ≥ Γ∗
2, for a.a. x ∈ Bk. (3.13)

In view of (3.9), (3.10), (3.12), (3.13) and Γ∗
2 = −τ we see at once that

Γ∗(x) ∈ ∂j(x, U∗(x)) for a.a. x ∈ Bk. (3.14)

Let ϕ ∈ D be arbitrary fixed. Then there exists an index k such that the
support of ϕ fulfills suppϕ ⊂ Bk. The approximations above yield, for any
l ≥ k

∫

RN

|∇Ul|
p−2∇Ul∇ϕdx+

∫

RN

Γlϕdx = 0,
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or equivalently

∫

Bk

|∇Ul|
p−2∇Ul∇ϕdx+

∫

Bk

Γlϕdx = 0. (3.15)

It is well known that −∆p : W 1,p(Bk) → (W 1,p(Bk)
∗) is continuous, bounded,

and pseudomonotone for 1 < p < ∞. We have Ul ⇀ U∗ in W 1,p(Bk) and due
to the pseudomonotonicity it holds −∆pUl ⇀ −∆pU

∗ in (W 1,p(Bk))
∗. Along

with the weak convergence of Γl in Lq(Bk) we can pass to the limit in (3.15)
and obtain

∫

RN

|∇U∗|p−2∇U∗∇ϕdx+

∫

RN

Γ∗ϕdx = 0. (3.16)

The statements in (3.14) and (3.16) show that the pair (U∗,Γ∗) is a solution
of the problem (1.1) in [u, u]. In order to complete the proof we have to prove
that U∗ is the greatest solution of (1.1) in [u, u]. Let ũ be any solution of (1.1) in
the order interval [u, u]. Obviously, the solution ũ is also a subsolution of (1.1),
which implies by the construction in (3.1) that the inequality ũ ≤ Ul ≤ u is
valid for all l = 1, 2, . . .. This yields ũ ≤ Ul, which shows that U∗ must be the
greatest solution of (1.1) in [u, u]. In the same way one can show the existence
of a smallest solution.

Remark 3.2. Notice that Theorem 3.1 can be extended for problems of the
form

Au+ ∂j(·, u) ∋ 0 in D′,

where

Au(x) = −
N∑

i=1

∂

∂xi

ai(x, u(x),∇u(x)), with ∇u =

(
∂u

∂x1

, . . . ,
∂u

∂xN

)
(3.17)

is a general operator of the Leray–Lions type. The proof in this case can be
shown by using similar arguments.

Remark 3.3. The elliptic inclusion problem with state-dependent subdifferen-
tials investigated by Carl in [4] has the form

Au+ β(·, u, u) ∋ 0 in D′,

where A is a general operator of the Leray–Lions type like in (3.17) and
β(x, u, ·) : R → 2R \ ∅ is a maximal monotone graph in R

2 depending continu-
ously on the unknown u. The multifunction β is generated by f : R

N ×R×R →
R which satisfies the following conditions:
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(f1) (x, r) → f(x, r, s) is a Carathéodory function uniformly with respect to s,
which means that f is measurable in x for all (r, s) ∈ R×R and continuous
in r for a.a. x ∈ R

N uniformly with respect to s.

(f2) s → f(x, r, s) is nondecreasing (possibly discontinuous) for a.a. x ∈ R
N

and for each r ∈ R, and it is related to the maximal monotone graph β
by

β(x, r, s) = [f(x, r, s− 0), f(x, r, s+ 0)],

where f(x, r, s± 0) = limε↓0 f(x, r, s± ε).

(f3) (x, s) → f(x, r, s) is measurable in R
N × R for each r ∈ R.

(f4) For a given pair of sub- and supersolutions u, u satisfying u ≤ u, there
exists a function k ∈ Lq

+ and a constant α > 0 such that

|f(x, r, s)| ≤ k(x),

for a.a. x ∈ R
N and for all r ∈ [u(x), u(x)] and s ∈ [u(x) − α, u(x) + α].

The function f is continuous in the second argument and nondecreasing
(possibly discontinuous) in the third argument. Thus, f ∈ L∞

loc(R
N × R × R)

and we can set

j(x, s) =

∫ s

0

f(x, t, t)dt,

which yields that the function s 7→ j(x, s) is locally Lipschitz and Clarke’s
generalized gradient can be represented by ∂j(x, s) = β(x, s, s) (for more details
see, e.g., [9]). Hence, our paper extends the results in [4] for more general
multifunction in form of Clarke’s generalized gradients in all of R

N .

4. Construction of Sub- and Supersolutions

In this section we give some conditions to find a pair of sub- and supersolutions
of our problem (1.1). The main idea is to use the eigenvalues and the corre-
sponding eigenfunctions of the p-Laplacian on bounded domains with Dirichlet
boundary values. We denote by λ1 the first eigenvalue of the p-Laplacian on
the ball Br with radius r corresponding to its eigenfunction ϕ1. This means, ϕ1

satisfies the equation

−∆pu = λ1|u|
p−2u

u = 0

in Br,

on ∂Br.
(4.1)

In view of the results of Anane in [2], it is well known that λ1 is positive and
ϕ1 ∈ int(C1

0(Br)+), where the interior of the positive cone C1
0(Br)+ is given by

int(C1
0(Br)+) =

{
u ∈ C1

0(Br) : u(x) > 0,∀x ∈ Br, and
∂u

∂n
(x) < 0,∀x ∈ ∂Br

}
.

Now we suppose the hypotheses on Clarke’s generalized gradient as follows:
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(j3) There exists a Carathéodory function g : R
N × R → R, which fulfills

ξ ≤ g(x, s), ∀s ∈ R, for a.a. in R
N , and for all ξ ∈ ∂j(x, s) (4.2)

and has the property

lim inf
s→+0

(
−
g(x, s)

sp−1

)
> λ1, (4.3)

uniformly with respect to a.a. x ∈ R
N . Furthermore, there exists s̃ > 0

such that

∂j(x, s̃) ≥ 0, for a.a. x ∈ R
N . (4.4)

Proposition 4.1. Let the conditions (j1)–(j3) be satisfied. Then there exists a

positive ordered pair of sub- and supersolutions

u(x) =

{
εϕ1(x) if x ∈ Br

0 if x ∈ R
N \Br,

u(x) = s̃, for a.a. x ∈ R
N (4.5)

of problem (1.1) provided that ε > 0 is sufficiently small.

Proof. The eigenfunction ϕ1 of (4.1) belongs to int(C1
0(Br)+), that means in

particular, the outer normal derivative ∂ϕ1

∂n
on ∂Br has a negative sign. By

applying the Divergence Theorem we have for ϕ ∈ D+

∫

RN

|∇u|p−2∇u∇ϕdx =

∫

Br

|∇(εϕ1)|
p−2∇(εϕ1)∇ϕdx

=

∫

∂Br

|∇(εϕ1)|
p−2(∂(εϕ1)/∂ν)ϕdx+

∫

Br

λ1(εϕ1)
p−1ϕdx

≤

∫

Br

λ1(εϕ1)
p−1ϕdx

=

∫

RN

λ1u
p−1ϕdx.

This calculation along with (4.2) and (4.3) yields for γ ∈ ∂j(·, εϕ1)

−∆p(εϕ1) + γ ≤ λ1(εϕ1)
p−1 + g(·, εϕ1) ≤ 0,

assumed ε is sufficiently small. Due to (4.4) it follows directly that u = s̃ is
a positive constant supersolution of (1.1). Choosing ε small enough such that
u ≤ u completes the proof.

Proposition 4.1 ensures under the additionally hypothesis (j3) the existence of
a positive nontrivial solution u of (1.1) belonging to the order interval of sub-
and supersolutions given in (4.5).
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Example 4.2. Let λ > λ1 be fixed and let j(x, ·) : R → R be a locally Lipschitz
function satisfying (j1) given by

j(x, s) =





−λes−2 − λs− sgn(s)
|x| + 2

p(|x| + 1)
|s|p, if s ≤ 2

−
1

2
λs2 + 4λs− 9λ−

|x| + 2

p(|x| + 1)
sp, if 2 ≤ s ≤ 3

−λe−s+3 + λs−
7

2
λ−

|x| + 2

p(|x| + 1)
sp, if s ≥ 3.

Its generalized Clarke’s gradient has the form

∂j(x, s) =





−λes−2 − λ−
|x| + 2

|x| + 1
|s|p−1, if s < 2

[
−2

(
λ+

|x| + 2

|x| + 1
2p−2

)
, 2

(
λ−

|x| + 2

|x| + 1
2p−2

)]
, if s = 2

−λs+ 4λ−
|x| + 2

|x| + 1
sp−1, if 2 < s < 3

[
λ−

|x| + 2

|x| + 1
3p−1, 2λ−

|x| + 2

|x| + 1
3p−1

]
, if s = 3

λe−s+3 + λ−
|x| + 2

|x| + 1
sp−1, if s > 3.

One easily verifies that ∂j(x, ·) satisfies the condition (j2) and is bounded above
by a Carathéodory function g : Ω × R → R defined as

g(x, s) =





|s| −
|x| + 2

|x| + 1
|s|p−1, if s ≤ 0

−

(
λ+

|x| + 2

|x| + 1

)
sp−1, if 0 ≤ s ≤ 1

3λs− 4λ−
|x| + 2

|x| + 1
sp−1, if 1 ≤ s ≤ 2

s+ 2(λ− 1) −
|x| + 2

|x| + 1
sp−1, if s ≥ 2.

Since g fulfills property (4.3), there exists a positive pair of sub- and supersolu-
tions given by (4.5) and thus, we obtain a nontrivial positive solution u ∈ [u, u]
of problem (1.1).

Acknowledgement. The author gratefully acknowledges the helpful sugges-
tions of S. Carl during the preparation of the paper.



Entire Extremal Solutions for Elliptic Inclusions 75

References

[1] Adams, R. A., Sobolev Spaces. Boston: Academic Press 1978.
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