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Approximate Differentiability

Almost Everywhere

Emma D’Aniello and Paolo de Lucia

Abstract. Let X be a bounded measurable subset of Rk. We provide a character-
ization of the functions f : X → R approximately differentiable almost everywhere.
An important tool in the proof is a Saks’ Theorem-type result.
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1. Introduction

Researches concerning the existence almost everywhere of classical, asymptotic
derivatives were begun by Rademacher [18] and have been continued, among
others, by Stepanoff ( [23, 24]), Burkill [5], Haslam-Jones [14], Ward ( [25, 26])
and Roger [19]. Several authors, among them de Lucia ( [8, 9]), Oliveri [16],
Bongiorno [1], Shmidov [22], and Guariglia ( [11, 12]), have investigated char-
acterizations of the functions asymptotically differentiable almost everywhere
and have studied their properties. In particular, in [11], Guariglia provides a
necessary and sufficient condition for a real valued measurable function of two
variables be asymptotically differentiable.

Let X be a bounded measurable subset of Rk. It is well-known that the
three concepts, of asymptotic differentiability, of D-differentiability and of ap-
proximate differentiability, coincide for measurable functions (for a reference
see, for instance, [7]). Therefore, in the measurable case, the standard termi-
nology for asymptotic differentiability is approximate differentiability. For this
reason, we use this terminology in this paper. Many important papers have
been written on the subject during the last thirty years by mathematicians
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working in diverse areas such as real analysis, calculus of variations and PDE’s.
Some of them are: [2, 4, 10,13,17] and [21].

In this paper, we provide a characterization of the functions f : X → R

approximately differentiable almost everywhere. An important tool in the proof
is a result analogous to Theorem 14.1 proved in ( [20]: page 310) in the case
when k = 2 (to which authors refer in the general case as well). We provide a
proof in the general setting (Theorem 3.4).

The paper consists of four sections (this Introduction included). Section
two contains preliminary definitions and results. In the third section we prove a
Saks’ Theorem-type result ( [20]: page 310). In section four we recall the defini-
tion of a measurable function approximately differentiable almost everywhere,
and we generalize the main result of [11] to the case of real valued measurable
functions of any finite number of variables. Anyway, our technique is different
and it is based on the Saks’ Theorem -type result (of an independent interest)
of Section three. As in [6], in this paper we make our analysis pointing our
attention only on what happens inside certain “angles” of a fixed width and in
this investigation an important role is played by the parameter of regularity.

2. Preliminaries

We denote by λ⋆ and λ the Lebesgue outer measure and the Lebesgue measure
in Rk, respectively. If X is a subset of Rk, we denote by δ(X) its diameter (with
respect to the Euclidean metric). By I we denote the collection of all closed
non-degenerate intervals of Rk and, if x is a point of Rk, by I(x) we mean the
collections of the elements in I containing x.

Definition 2.1 ( [3,15,20]). Let X be a non-empty subset of Rk and x a point
of Rk. By writing

lim
I⇒x

λ∗(X ∩ I)

λ(I)
= l, l ∈ [0, 1],

we mean that for every ǫ > 0 there exists δ > 0 such that
∣

∣

λ⋆(X∩I)
λ(I)

− l
∣

∣ < ǫ for

every I ∈ I(x) with δ(I) < δ. In particular, x is called a density point of X if
l = 1, and x is called a dispersion point of X if l = 0.

Theorem 2.2 ([15, 20]). Let X be a non-empty subset of Rk. Then, almost
every point of X is a density point of X. Moreover, if X is measurable, then
almost all the points of the complement of X, Rk \ X, are dispersion points
of X.

Given two points of Rk, x = (x1, . . . , xk) and y = (y1, . . . , yk), by |x−y| we
denote the Euclidean distance of x from y. By π(x) we denote the product of
the co-ordinates of x, i.e., π(x) = x1x2 · · ·xk. We write x < y if xi < yi, for every
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i ∈ {1, . . . , k}. If x < y, by r([x,y]) we denote the parameter of regularity of the

interval [x,y], defined as r([x,y]) = λ([x,y])
Lk , where L = max{|x1 − y1|, . . . , |xk −

yk|}. If r([x,y]) = 1, then [x,y] is termed a cube.

3. A “Saks’ Theorem”-type result

The following Theorem 3.4 is an important tool in the characterization of the
functions f : X → R approximately differentiable almost everywhere (Theo-
rem 4.7). It is a Saks’ Theorem-type result ( [20, page 310]).

We now introduce the definition of A(τ) in Rk.

Definition 3.1. Let k ≥ 2. Given τ ∈ Rk and α ∈]0, 1[, we define

A(τ) =
{

y ∈ Rk : τ < y and r([τ,y]) > α
}

.

The point τ is termed the vertex of A(τ).

Remark 3.2. We mainly deal with subsets of Rk which are bounded and mea-
surable and we focus our attention on their density points. First, we investigate
what type of geometric objects these sets A(τ) are for k = 2 and k = 3.

Case k = 2: Fixed the parameter of regularity α ∈]0, 1[ and the point τ , an easy
computation shows that A(τ) is the angle of semi-width π

4
−arctan α, contained

in the unbounded rectangle ]xτ , +∞[× ]yτ , +∞[, with vertex τ = (xτ , yτ ) and
bisector the line x− xτ = y− yτ . The more α approaches 1 the more this angle
gets small.

Case k = 3: Fixed the parameter of regularity α ∈]0, 1[ and the point τ , a
simple computation shows that A(τ) is an unbounded solid, contained in the
unbounded parallelepiped ]xτ , +∞[× ]yτ , +∞[× ]zτ , +∞[, and it is the union
of the points inside three cones of vertex τ = (xτ , yτ , zτ ) all containing inside
the points of the line x − xτ = y − yτ = z − zτ . The more α approaches 1 the
more these cones get small.

In order to prove the main result of this section (Theorem 3.4) we first need
a simple preliminary Lemma.

Lemma 3.3. Let k ≥ 2, τ ∈ Rk and α ∈]0, 1[. Then λ(I(τ)\A(τ))
λ(I(τ))

is constant, for

every open neighbourhood I(τ) of τ of a fixed shape.

Proof. Without loss of generality, we can assume that τ = 0, i.e. we can restrict
our attention to the case when τ is the origin of Rk, and that every I(τ) is a
ball centered at τ . For every ρ > 0, let Iρ(0) be the ball in Rk centered at 0

having radius ρ . Clearly, Iρ(0) = ρI1(0) and, therefore, λ(Iρ(0)) = ρkλ(I1(0)).
We point out that, if we define

ρ(A(0)) = {ρy : y ∈ A(0)},
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then it is ρ(A(0)) = A(0). In fact, A(0) = {y ∈ Rk : 0 < y and r([0,y]) >
α} = {ρy ∈ Rk : 0 < ρy and r([0, ρy]) > α} = ρ(A(0)) (as, for every y > 0,
r([0, ρy]) = r([0,y]) and “0 < ρy ⇔ 0 < y”). Then, for any ρ > 0,

λ(Iρ(0) \ A(0))

λ(Iρ(0))
=

λ(Iρ(0) \ ρA(0))

λ(Iρ(0))

=
λ(ρ(I1(0) \ A(0)))

λ(ρI1(0))

=
ρkλ(I1(0) \ A(0))

ρkλ(I1(0))

=
λ(I1(0) \ A(0))

λ(I1(0))

= c < 1,

where c is the positive constant we are looking for.

Theorem 3.4. Let f be a finite function in Rk and let X be a subset of Rk, for
each point τ of which

lim sup
t→τ,t∈A(τ)

f(t) < lim sup
t→τ

f(t).

Then, X has Lebesgue k-dimensional measure zero.

Proof. Let Q be the set of rational numbers. For any r ∈ Q, we denote by Xr

the set of the points τ of X such that

lim sup
t→τ,t∈A(τ)

f(t) < r < lim sup
t→τ

f(t).

Without loss of generality, by Theorem 2.2., we can assume that each τ ∈ X
is a density point of X and that each τ ∈ Xr is a density point of Xr. For
any fixed r, we observe that no point τ is an accumulation point for the part
of the set Xr contained in the interior of the corresponding “angle” A(τ), i.e.,
τ /∈ Xr ∩ A(τ)o. This is claire as, fixed τ ∈ Xr, by definition of limsup, there
exists a neighbourhood of τ , I(τ), such that f(t) < r, for every t ∈ A(τ)∩I(τ).

Then, fixed τ0 ∈ A(τ)o ∩ I(τ), there is a neighbourhood of τ0, I(τ0), con-
tained in A(τ)o ∩ I(τ) and, as τ0 is a density point of X, it is I(τ0) ∩ X 6= ∅.
Therefore, f(t) < r, for every t in I(τ0) ∩ X, implies lim supt→τ0

f(t) < r, and
so τ0 /∈ Xr. Hence, no point of the set Xr can be a density point of this set as

λ(Xr ∩ I(τ))

λ(I(τ))
=

λ(Xr ∩ (I(τ) \ A(τ))

λ(I(τ))
≤ λ(I(τ) \ A(τ))

λ(I(τ))
= c < 1,

where c is the constant of Lemma 3.3. By Theorem 2.2., it must be λ(Xr) = 0.
Finally, X =

⋃{Xr : r ∈ Q} yields λ(X) = 0.
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4. Approximate differentiability almost everywhere

There are many notions in the literature which are generalizations of differen-
tiability. For each of them, there are examples showing that a function can have
this property without being differentiable in the ordinary sense.

Definition 4.1 ([11, page 13]). Let X be a measurable subset of Rk and let
f : X → R be measurable. Then, f is said to be approximately differentiable at
a density point x of X if there exist k numbers a1, . . . , ak that satisfy

lim asy→x

f(y) − f(x) − ∑k

i=1 ai(yi − xi)

|y − x| = 0,

i.e., if there exists a measurable subset U of X such that x is a density point
of U and, denoted by fU the restriction of f to U , it is

lim
y→x

fU(y) − fU(x) − ∑k

i=1 ai(yi − xi)

|y − x| = 0.

Our aim in this section is to provide a characterization of functions ap-
proximately differentiable almost everywhere in terms of what happens inside
“angles” of a fixed width. To this aim, we introduce the sets Xn,α and X ′

n,α.

Definition 4.2. Let k ≥ 2, let X be a subset of Rk and let f : X → R be
measurable. Then, fixed α ∈]0, 1[ and n ∈ N, by Xn,α we denote the collection
of all points x ∈ X with the following property:

For each y ∈ X satisfying x < y and r([x,y]) > α, from |y − x| < 1
n

it
follows that |f(y) − f(x)| ≤ n|y − x|.

We point out that if X is a measurable subset of Rk then Xn,α is measurable
as well ([9, Proposition 2.1, page 60]).

Definition 4.3. Let k ≥ 2, let X be a subset of Rk and let f : X → R be
measurable. If α ∈]0, 1[ and n ∈ N, then by X ′

n,α we denote the collection of all
points x ∈ X with the following property:

For each y ∈ X satisfying x < y and r([x,y]) > α, from |y − x| < 1
n

it
follows that f(y) − f(x) ≤ n|y − x|.

With an argument similar to [9, Proposition 2.1, page 60], we can show that
if X is measurable, then X ′

n,α is measurable as well.

Remark 4.4. Clearly, Xn,α ⊆ X ′
n,α.

Proposition 4.5. Let k ≥ 2 and let X be a subset of Rk. If X is closed and
f : X → R is continuous then, for every α ∈]0, 1[ and every n ∈ N, X ′

n,α is
closed as well.
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Proof. We need to show that if z0 is the limit of a sequence of points of X ′
n,α,

say (zs)s∈N, then z0 ∈ X ′
n,α.

To this aim, let z be a point of X with z0 < z, |z − z0| < 1
n
, r([z0, z]) > α.

If z0 = (z0,1, . . . , z0,k), z = (z1, . . . , zk) and, for s ∈ N, zs = (zs,1, . . . , zs,k), there
obviously exists s1 ∈ N such that, for all s ≥ s1, zs < z and |z − zs| < 1

n
.

Moreover, as for every 1 ≤ j ≤ k πi∈{1,...,k}\{j}(zi − z0,i) > α(zj − z0,j)
k−1, there

exists s2 ∈ N such that for every 1 ≤ j ≤ k, for all s ≥ s2,

πi∈{1,...,k}\{j}(zi − zs,i) > α(zj − zs,j)
k−1,

i.e., r([zs, z]) > α, for all s ≥ s2. Hence, if we set s0 = max{s1, s2}, then
zs < z, |z − zs| < 1

n
and r([zs, z]) > α, for all s ≥ s0. Therefore, for every

s ≥ s0, f(z) − f(zs) ≤ n|z − zs| and so, because of the continuity of f in X,
f(z) − f(z0) ≤ n|z − z0|, and the claim is proved.

Proposition 4.6. Let k ≥ 2, let X be a subset of Rk and let f : X → R

be measurable. Assume that there exist α ∈]0, 1[ and n ∈ N such that X ′
n,α

is measurable. Then, for every ǫ > 0, there is a closed subset C of X ′
n,α with

λ(X ′
n,α \ C) < ǫ and fC, the restriction of f on C is almost everywhere differ-

entiable (and, hence, almost everywhere approximately differentiable).

Proof. From the definition of X ′
n,α and from Theorem 3.4 it follows that, for

almost every x ∈ X ′
n,α,

lim sup
y→x,y∈A(x)

f(y) − f(x)

|y − x| = lim sup
y→x

f(y) − f(x)

|y − x| ≤ n.

Let X ′′
n,α be the collection of all points of X ′

n,α which are density points of X ′
n,α.

Obviously, X ′
n,α and X ′′

n,α have the same Lebesgue measure.

Given ǫ > 0, by Lusin Theorem, there exists a closed subset C = C(ǫ) of
X ′′

n,α such that λ(X ′′
n,α \C) < ǫ and fC , the restriction of f to C is a continuous

function. For every j ∈ N, let

Cj =
{

x ∈ C : for every y ∈ C with |x−y| < 1
j

it is |f(x)−f(y)| ≤ n·|x−y|
}

.

Let, for every i ∈ N ,

Cj,i = Cj ∩
[

i

n
√

k
,
i + 1

n
√

k

]k

.

Clearly, each Cj,i is closed and Cj = ∪iCj,i. Moreover, f is Lipschitz in each
Cj,i and hence it is almost everywhere differentiable in every Cj,i and so it is
almost everywhere differentiable in C, as C = ∪Cj.

Theorem 4.7. Let k ≥ 2, let X be a bounded measurable subset of Rk and
f : X → R measurable. Then, the following assertions are equivalent:
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1. f is approximately differentiable almost everywhere;

2. for every ǫ > 0 there exists a measurable subset Y of X satisfying the
conditions λ(X \ Y ) < ǫ and “for each σ > 0 there exist n ∈ N and
α ∈]0, 1[ such that λ(Y \ Y ′

n,α) < σ”.

Proof. (⇒) Given ǫ > 0, by [27, Theorem 1, page 144], there exists a subset Y
of X such that λ(X \Y ) < ǫ and the restriction of f to Y is almost everywhere
differentiable in Y . By Proposition 2.3 of [9], for each σ > 0 there exist n ∈ N

and α ∈]0, 1[ such that λ(Y \ Yn,α) < σ. Hence, as Yn,α ⊆ Y ′
n,α, for each σ > 0

there exist n ∈ N and α ∈]0, 1[ such that λ(Y \ Y ′
n,α) < σ.

(⇐) In order to prove that the condition is sufficient, we observe that, with-
out loss of generality, we can certainly assume that Y is closed and that the
restriction of f to Y is continuous. Therefore, applying Proposition 4.5 and
Proposition 4.6, we can deduce that the restriction of f to Y is approximately
differentiable almost everywhere in Y . Hence, for any ǫ > 0 there exists a
subset Y of X such that λ(X \ Y ) < ǫ and the restriction of f to Y is approxi-
mately differentiable almost everywhere in Y . This is enough to ensure that f
is approximately differentiable almost everywhere in X.

We end the paper with an application of Theorem 4.7 and an example. We
start by showing that Whitney’s characterization of an approximately differen-
tiable almost everywhere function ([27, Theorem 1], (a) ⇔ (c)) is an application
of Theorem 4.7.

Theorem 4.8 (Whitney’s Theorem). Let X be a bounded measurable subset of
Rk and f : X → R measurable. Then, the following assertions are equivalent:

(a) The function f is approximately differentiable almost everywhere in X.

(c) For each ǫ > 0 there is a closed set Q ⊆ X such that λ(X \Q) < ǫ and f
is smooth (continuously differentiable) in Q.

Proof. It is enough to observe that (c) is equivalent to (2) of Theorem 4.7 (apply
Proposition 4.6 and Lusin Theorem).

Example 4.9. Let X = [0, 1] × [0, 1], A = {(x, y) ∈ X : x and y are rational}
and B = X \ A. Consider the function f : X → R defined as

f(x, y) =

{

0 if (x, y) ∈ A

1 if (x, y) ∈ B.

Fix any natural number n and any α ∈]0, 1[. Observe that X ′
n,α ⊇ B as, for any

x0 = (x01, x02) in B, the following holds:

“for each x = (x1, x2) ∈ X satisfying x0 < x and r([x0,x]) > α, from
|x − x0| < 1

n
it follows that f(x) − f(x0)| ≤ n|x − x0|”.
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This holds because

f(x) − f(x0) =

{

−1 if x ∈ A

0 if x ∈ B .

Therefore, λ(X \ X ′
n,α) = 0. Hence, and as we expected, by Theorem 4.7., f is

approximately differentiable almost everywhere.
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[18] Rademacher, H., Über partielle und totale Differenzierbarkeit von Funktio-
nen mehrerer Variablen und über die Transformation der Doppelintegrale (in
German). I, II. Math. Ann. 79 (1919), 340 – 359 ; 81 (1920), 52 – 63.
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[23] Stepanoff, W., Über totale Differenzierbakeit. Math. Ann. 90 (1923), 318 – 320.

[24] Stepanoff, W., Sur les conditions de l’existence de la differentielle totale (in
French). Mat. Sb. 32 (1925), 511 – 526.

[25] Ward, A. J., On the differentiable structure of real functions. Proc. London

Math. Soc. 39 (1935)(2), 339 – 362.

[26] Ward, A. J., The linear derivates and approximate linear derivates of a function
of two variables. Proc. London Math. Soc. 42 (1936)(2), 266 – 273.

[27] Whitney, H., On totally differentiable and smooth functions. Pacific J. Math.

I (1951), 143 – 159.
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