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1. Introduction

Let R+ = [0, +∞) and R
n be the real n-dimensional Euclidean space with

the Euclidean norm | · |. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n and a,

r ∈ R
n
+. We denote by C(U, V ) the set of all continuous functions from U to

V . Let G = {x ∈ R
n : 0 ≤ x ≤ a}, Ω = {x ∈ R

n : −r ≤ x ≤ a} and B = Ω\G
For u : Ω → E, where E is a Banach space with the norm ‖ · ‖, we define
the function ux(τ) = u(x + τ), τ ∈ B, x ∈ G. There are given the functions
F ∈ C(G × Em × C(B,E), E), fi ∈ C(G × G × C(B,E), E), i = 1, . . . ,m,
m ∈ N, θ, Ψi ∈ C(G × C(B,E), G), i = 1, . . . ,m, m ∈ N, β, αi ∈ C(G,G),
i = 1, . . . ,m, and ϕ ∈ C(B,E).

Consider the problem

u(x) = F

(

x,

∫

H(x)

f
(

x, s, uΨ(s,uα(s))

)

ds, uΘ(x,uβ(x))

)

, x ∈ G (1)

u(x) = ϕ(x), x ∈ B, (2)
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where
∫

H(x)

f
(

x, s, uΨ(s,uα(s))

)

ds

=

(
∫

H1(x)

f1

(

x, s, uΨ1(s,uα1(s))

)

(ds)p1 , . . . ,

∫

Hm(x)

fm

(

x, s, uΨm(s,uαm(s))

)

(ds)pm

)

,

and Hi(x) ⊆ {s ∈ R
n : 0 ≤ s ≤ x}, x ∈ G, i = 1, . . . ,m.

Assume that Hi(x) is contained in a pi-dimensional hyperplane (1 ≤ pi ≤ n),
where pi does not depend on x, parallel to the coordinate axes, and that it
is Lebesgue measurable, when considered as a pi-dimensional set. Denote by
Lpi

(Hi(x)) the pi-dimensional measure of Hi(x) and let Γi, Γ̄i ⊆ {1, . . . , n},
i = 1, . . . ,m, be defined by

Γi =
{

j : the axis Oxj is parallel to the hyperplane containing Hi(x)
}

,

and Γ̄i = {1, . . . , n} \Γi.

Put A = {i : pi = n}, A′ = {i : 1 ≤ pi < n}. Let a pi-dimensional hy-
perplane containing Hi(x) be defined by xk1 = x

′

k1
, xk2 = x

′

k2
, . . . , xkl

= x
′

kl
,

l = n−pi. Then
∫

Hi(x)
z(x, s)(ds)pi

, s = (s1, . . . , sn), denotes the pi-dimensional

Lebesgue integral with respect to the variables skj
, kj ∈ Γi, and in the above

integral we have skj
= x

′

kj
for kj ∈ Γ̄i.

We define

Gi(x) =
{

s ∈ R
n : skj

= x
′

kj
for kj ∈ Γ̄i, 0 ≤ xkj

≤ φ
(i)
kj

(x) for kj ∈ Γi

}

,

where φ
(i)
kj

∈ C(G, R), kj ∈ Γi, and Hi(x) ⊆ Gi(x) ⊆ {s ∈ R
n : 0 ≤ s ≤ x} .

Then we have Lpi
(Gi(x)) =

∏

s∈Γi
φ

(i)
s (x). To simplify we use the following

notations:

L(G(x)) =
(

Lp1(G1(x)), . . . , Lpm
(Gm(x))

)

,

and

K(x)

∫

H(x)

f(x, s, uΨ(s,uα(s)))ds =
m

∑

j=1

Kj(x)

∫

Hj(x)

fj(x, s, uΨj(s,uαj(s)))(ds)pj
,

K(x)L(G(x)) =
m

∑

j=1

Kj(x)Lpj
(Gj(x)), x ∈ G,

where x ∈ G, K = (K1, . . . , Km) ∈ C(G, Rm).

Ordinary functional differential equations with state dependent delays have
attracted the attention of many authors [1, 3, 5, 7–12, 20, 25], and [34]. The
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paper [19] initiated the study of the existence theory for first order functional
partial differential equations with state dependent delays (see also [4,6,16]). A
particular case of equation (1) with n = 1 was discussed in [3, 5, 15].

There are various problems for functional differential equations which lead
to Volterra functional integral equations of type (1). One of the simplest prob-
lem of the form (1), (2) with n = 1 can be obtained from the initial value
problem for the ordinary functional differential equations of the neutral type:

y′(t) = F (t, yα1(t), . . . , yαm(t), y
′

β(t)), t ∈ [0, ā]

y(t) = ϕ(t), t ∈ [−r, 0].

In case r = 0 the above problem leads to the single equation of type (1) with-
out the additional condition (2). Therefore equation (1) is a generalization of
equations considered in [13,17,21,26,27,29].

Various initial value problems for the hyperbolic functional differential equa-
tions of the neutral type with two independent variables

Dxyz(x, y)

=F (x,y,z(α0
1(x,y)),(α0

2(x,y))Dxz(α1
1(x,y)),(α1

2(x,y))Dyz(α2
1(x,y)),(α2

2(x,y))Dxyz(β1(x,y)),(β2(x,y))),

(x, y) ∈ [0, ã] × [0, b̃], with the initial condition

z(x, y) = ϕ(x, y), (x, y) ∈ [−r1, ã] × [−r2, b̃]\[0, ã] × [0, b̃],

can also be transformed to the problem of type (1), (2). The Volterra functional
integral equation corresponding to that problem takes the form

u(x, y)

= F

(

x, y,−ϕ(0,0) + ϕ(α0
1(x,y),0) + ϕ(0,α0

2(x,y)) +

∫

H0(x,y)

u(s,t) ds dt,

Dxϕ(α1
1(x,y),0) +

∫

H1(x,y)

u(s,t)dt,Dyϕ(0,α2
2(x,y)) +

∫

H2(x,y)

u(s,t) ds, u(β1(x,y),β2(x,y))

)

,

(x, y) ∈ [−r1, 0] × [−r2, 0], where

H0(x, y) =
{

(s, t) : s ∈
[

0, α
(0)
1 (x, y)

]

, t ∈
[

0, α
(0)
2 (x, y)

]

}

H1(x, y) =
{

(s, t) : s = α
(1)
1 (x, y), t ∈

[

0, α
(1)
2 (x, y)

]

}

H2(x, y) =
{

(s, t) : s ∈
[

0, α
(2)
1 (x, y)

]

, t = α
(2)
2 (x, y)

}

.

For this reason, in case r1 = r2 = 0 equation (1) is a generalization of the
equations investigated in [23,24,30,31].
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The case where Ψ(x,w) = α(x), Θ(x,w) = β(x) was studied in [2] and
[14]. The Cauchy problem and the Goursat problem for hyperbolic functional
differential equations also lead to equations of type (1) (see [32]). Initial value
problems for equations in more than two variables and problems for equations
of higher order can be transformed in terms of Volterra functional integral
equations. As a particular case of equation (1) we can obtain the system of
Volterra integral equations which was discussed in [32, 33] or the functional
integral equations considered in [18,22,28].

In this paper we prove a theorem of the existence and uniqueness of Lipschitz
continuous solutions of the problem (1), (2). If we assume that the Lipschitz
coefficient l of the function F with respect to the last variable satisfies the
condition l < 1, then we have a theorem on the existence and uniqueness of
solutions of (1), (2), which can be obtained by means of the Banach fixed point
theorem. We relaxed this very restrictive condition. We proved that the integral
operator defined by the right-hand side of (1) is a contraction with a weighted
norm constructed with the help of a solution of a certain comparative integral
equation.

2. Assumptions and lemmas

Suppose that for any x ∈ G and i ∈ A
′

the set Hi(x) is contained in a pi-
dimensional hyperplane Si(x), parallel to the pi coordinate axes, where pi =
1, . . . n − 1. Then for any y ∈ R

n, such that x + y ∈ G, there exists a vector
vi(x, y) ∈ R

n perpendicular to Si(x) and −vi(x, y) + Hi(x + y) ⊆ Si(x).

Assumption H1. Suppose that

(i) there exist ω ∈ R+: Ln(Hi(x) ∆ Hi(x̄)) ≤ ω|x − x̄|, i ∈ A

(the sign ∆ denotes the symmetric difference of two sets);

(ii) Lpi
(Hi(x) ∆ (−vi(x, x̄ − x) + Hi(x̄)))≤ ω|x − x̄|,

vi(x, x̄)≥ 0, limx→x̄ vi(x, x̄ − x) = 0, i ∈ A
′

, x, x̄ ∈ G, x≤ x̄;

(iii) Hi(x) ⊆ Hi(x̄) for x, x̄ ∈ G, x ≤ x̄, and i ∈ A;

(iv) Hi(x) + vi(x, x̄ − x) ⊆ Hi(x̄) for x, x̄ ∈ G, x ≤ x̄, and i ∈ A
′

.

Assumption H2. Suppose that

(i) l, h̄ ∈ C(G, R+), K ∈ C(G, Rm
+ ), Θ, Ψi : G×C(B,E) → G, i = 1, . . . ,m,

are nondecreasing functions;

(ii) γi, ζ ∈ C(G,G), i = 1, . . . ,m, are nondecreasing functions, and γi(x) ≤ x,
ζ(x) ≤ x for x ∈ G, i = 1, . . . ,m;

(iii) the function m̄ : G → R+ is defined by

m̄(x) =
+∞
∑

i=0

li(x)h̄(ζi(x)) < +∞,
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where ζ0(x) = x, ζi+1(x) = ζ(ζi(x)), l0(x) = 1, li+1 = l(x)li(ζ(x)), and
i = 0, 1, . . ., x ∈ G;

(iv) the function M : G → R+ is given by

M(x) =
+∞
∑

i=0

li(x)K(ζi(x))L
(

G(ζi(x))
)

< +∞, x ∈ G;

(v) the function M̄ : G → R+ given by

M̄(x) =
+∞
∑

i=0

li(x)K(ζi(x))L
(

G(ζi(x))
)

(

∏

s∈Γi

xs

)

−1

is bounded on G.

Further we will use the following notation:

m̃(x) =
+∞
∑

i=0

li(x)h̃(ζi(x))

(V u)(x) =
+∞
∑

i=0

li(x)(K(ζi(x))

∫

H(ζi(x))

u(γi(s))ds).

Remark 1. Suppose that

(I) conditions (i)–(iv) of Assumption H2 are satisfied;

(II) h̃ ∈ C(G, R+) and h̃(x) ≤ h̄(x) for x ∈ G;

(III) g : G → R+ is upper semicontinuous.

Then m̃ and V g are functions well defined for x ∈ G.

Lemma 2.1. Suppose that Assumptions H1, H2 are satisfied, h̃ ∈ C(G, R+) is

nondecreasing, and h̃(x) ≤ h̄(x) on G. Then

(I) there exists a nondecreasing solution ḡ ∈ C(G, R+) of the equation

g(x) = m̃(x) + (V g)(x), x ∈ G, (3)

which is unique in the set P (G, R+) of upper semicontinuous functions

from G to R+;

(II) the function ḡ is a solution of the equation

g(x) = K(x)

∫

H(x)

g(γ(s))ds + l(x)g(ζ(x)) + h̃(x), x ∈ G, (4)

which is unique in the class P (G, R+, g̃) of all functions from the class

P (G, R+), such that inf {κ ∈ R+ : g(x) ≤ κg̃(x), x ∈ G} < +∞, where g̃

is a solution of (3) with h̄ = h̃;
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(III) the function g̃ satisfies the condition

lim
i→+∞

li(x)g̃(ζi(x)) = 0 (5)

uniformly on G.

Proof. First we show that equation (3) has a unique solution in the class
P (G, R+). We define the operator

(Tz)(x) = m̄(x) + (V z)(x), x ∈ G.

We prove that T : P (G, R+) → P (G, R+). Let z ∈ P (G, R+) and

vij(x) =

∫

Hj(ζi(x))

z(γj(s))(ds)pj
,

where x ∈ G, i = 1, . . . , n, j = 1, . . . ,m, m,n ∈ N. Because of z ∈ P (G, R+), so
there exists the sequence {zk}k∈N

, such that zk ∈ C(G, R+) and zk+1(x) ≤ zk(x),
z(x) = limk→+∞ zk(x), x ∈ G, k ∈ N. Let

v
(k)
ij (x) =

∫

Hj(ζi(x))

zk(γj(s))(ds)pj
,

where x ∈ G, i = 1, . . . , n, j = 1, . . . ,m, k,m, n ∈ N. Functions v
(k)
ij are

continuous in G (see [32]) and v
(k+1)
ij (x) ≤ v

(k)
ij (x). From Lebesgue’s theorem

(about the integration of the sequence of nonincreasing functions) we have

vij(x) = lim
k→+∞

v
(k)
ij (x), x ∈ G, i = 1, . . . , n, j = 1, . . . ,m, k,m, n ∈ N

and therefore vij ∈ P (G, R+). From the Weierstrass criterium (elements of
these series are continuous and nondecreasing) follows the uniform convergence
of the series

m̃(x) =
+∞
∑

i=0

li(x)h̄(ζi(x)), M(x) =
+∞
∑

i=0

li(x)K(ζi(x))L
(

G(ζi(x))
)

.

Now we have li(x)h̄(ζi(x)) ≤ li(x)h̃(ζi(x)), and

li(x)K(ζi(x))

∫

H(ζi(x))

z(γ(s))(ds) ≤
(

sup
x∈G

z(x)
)

li(x)K(ζi(x))L
(

G(ζi(x))
)

,

where i ∈ N , x ∈ G. Hence we get that the series

m̄ =
+∞
∑

i=0

li(x)h̄(ζi(x)),
+∞
∑

i=0

li(x)K(ζi(x))

∫

H(ζi(x))

z(γ(s))(ds)
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are convergent. Now it is easily seen that m̄ ∈ C(G, R+), V z ∈ P (G, R+) and
consequently T : P (G, R+) → P (G, R+).

Now we show that operator T is a contraction. We define the norm

‖z‖λ = max
x∈G

[

|z(x)| · exp

(

− λ

n
∑

p=1

xp

)]

, z ∈ P (G, R+),

where λ > Λ = max
{

1, supx∈G M̃(x)
}

. For z, w ∈ P (G, R+) we get

|(Tz)(x) − (Tw)(x)| ≤
+∞
∑

i=0

li(x)K(ζi(x))

∫

H(ζi(x))

|z(γ(s)) − w(γ(s))|(ds)

≤ ‖z − w‖λ

+∞
∑

i=0

li(x)K(ζi(x))

∫

H(ζi(x))

exp

(

λ

n
∑

p=1

sp

)

ds.

Using the estimation exp(ǫt) − 1 ≤ ǫ exp(t), ǫ ∈ [0, 1], t ≥ 0, we have the
following:

∫

Hj(ζi(x))

exp

(

λ

n
∑

p=1

sp

)

(ds)pj
≤ exp

(

λ
∑

p∈Γ̄j

xp

)

(ds)pj

∫

Gj(ζi(x))

exp

(

λ
∑

p∈Γj

sp

)

(ds)pj

≤ exp

(

λ
∑

p∈Γ̄j

xp

)

∏

p∈Γj

(

1

λ
exp(λφ(j)

p (ζi(x)) − 1)

)

≤
1

λ
exp

(

λ

n
∑

p=1

xp

)

Lpj

(

G(ζi(x))
)

(

∏

p∈Γj

xp

)

−1

.

Further we have

|(Tz)(x) − (Tw)(x)|

≤
1

λ
‖z − w‖λ

+∞
∑

i=0

li(x)
m

∑

j=1

Kj(ζi(x))Lpj

(

G(ζi(x))
)

(

∏

p∈Γj

xp

)

−1

exp

(

λ

n
∑

p=1

xp

)

≤
Λ

λ
exp

(

λ

n
∑

p=1

xp

)

‖z − w‖λ,

and cosequently ‖Tz − Tw‖λ ≤ Λ
λ
‖z − w‖λ. From the Banach theorem we get

that for λ > Λ equation (3) has a unique solution z̄ ∈ P (G, R+).

Now we show that z̄ ∈ C(G, R+) and is nondecreasing. Indeed z̄(x) =
limn→+∞ zn(x), x ∈ G, where z0 ∈ P (G, R+), z0(x) =const, and zn+1(x) =
(Tzn)(x) = m̄(x) + (V zn)(x), x ∈ G, n ∈ N. The function z0 ∈ C(G, R+) is
nondecreasing. Therefore we easily get that zn ∈ C(G, R+) for n ∈ N , and
functions zn are nondecreasing for n ∈ N . The point (I) is proved.
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We prove point (II). Indeed, for z̃ ∈ C(G, R+) and h̄ = h̃ we get from (3)
the following:

l(x)z̃(ζi(x)) = li(x)
+∞
∑

j=0

lj(ζi(x))h̃(ζi+j(x))

+ li(x)
+∞
∑

j=0

lj(ζi(x))

(

K(ζi+j(x))

∫

H(ζi+j(x))

z̃(γ(s)) ds

)

=
+∞
∑

j=i

lj(x)h̃(ζj(x)) +
+∞
∑

j=i

lj(x)

(

K(ζj(x))

∫

H(ζj(x))

z̃(γ(s)) ds

)

,

where x ∈ G, i ∈ N .

Now we show that an arbitrary solution of (3) denoted by z̄ is a solution of
equation (4). If z̄ is a solution of (3), then we have

z̄(x) − K(x)

∫

H(x)

z̄(γ(s))ds − l(x)z̄(ζ(x))

=
+∞
∑

i=0

li(x)h̄(ζi(x)) +
+∞
∑

i=0

li(x)

(

K(ζi(x))

∫

H(ζi(x))

z̄(γ(s)) ds

)

− K(x)

∫

H(x)

z̄(γ(s))ds − l(x)
+∞
∑

i=0

li(ζ(x))h̄
(

ζi(ζ(x))
)

+
+∞
∑

i=0

li(ζ(x))

(

K
(

ζi(ζ(x))
)

∫

H(ζi(ζ(x)))

z̄(γ(s)) ds

)

= h̄(x).

Now we prove that z̄ is a unique solution of (4) in the class P (G, R+, g̃).
Let z ∈ P (G, R+, g̃) be an arbitrary solution of (4). Then

z(x) =
n−1
∑

i=0

li(x)K(ζi(x))

∫

H(ζi(x))

z(γ(s))ds

+
n−1
∑

i=0

li(x)h̄(ζi(x)) + li(x)z(ζi(x)), x ∈ G, n ∈ N.

(6)

Because 0 ≤ z(x) ≤ κz̃(x) for a certain κ ∈ R+, then limi→+∞ li(x)z(ζi(x)) = 0
uniformly on G. If in (6) n → +∞, then z(x) = m̄(x) + (V z)(x) for x ∈ G,
and it means that it is a solution of (3). Because equation (3) has the only one
solution, then z(x) = z̄(x). The proof of Lemma 2.1 is finished.
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In the space C(B,E) we define the norm

‖u‖0 = sup
τ∈B

‖u(τ)‖, u ∈ C(B,E).

Assumption H3. Suppose that there exist nondecreasing functions p̄i, k̄i,
l̄ ∈ C(G, R+), η, ξi ∈ C(G,G), such that

‖fi(x, t, w) − fi(x, t, w̄‖ ≤ p̄i(x)‖w − w̄‖0, i = 1, . . . ,m

‖F (x, v, w) − F (x, v̄, w̄‖ ≤
m

∑

i=1

k̄i(x)‖vi − v̄i‖ + l̄(x)‖w − w̄‖0

‖ϕ(τ)‖ ≤ ḡ(0) for τ ∈ B

‖Θ(x,w)‖ ≤ η(x)

‖Ψi(x,w)‖ ≤ ξi(x) for i = 1, . . . ,m,

where t, x ∈ G, v, v̄ ∈ Em, w, w̄ ∈ C(B,E), and for x ∈ G we have η(x) ≤ x,
ξi(x) ≤ x.

Remark 2. The consequence of Assumption H2 is the fact that there exist
functions δi, ∆ : G → R+, i = 1, . . . ,m, such that

‖fi(x, t, w)‖ ≤ p̄i(x)‖w‖0 + δi(x), i = 1, . . . ,m

‖F (x, v, w)‖ ≤
m

∑

i=1

k̄i(x)‖vi‖ + l̄(x)‖w‖0 + ∆(x),

where t, x ∈ G, ‖w‖0 ≤ ḡ(a), ‖vi‖0 ≤ p̄i(a)ḡ(a)Lpi
(Gi(a)), and

δi(x) = max
s∈[0,x]

max
t∈G

‖fi(s, t, θ)‖, ∆(x) = max
s∈[0,x]

‖F (s, θ, θ)‖.

θ means the zero in the space C(B,E).

Lemma 2.2. Suppose that the assumptions of Lemma 2.1 are satisfied with

functions γi(s) = ξi(x), i = 1, . . . ,m, ζ(x) = η(x), K(x) =
∑m

i=1 k̄i(x)p̄i(x),

h̃(x) = ∆(x) +
∑m

i=1 k̄i(x)δi(x)Lpi
(Gi(x)), l(x) = l̄(x), and Assumption H3

holds. Then

F : B(Ω, E, ḡ) → B(Ω, E, ḡ),

where B(Ω, E, ḡ) = {u ∈ C(Ω, E) : u|B = ϕ, ‖u(s)‖ ≤ ḡ(t), s ∈ [−r, t], t ∈ G} ,

and F is defined by right side of equation (1).
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Proof. Let w ∈ B(Ω, E, ḡ). Then for x ∈ G we have

‖F [u](x)‖ ≤
m

∑

i=1

k̄i(x)

∫

Hi(x)

p̄i(x)‖uΨi(s,uαi(s)
)‖0(ds)pi

+ l̄(x)ḡ(η(x)) + ∆(x) +
m

∑

i=1

k̄i(x)δi(x)Lpi
(Gi(x))

≤

[ m
∑

i=1

k̄i(x)p̄i(x)

]
∫

H(x)

ḡ(ξ(s))ds + l̄(x)ḡ(η(x))

+ ∆(x) +
m

∑

i=1

k̄i(x)δi(x)Lpi
(Gi(x))

= ḡ(x).

Therefore ‖F [u](x)‖ ≤ ḡ(x) for x ∈ G. Hence it follows that F [u] ∈ B(Ω, E, ḡ).
The lemma is proved.

Assumption H4. Suppose that there exist nondecreasing functions ρ : G →
R+, µ : G → R+, and constants d, qi, ν, σ ∈ R+, such that

(i) ‖Θ(x,w) − Θ(x, w̄)‖ ≤ ρ(x)‖w − w̄‖0

(ii) ‖Θ(x,w) − Θ(x̄, w)‖ ≤ d|x − x̄|

(iii) ‖fi(x, t, w) − fi(x̄, t, w)‖ ≤ qi|x − x̄|

(iv) ‖Fi(x, v, w) − Fi(x̄, v, w)‖ ≤ ν|x − x̄|

(v) |β(x) − β(x̄)| ≤ σ|x − x̄|

(vi) ‖Ψi(x,w) − Ψi(x, w̄)‖ ≤ µi(x)‖w − w̄‖0,

where (x,w), (x, w̄) ∈ G × C(B,E).

We define functions M1, M2, M3 ∈ C(G, R+) as follows:

M1(x) = ω

[

ḡ(x)
m

∑

i=1

pi(x) +
m

∑

i=1

δi(x)

]

+
m

∑

i=1

qiLpi
(Gi(x)) + ν (7)

M2(x) = dl̄(x) (8)

M3(x) = σl̄(x)ρ(x). (9)

Suppose that M2(a) < 1 and [M2(a) − 1]2 − 4M1(a)M3(a) > 0. Let λ1, λ2 be
two different positive roots of the equation M3(a)λ2 +[M2(a)−1]λ+M1(a) = 0.
Now we define the following class of functions:

D([−r, a], E, λ) =
{

u ∈ B([−r, a], E, ḡ) : ‖u(x) − u(x̄)‖ ≤ λ|x − x̄|, x, x̄ ∈ G
}

,

where λ ∈ [λ1, λ2], if M3(a) 6= 0, and λ ≥ M1(a)[1 − M2(a)]−1, if M3(a) = 0.
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Lemma 2.3. Suppose that the assumptions of Lemma 2.2 and Assumptions (i)–
(v) of H4 are satisfied and M2(a) < 1, [M2(a)− 1]2 − 4M1(a)M3(a) > 0, where

the functions M1, M2, M3 are defined by (7)–(9). Then F : D([−r, a], E, λ) →
D([−r, a], E, λ).

Proof. From Assumptions H3 and H4 we have

‖F [u](x) −F [u](x̄)‖ ≤ ν|x − x̄| + l̄(x)λ
[

d|x − x̄| + ρ(x)‖uβ(x) − uβ(x̄)‖0

]

+
m

∑

i=1

[

ω(pi(x)ḡ(ζi(x)) + δi(x)) + qiLpi
(Gi(x))

]

|x − x̄|

≤ ν|x − x̄| + λl̄(x)[d|x − x̄| + ρ(x)λ|β(x) − β(x̄)|]

+
m

∑

i=1

[

ωpi(x)ḡ(x) + ωδi(x) + qiLpi
(Gi(x))

]

|x − x̄|

≤

{

[σl̄(x)ρ(x)]λ2 + [dl̄(x)]λ +

[

ν + ḡ(x)ω
m

∑

i=1

pi(x)

+ ω

m
∑

i=1

δi(x) +
m

∑

i=1

δiLpi
(Gi(x))

]}

|x − x̄|

≤ λ|x − x̄|,

where x, x̄ ∈ G. This means that F : D([−r, a], E, λ) → D([−r, a], E, λ). The
lemma is proved.

3. The main theorem.

For u ∈ D([−r, a], E, λ), where λ is defined in Lemma 2.3, we define the norm

‖u‖x = sup
s∈[−r,x]

‖u(s)‖.

Theorem 3.1. Let the assumptions of Lemma 2.3 and Assumption (vi) of H4

hold. Then the Cauchy problem (1), (2) has the unique solution in the class

D([−r, a], E, λ).

Proof. Because of Assumptions H3, H4, H5 for u, ū ∈ D([−r, a], E, λ) we have

‖F [u](x) −F [ū](x)‖ ≤

m
∑

i=1

k̄i(x)pi(x)(1 + λµi(x))

∫

Hi(x)

‖w − w̄‖ᾱi(s)(ds)pi

+ l̄(x)(1 + λρ(x))‖u − ū‖β̄(x),

where x ∈ G, and ᾱi(s) = max {ζi(s), αi(s)}, β̄(x) = max {η(x), β(x)} .
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Let z̃ ∈ C(G,E) be a solution of equation (4) with h̄ = h̃. It is easily seen
that z̃(x) ≥ h̃(x) for x ∈ G. If h̃(x) > 0 then z̃ > 0. Suppose that z̄ is any
positive and nondecreasing extension of z̃ onto the set Ω. For u ∈ D(Ω, E, λ)
we define the norm

‖u‖⋆ = max
x∈G

1

z̄(x)
‖u‖x.

We get

‖F [u](x) −F [ū](x)‖ ≤
m

∑

i=1

k̄i(x)pi(x)[1 + λµi(x)]

∫

Hi(x)

‖ū − u‖ᾱi(s)(ds)pi

+ l̄(x)[1 + λρ(x)]‖u − ū‖β̄(x).

Note that for τ ∈ B and s ∈ G we have

‖u(ᾱi(s) + τ) − ū(ᾱ(s) + τ)‖

≤

[

1

z̄(ᾱi(s) + τ)
‖u(ᾱi(s) + τ) − ū(ᾱi(s) + τ)‖

]

z̄(ᾱi(s) + τ)

≤ ‖u − ū‖⋆z̄(ᾱi(s)).

Analogously we have a such estimation for ‖u(β̄(x)+τ)−ū(β̄(x)+τ)‖. Therefore
‖u− ū‖ᾱi(s) ≤ ‖u− ū‖⋆z̄(ᾱi(s)) and ‖u− ū‖β̄(x) ≤ ‖u− ū‖⋆z̄(β̄(x)). Now we get

‖F [u](x) −F [ū](x)‖

≤

{ m
∑

i=1

k̄i(x)pi(x)[1 + λµi(x)]

∫

H(x)

z̄(ᾱ(s))ds + l̄(x)[1 + λρ(x)]z̄(β̄(x))

}

‖u − ū‖⋆

≤ (z̄(x) − h̃(x))‖u − ū‖⋆,

where x ∈ G, and finally

‖F [u](x) −F [ū](x)‖⋆ ≤

(

1 − inf
h̃(x)

z̄(x)

)

‖u − ū‖⋆.

Thus by the Banach fixed point theorem the problem (1), (2) has a unique
solution in the class D([−r, a], E, λ]), where λ is defined in Lemma 2.2. The
main theorem is proved.

4. Some effective conditions

Now we give some examples of effective conditions for Assumptions (iii)–(v) of
H2 to be satisfied (see [18]).
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Example 1. Suppose that there exist

(a) K̄i, l̄, ζ̄j ∈ R+, i = 1, . . . ,m, j = 1, . . . n, such that

(i) l(x) ≤ l̄, Ki(x) ≤ K̄i, i = 1, . . . ,m

(ii) ζj(x) ≤ ζ̄jxj, ζ̄ ≤ 1, j = 1, . . . , n

(iii) l̄
∏

s∈Γ̄i
ζ̄s < 1 for i = 1, . . . ,m

(iv)
∑+∞

N=0 l̄N h̃
(

ζ̄N
1 x1, . . . , ζ̄

N
n xn

)

< +∞;

(b) γ̄
(i)
kj

∈ R+, such that φ
(i)
kj

≤ γ̄
(i)
kj

xkj
, and γ̄

(i)
kj

≤ 1, where kj ∈ Γi.

Then the conditions (iii)–(v) of Assumption H2 are satisfied.

Example 2. Suppose that

(a) there exist l̄ and K̄j ∈ R+, j = 1, . . . , n, such that l(x) ≤ l̄, Ki(x) ≤
∑n

j=1 K̄jxj, i = 1, . . . ,m;

(b) conditions (ii), (iv) of Assumption (a) and Assumption (b) of Example 1
are satisfied.

Then the conditions (iii)–(v) of Assumption H2 are fulfilled.

Example 3. Suppose that

(a) G = [0, ā], ā = (ā1, . . . , ān), āj > 0, j = 1, . . . , n;

(b) condition (ii) of Assumption (a), and Assumption (b) of Example 1 are
satisfied;

(c) there exist l̄ = (l̄1, . . . , l̄n), K̄ = (K̄1, . . . , K̄m), such that l̄j, K̄i ∈ R+,
j = 1, . . . , n, i = 1, . . . ,m, and l(x) ≤

∑n

j=1 l̄jxj, Ki(x) ≤ K̄i, and the

condition
∑n

j=1 l̄j ζ̄j āj < 1 holds.

Then the conditions (iii)–(v) of Assumption H2 are fulfilled.

Example 4. Suppose that

(a) conditions (ii), (iv) of Assumption (a) of Example 1 are satisfied;

(b) there exist l̄, K̄ = (K̄1, . . . , K̄n), such that l̄, K̄i ∈ R+, i = 1, . . . , n,
and l(x) ≤ l̄, Kj(x) ≤

∑n

i=1 K̄ixi, j = 1, . . . ,m, and l̄ζ̄i(
∏

s∈Γ̄j
ζ̄s)

2 ≤ 1,
i = 1, . . . , n, j = 1, . . . ,m,

(c) φi(x) ≤ (γ̄
(i)
k1

x2
k1

, . . . , γ̄
(i)
kpi

x2
kpi

), kj ∈ Γ̄i, γ̄
(i)
ks

∈ R+.

Then the conditions (iii)–(v) of Assumption H2 are fulfilled.
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Example 5. Suppose that

(a) there exist G = [0, ā], ā = (ā1, . . . , ān), 0 < āi ≤ 1, i = 1, . . . n, such that
∏

s∈Γ̄j
ā2

s < 1, j = 1, . . . ,m;

(b) ζ(x) = (ζ1(x), . . . , ζn(x)) ≤ (x2
1, . . . , x

2
n);

(c) condition (i) of Assumption (a), and Assumption (b) of Example 1 are
fulfilled, and the condition

∑+∞

N=0 l̄N h̃(x2N

1 , . . . , x2N

n ) < +∞ holds.

Then the conditions (iii)–(v) of Assumption H2 are satisfied.

Example 6. Suppose that

(a) there exist H̄, P ∈ R+, such that h̃(x) = h̃(x1, . . . , xn) ≤ H̄
(
∏n

i=1 xi

)P
;

(b) conditions (i), (ii) of Assumption (a) and Assumption (b) of Example 1
are fulfilled, and

(
∏

s∈Γ̄j
ζ̄s

)ν
l̄ ≤ 1. where ν = min[1, P ].

Then the conditions (iii)–(v) of Assumption H2 are satisfied.

References
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