
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 29 (2010), 77–90
DOI: 10.4171/ZAA/1398

Uniqueness of the First Eigenfunction

for Fully Nonlinear Equations: the Radial Case

I. Birindelli and F. Demengel

Abstract. The concept of eigenvalue has recently been extended to a large class of
fully-nonlinear operators, here for fully-nonlinear operators in non divergence form
that present singularities and degeneracies similar to the p-Laplacian we prove that
in the radial case the eigenfunction is simple.
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1. Introduction

The extension of the concept of eigenvalue to non-linear operator was started,
in the variational case, to study existence of solutions for Dirichlet problems for
operators such as the p-Laplacian and it has been proved a very fruitful field of
research (see, e.g., [1,13,19]). In particular, the simplicity of the first eigenvalue
for the p-Laplacian was proved both by Anane [1] and Ôtani and Teshima [20].

Very recently, inspired by the seminal result of Berestycki, Nirenberg and
Varadhan [2], the concept of non-linear eigenvalue has been extended to elliptic,
fully-nonlinear operators in non divergence form and it has been the object of
many interesting papers. In particular we should mention the works of Busca,
Esteban, Quaas [8], and Quaas [21] for the Pucci operators, the papers of Ishii,
Yoshimura [16] and Quaas, Sirakov [22] for more general fullynonlinear uni-
formly elliptic operators which are homogeneous of degree 1 in the Hessian and
degree zero on the gradient.

The authors of this note have defined the ”principal eigenvalue” for fully-
nonlinear degenerate or singular elliptic operators modeled on the p-Laplacian
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but not variational, i.e., which are homogenous of degree α > −1 in the gra-
dient, see [3–5]. In those papers we prove the existence of the corresponding
eigenfunction together with many other properties (regularity of the viscosity
solutions, maximum principle, existence of solutions below the principal eigen-
value . . . ). But in those papers we raised the question of whether the principal
eigenfunction is unique up to multiplication by a constant. Here we answer this
question when the eigenfunctions are radial.

We also wish to mention the work of Petri Juutinen [17] who treats even
more degenerate operators since he defines the principal eigenvalue for the in-
finite Laplacian using techniques somehow related with those used in [4].

We start by describing the general class of operators that we consider. Let
α > −1 and let S be the set of symmetric matrices N ×N . Let us suppose that
b and c are continuous and bounded functions in Ω and let us consider

F (x,∇u,D2u) + b(x) · ∇u|∇u|α + c(x)|u|αu

with F : Ω×R
N \{0}×S, satisfying homogeneity, ellipticity and some standard

continuity assumptions, and with b satisfying some Hölder’s continuity condi-
tion. All the hypothesis will be made precise in the next section. In this class
of operators one can consider for example the p-Laplacian or

F (x, p,X) = |p|αMa,A(X)

where Ma,A(X) is a Pucci operator. In [4, 5] we showed that

λ(Ω)= sup{λ : ∃ϕ>0, F (x,∇ϕ,D2ϕ)+b(x)·∇ϕ|ϕ|α+(c(x)+λ)|ϕ|αϕ ≤ 0 in Ω}

λ(Ω)= sup{λ : ∃ϕ<0, F (x,∇ϕ,D2ϕ)+b(x)·∇ϕ|ϕ|α+(c(x)+λ)|ϕ|αϕ ≥ 0 in Ω}

are two eigenvalues in the following sense:

There exists an eigenfunction ϕ > 0 such that in the viscosity sense
{

F (x,∇ϕ,D2ϕ) + b(x).∇ϕ|∇ϕ|α + (c(x) + λ)|ϕ|αϕ = 0 in Ω

ϕ = 0 on ∂Ω;

and there exists ψ < 0 such that in the viscosity sense:
{

F (x,∇ψ,D2ψ) + b(x).∇ψ|∇ψ|α + (c(x) + λ)|ψ|αψ = 0 in Ω

ψ = 0 on ∂Ω.

One way of characterizing the eigenvalue λ is that for any λ < λ the max-
imum principle holds, and, analogously, for any λ < λ the minimum principle
holds (see [4, 5]). Clearly, since the operators are highly nonlinear these prop-
erties do not imply the validity of some strict comparison principle which is



Uniqueness of the First Eigenfunction 79

tightly linked to the question of the simplicity of the eigenfunction and of the
isolation of the eigenvalue which was raised in [4, 5].

Since here we prove the simplicity of radial eigenfunctions, we suppose that
Ω is rotationally invariant, i.e., up to a translation it is either a ball or an
annular region centered at the origin.

The key ingredients for obtaining these results are the Hopf principle, a
strict comparison principle near the boundary, and specific properties in the
radial case. Let us note that the classical approach cannot be taken because it
is not known if the Alexandrov Bakelman Pucci inequality holds true for the
solutions of the class of equations treated here.

2. Notations and hypothesis

We begin by detailing the hypothesis on the continuous operator F : Ω×(RN)\
{0} × S → R. Let α > −1 and let S be the set of symmetric matrices N ×N .

(H1) For all x ∈ Ω, F (x, tp, µX) = |t|αµF (x, p,X), ∀t ∈ R
\{0}, µ ∈ R

+.

(H2) ∃ a,A > 0 such that for all x ∈ Ω, p ∈ R
N \ {0} and (M,N) ∈ S2,

N ≥ 0:

a|p|αtrN ≤ F (x, p,M +N) − F (x, p,M) ≤ A|p|αtrN

(H3) There exists a continuous function ω̃, ω̃(0) = 0 such that for all (x, y) ∈
Ω2, for all p 6= 0 and for all X ∈ S

|F (x, p,X) − F (y, p,X)| ≤ ω̃(|x− y|)|p|α|X|.

(H4) There exists a continuous function ω with ω(0) = 0, such that if (X,Y )∈
S2 and ζ ∈ R satisfy

−ζ

(

I 0
0 I

)

≤

(

X 0
0 Y

)

≤ 4ζ

(

I −I
−I I

)

where I is the identity matrix in R
N , then for all (x, y) ∈ R

N , x 6= y,

F (x, ζ(x− y), X) − F (y, ζ(x− y),−Y ) ≤ ω(ζ|x− y|2).

Concerning b we assume that b : Ω 7→ R
N is a continuous and bounded function

satisfying

(H5) − Either α < 0 and b is Hölder of exponent 1 + α,

− or α ≥ 0 and, for all x and y in Ω , 〈b(x) − b(y), x− y〉 ≤ 0.
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In particular the condition (H1) implies that if φ(x) = g(|x|), then

F (x,∇φ,D2(φ))= |g′(|x|)|αF

(

x,
x

|x|
, g′′(|x|)

x

|x|
⊗

x

|x|
+
g′(|x|)

|x|

(

I −
x

|x|
⊗

x

|x|

))

.

Considering now condition (H2), it implies that

|g′|α
(

γ1g
′′ +

γ2(n− 1)

|x|
g′

)

≤ F (x,∇φ,D2(φ)) ≤ |g′|α
(

Γ1g
′′ +

Γ2(n− 1)

|x|
g′

)

,

where

γ1 =

{

a if g′′ > 0

A if g′′ < 0,
γ2 =

{

a if g′ > 0

A if g′ < 0

Γ1 =

{

A if g′′ > 0

a if g′′ < 0,
Γ2 =

{

A if g′ > 0

a if g′ < 0,

see [14] for a similar computation.

2.1. Radial eigenfunctions. In the rest of the paper we suppose that F , b
and c are such that there exists an eigenfunction φ corresponding to λ which
is radial, i.e., φ(x) = g(|x|) for some real function g, and Ω = B(0, 1) or
Ω = B(0, 1) \B(0, ρ).

For completeness sake, let us mention that it is the case when b(x) · x
|x|

=

h(|x|) for some real function h, c(x) = c(|x|) and there exists F̃ : R
+,⋆×R

⋆×R →
R such that, for r = |x|,

|g′(r)|αF

(

x, g′(r)
x

r
, g′′

x

r
⊗
x

r
+
g′

r

(

I −
x

r
⊗
x

r

)

)

= F̃ (r, g′, g′′).

In this situation we can define

λ̄r = sup
{

λ : ∃g > 0, F̃ (r, g′, g′′) + h(r)g′|g′|α + (c(r) + λ)g1+α ≤ 0 in Ω
}

.

Following the arguments in [4], one can prove that there exists g > 0 in Ω,
solution of

{

F̃ (r, g′, g′′) + h(r)g′|g′|α + (c(r) + λ̄r)g
1+α = 0 in Ω

g = 0 on ∂Ω.
(1)

In particular this implies that λ̄r = λ̄(Ω); indeed, by definition, λ̄r ≤ λ̄(Ω), but
if λ̄r < λ̄(Ω), then by the maximum principle this would imply that the above
solution g would be strictly negative, a contradiction.

We now introduce some notations for left and right ”derivatives” that will
be useful in the rest of the paper:
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Definition 2.1. Let us recall the definition of the four number derivatives:

dlu(r̄) = lim inf
h→0,h<0

u(r̄ + h) − u(r̄)

h
, dru(r̄) = lim inf

h→0,h>0

u(r̄ + h) − u(r̄)

h

Dlu(r̄) = lim sup
h→0,h<0

u(r̄ + h) − u(r̄)

h
, Dru(r̄) = lim sup

h→0,h>0

u(r̄ + h) − u(r̄)

h
.

Remark 2.2. According to the regularity results obtained in [4], the solutions
of the Dirichlet problem

{

F (x,∇u,D2u) + b(x) · ∇u|∇u|α + c(x)|u|αu = f in Ω

u = 0 on ∂Ω
(2)

are Lipschitz inside Ω. This in particular implies that for solutions of (2) the
limits given in the above definition are finite. Furthermore, almost everywhere,
the four number derivatives coincide.

Proposition 2.3. Let u be a radial Lipschitz supersolution of problem (2) with

f bounded by above, then, for every r̄ ∈]ρ, 1[,

Dlu(r̄) ≥ dru(r̄).

Similarly if u is a Lipschitz subsolution of (2) with f bounded by below, then,

for every r̄ ∈]ρ, 1[,
Dru(r̄) ≥ dlu(r̄).

Proof. Suppose by contradiction thatDlu(r̄)<dru(r̄) and let p∈]Dlu(r̄), dru(r̄)[,
then for every q ∈ R, ϕ(r) = u(r̄)+ p(r− r̄)+ q(r− r̄)2 touches u by below on r̄
and then, for some value C depending only on p and the data but not on q, one
would have, for q ≥ 0

(

aq − A(N−1)p
r̄

)

|p|α + C ≤ f. A contradiction for q large
since f is bounded by above. The analogous result for sub-solution is easy to
prove in the same manner.

We now give a definition.

Definition 2.4. For r 6= 0, we shall say, in what follows, that u′(r) 6∼ 0 if

either inf(Dlu(r), Dru(r)) > 0 or sup(dlu(r), dru(r)) < 0.

While u′(r) ∼ 0 means that Dlu(r) ·Dru(r) ≤ 0 and dlu(r) · dru(r) ≥ 0. When
u′(r) 6∼ 0 we shall sometime say that u′ is not zero.

Proposition 2.5. Suppose that u satisfies u′(r̄) 6∼ 0. Then for every test

function ϕ touching u by above or by below on r̄,

|ϕ′(r̄)| ≥ inf
{

inf(Dlu(r̄), Dru(r̄)), | sup(dlu(r̄), dru(r̄))|
}

.
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Proof. Suppose, for example, that Dlu(r̄) and Dru(r̄) are both strictly positive.
Let ϕ be such that ϕ touches u by below on r̄. Then for r < r̄, u(r) − u(r̄) ≥

ϕ(r) − ϕ(r̄) and then, dividing by r − r̄ < 0, one gets ϕ(r)−ϕ(r̄)
r−r̄

≥ u(r)−u(r̄)
r−r̄

.

Taking the limsup on both sides and using the fact that ϕ is differentiable
one gets that ϕ′(r̄) ≥ Dlu(r̄). In the same manner if ϕ touches u by above
for r > r̄ one has u(r) − u(r̄) ≤ ϕ(r) − ϕ(r̄), dividing by r − r̄ > 0 one

concludes ϕ(r)−ϕ(r̄)
r−r̄

≥ u(r)−u(r̄)
r−r̄

, and taking the limsup on both sides one gets
ϕ′(r̄) ≥ Dru(r̄). Analogous arguments permit to prove the other cases.

Proposition 2.6. Suppose that u is a nonnegative, radial, continuous, nontriv-

ial, supersolution of

{

F (x,∇u,D2u) + b(x) · ∇u|∇u|α + c(x)u1+α ≤ 0 in Ω

u = 0 on ∂Ω

with c > 0 in Ω. If Ω = B(0, 1), then 0 is a maximum point for u and it is the

only point on which u′ ∼ 0. If Ω = B(0, 1) \ B(0, ρ), then there exists at most

one value ru on which u achieves its maximum, which is also the only point on

which u′ ∼ 0.

Proof. Let us start by observing that for c > 0, any non-negative super solution,
which is not identically zero, cannot be locally constant.

Secondly, let us observe that any non-negative radial super-solution reaches
its maximum in one point only. Indeed, if u(ra) = u(rb) = maxu(r) with
ra < rb, then, since the positive constants are strict subsolutions, using the
comparison principle (see [5, Theorem 1]) one would have that u(r) ≥ maxu(r)
for r ∈ (ra, rb), contradicting the first observation.

In the case Ω = B(0, 1) \ B(0, ρ), we can choose any t ∈]0,maxu[. By the
continuity of u there exist r1 and r2 such that ρ < r1 < ru, 1 > r2 > ru such that
u(r1) = u(r2) = t. By the comparison principle on the set B(0, r2) \ B(0, r1),
reasoning as before one has u(r) ≥ t, for any r ∈ B(0, r2) \ B(0, r1). Moreover
the minimum is achieved on the boundary of B(0, r2) \ B(0, r1) so, since u is
nowhere locally constant, dru(r1) > 0 and Dlu(r2) < 0 by the Hopf principle
(see [5, Corollary 1]).

In the case Ω = B(0, 1) reasoning as above we get that the maximum point
has to be 0, and for any t ∈]0,maxu[ by the continuity of the super solutions
there exists r2 ∈ (0, 1) such that u(r2) = t = infB(0,r2) u and Dlu(r2) < 0.

In both cases, by Proposition 2.3 we know that Dlu(r1) ≥ dru(r1) > 0 and
then inf(Dlu(r1), Dru(r1)) > 0, i.e., according to Definition 2.4, u′(r1) 6∼ 0.
Similarly, concerning r2, one has 0 > Dlu(r2) ≥ dru(r2) and then

inf(dlu(r2), dru(r2)) < 0,
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which means that u′(r2) 6∼ 0. Since t was chosen arbitrarily, we can conclude
that ru is the only point on which u′ can be zero.

Remark 2.7. The previous result establishes that u′(r̄) 6∼ 0 as soon as r̄ 6= ru.
Without the information that the left and right derivatives defined above satisfy
some kind of continuity, one cannot conclude that there exists some constant
m > 0 such that inf(Dru(r), Dlu(r)) ≥ m on every compact subset of ]ρ, ru[.
This will be a necessary ingredient in what follows, and it is the object of the
following Proposition 2.8.

Proposition 2.8. Let u be a non negative, radial continuous supersolution of

F (x,∇u,D2u)+ b(x) ·∇u|∇u|α+ c(x)u1+α ≤ 0, with c(x) > 0. Then there exist

δ > 0 and Kδ > 0 such that for all r ∈]1 − δ, 1[:

|Dlu(r)| ≥ Kδ|Dlu(1)|, |dlu(r)| ≥ Kδ|dlu(1)|.

Remark 2.9. Of course, if Ω = B(0, 1) \B(0, ρ), one has the symmetric result
near the point r = ρ: There exist δ > 0 and Kδ > 0 such that for all r ∈]ρ, ρ+δ[

|dru(r)| ≥ Kδ|dr(ρ)| and |Dru(r)| ≥ Kδ|Dr(ρ)|.

Proof. Let ru be such that u(ru) = supu.

Claim: For all ro ∈]ru, 1[, for all δ1 < ro − ru and for all r ∈]ro − δ1, ro[, and

defining σ = 2A(N−1)
a(ro−δ1)

+ |b|∞
a

,

u(r) ≥ u(ro) +
u(ro − δ1) − u(ro)

e−σ(ro−δ1) − e−σro

(

e−σr − e−σro
)

.

Proof of the claim. It is enough to remark that, with the above choice of σ, the
function v(r) = u(ro) + C(e−σr − e−σro) is a strict-subsolution for the equation
F (x,∇u,D2u) + b(x) · ∇u|∇u|α = 0, for any C > 0. Moreover, with the choice
of C as in the claim, v(ro) = u(ro) and v(ro − δ1) = u(ro − δ1). Hence to
conclude the proof of the claim it is enough to apply the comparison theorem
for the operator u 7→ F (x,∇u,D2u) + b(x) · ∇u|∇u|α.

Using the fundamental calculus theorem, we deduce from the claim that,

dlu(r0) ≤ e−σδ1
u(ro − δ1) − u(ro)

−δ1
. (3)

End of the proof: Let δ1 < 1−ru
2

be such that u(1−δ1)−u(1)
δ1

≥ 3|dlu(1)|
4

; by

continuity, there exists δ < δ1
2
, such that for all r ∈ ] 1 − δ, 1 [ ,

∣

∣

u(r−δ1)−u(r)
δ1

∣

∣ ≥
|dlu(1)|

2
. This, together with (3), gives the result: dlu(r) ≤ −e−σδ1 |dlu(1)|

2
< 0.

Similarly for Dl instead of dl.
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Corollary 2.10. Under the assumptions of Proposition 2.8, there exists δ > 0
and Kδ > 0 such that for all r ∈]1 − δ, 1[

sup
(

dlu(r), dru(r)
)

≤ Kδ sup
(

dlu(1), Dlu(1)
)

< 0.

Proof. We use the fact that Dlu(r) ≥ dru(r), so by Proposition 2.8 dru(r) ≤
Dlu(r) ≤ KδDlu(1) < 0 and then

sup
(

dru(r), dlu(r)
)

≤ sup
(

Kδdlu(1), KδDlu(1)
)

< 0.

Remark 2.11. The same reasoning establishes that for all r̄ ∈ [ρ, ru[, there
exist δ > 0 and Kr̄ > 0 such that, for r ∈ [ρ, ρ+ δ[,

|dru(r)| ≥ Kr̄|dru(r̄)|, |Dru(r)| ≥ Kr̄|Dru(r̄)|.

Remark 2.12. As suggested by one of the referee, let us note that the re-
sult of Proposition 2.8 can be formulated in terms of distributional derivatives;
precisely, for all r̄ ∈ [ρ, ru[, there exist δ > 0 and Kr̄ > 0 such that in the
distributional sense on ]ρ, ρ + δ[, u′ ≥ Kr̄|dru(r̄)|. Indeed let ϕ ∈ D(]ρ, ρ + δ[)
and ϕ ≥ 0, then

∫

u′ϕ = −

∫

uϕ′ = − lim
h→0,h>0

∫

u
ϕ(r + h) − ϕ(r)

h
dr

= lim
h→0,h>0

∫

u(r + h) − u(r)

h
ϕ(r) dr

≥ Kr̄|dru(r̄)|

∫

ϕ(r) dr.

3. Uniqueness

We are now in a position to prove the simplicity of the radial eigenfunctions:

Theorem 3.1. Suppose that F satisfies (H1), (H2), (H3) and (H4), that c(x)+
λ̄ > 0 in Ω, and that there exist two positive eigenfunctions φ and ψ which are

radial, then there exists a constant t such that φ = tψ.

Before starting the proof we shall give a few propositions that will be used
in the proof of this theorem and which are of independent interest. In the rest
of the section we shall suppose that F satisfies (H1), (H2), (H3), (H4), that b
and c are continuous and b satisfies (H5). The first two results are not specific
to radial solutions.



Uniqueness of the First Eigenfunction 85

Proposition 3.2. Suppose that λ < λ̄(Ω), that c + λ is positive in Ω and that

u and v are respectively continuous super- and subsolutions of

F (x,∇u,D2u) + b(x) · ∇u|∇u|α + (c+ λ)u1+α ≤ 0

F (x,∇v,D2v) + b(x) · ∇v|∇v|α + (c+ λ)v1+α ≥ 0.

Suppose that v ≥ 0, then:

1) If u ≥ v > 0 on ∂Ω, then u ≥ v in Ω.

2) If u > v on ∂Ω, then u > v on Ω.

In [5] we have obtained a comparison principle for strict sub- and super-
solutions (Theorem 1), we shall use it here and in the following.

Proof of Proposition 3.2. Observe that in both cases, by the maximum principle
below the first eigenvalue, u ≥ min∂Ω u > 0 in Ω. In the first case, let 0 < ǫ <
minu

2
, since by hypothesis u is strictly positive and continuous. Then, since

λ+ c > 0 in Ω̄, uǫ = u− ǫ ≥ 0 satisfies for some constant m > 0

F (x,∇uǫ, D
2uǫ) + b(x) · ∇uǫ|∇uǫ|

α + (λ+ c)(uǫ)
1+α ≤ −m < 0.

While for γǫ defined as γ(ǫ) = ǫ
minu−ǫ

, vǫ = v
1+γǫ

satisfies

F (x,∇vǫ, D
2vǫ) + b(x) · ∇vǫ|∇vǫ|

α + (λ+ c)v1+α
ǫ ≥ 0.

For this choice of γ(ǫ), uǫ ≥ vǫ on the boundary. Using the comparison principle
in [5], one gets that uǫ ≥ vǫ and letting ǫ tend to zero one gets that u ≥ v.

In the second case, i.e., u > v on the boundary, uε ≥ (1+ ǫ)v for some ǫ > 0
and since v(1 + ǫ) is still a sub-solution, one gets that u ≥ (1 + ǫ)v in Ω.

Proposition 3.3. Let Ω′⊂⊂Ω, suppose that c(x)+λ(Ω)>0, then λ(Ω)<λ(Ω′).

Proof. Let φ be a positive eigenfunction for λ(Ω). Since φ is continuous, let
0 < 2ε ≤ infΩ′ φ. Then there exists λ′ > λ(Ω) such that φε = φ− ǫ is a positive
solution of

F (x,∇φǫ, D
2φǫ) + b(x).∇φǫ|∇φǫ|

α + (λ′ + c)(φǫ)
1+α ≤ 0.

Indeed just choose λ′ > λ(Ω), but sufficiently close to it that inf c+λ′

inf c+λ(Ω)
≤

(

supφ
supφ−ǫ

)1+α
, so, by monotonicity,

c(x) + λ′

c(x) + λ(Ω)
≤

inf c+ λ′

inf c+ λ̄
≤

(

supφ

supφ− ǫ

)1+α

≤

(

φ(x)

φ(x) − ǫ

)1+α

.

By definition of an eigenvalue, λ(Ω′) ≥ λ′ > λ(Ω); this ends the proof.
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The next Proposition is a sort of Hopf comparison principle:

Proposition 3.4. Suppose that c ≥ 0. Let u and v be respectively nonnegative

radial continuous solutions of

F (x,∇u,D2u) + b(x) · ∇u|∇u|α + c(x)uα+1 ≤ f

and

F (x,∇v,D2v) + b(x) · ∇v|∇v|α + c(x) ≥ gvα+1

with f ≤ g. Suppose that u ≥ v in ]r̄ − δ, r̄[ and u(r̄ − δ) > v(r̄ − δ) for some

δ > 0 and r̄ ∈ (ρ, 1]. Suppose that either u′ 6∼ 0 or v′ 6∼ 0 on ]r̄ − δ, r̄[, then

there exists C > 0 which depends only on δ and on the data, such that

u(r) ≥ v(r) + C(r̄ − r)

for any r ∈]r̄ − δ, r̄[.

Remark 3.5. Similarly, suppose that u ≥ v in ]r̄, r̄+ δ[ and u(r̄+ δ) > v(r̄+ δ)
for some δ > 0 and r̄ ∈ [ρ, 1), and suppose that either u′ 6∼ 0 or v′ 6∼ 0 on
]r̄, r̄ + δ[, then there exists C > 0 which depends only on δ and on the data,
which is such that for r ∈]r̄, r̄ + δ[, u(r) ≥ v(r) + C(r − r̄). In particular, if
r̄ ∈]ρ, 1[, and u ≥ v in ]r̄ − δ, r̄ + δ[ for some δ > 0 and either u′ 6∼ 0 or v′ 6∼ 0
on ]r̄ − δ, r̄ + δ[, then

either u ≡ v on ]r̄ − δ, r̄ + δ[, or u > v on ]r̄ − δ, r̄ + δ[.

Proof of Proposition 3.4. It is sufficient to prove the result when c = 0. Indeed
suppose that it has been proved in this case. We get the result using the one
obtained in the case c = 0, replacing f by f − c(x)u1+α, and g by g − c(x)v1+α

which also satisfy f − c(x)u1+α ≤ g − c(x)v1+α. Hence we now suppose that
c = 0.

Suppose to fix the ideas that v′(r̄) 6∼ 0 on [r̄ − δ, r̄[, then by Definition 2.4,
Proposition 2.5 and Proposition 2.8 there exist k > 0 and a neighborhood of r̄
on which the test functions ϕ of v satisfy |ϕ′| ≥ k . Let

σ = sup

{

2A(N − 1)

a(r̄ − δ)
,

(

2|α|+2|α||g|∞
ak

+
2|α|+1|h|∞

a

)}

and

ǫ = inf

{

ke−σδ

2σ
,
u(r̄ − δ) − v(r̄ − δ)

2

}

.

Let w = eσ(r̄−r) − 1. We shall prove that ψ(r) = v(r) + ǫw(r) is a radial
subsolution of

F (x,∇ψ,D2ψ) + b(x) · ∇ψ|∇ψ|α ≥ g +mǫ
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for some constant m > 0 in the set [r̄ − δ, r̄[. (In the case where u′(r̄) 6∼ 0, one
would prove in the same manner that u− ǫw is a supersolution of

F (x,∇(u− ǫw), D2(u− ǫw)) + b(x) · ∇(u− ǫw)|∇(u− ǫw)|α

+ c|u− ǫw|α(u− ǫw) ≤ f −mǫ

for some positive constant m.)

Observe that ϕ′ + ǫw′ = ϕ′− ǫσeσ(r̄−r) and, with our choice of ǫ, |ϕ′ + ǫw′| ≥
|ϕ′|
2

. We then obtain, by (H2),

F (x,∇(ϕ+ ǫw), D2(ϕ+ ǫw)) + b(x) · ∇(ϕ+ ǫw)|∇(ϕ+ ǫw)|α

≥ |(ϕ′ + ǫw′)|α
(

F̃ (r, 1, ϕ′′)

|ϕ′|α
+ h(r)ϕ′ + ǫM−

a,A(D2w) + ǫh(r)w′

)

≥ |(ϕ′ + ǫw′)|α
(

g(x)

|ϕ′|α
+ ǫM−

a,A(D2w) + ǫh(r)w′

)

.

Clearly:

M−
a,A(D2w) = eσ(r̄−r)

[

aσ2 −
Aσ(n− 1)

r

]

≥ eσ(r̄−r)aσ
2

2

and

|(ϕ′ + ǫw′)|α
(

g

|ϕ′|α

)

≥ g − ǫσeσ(r̄−r)|α||g|∞
2|α−1|

k
.

Putting everything together we get

F (x,∇(ϕ+ ǫw), D2(ϕ+ ǫw)) + b(x) · ∇(ϕ+ ǫw)|∇(ϕ+ ǫw)|α

≥ g(x) + |ϕ′|αǫeσ(r̄−r)

[

aσ2

2
− σ|α||g|∞

2|α−1|

k
− σ2|α||h|∞

]

,

which is the required result with our choice of σ.

On the other hand u(r̄) ≥ v(r̄) = (v + ǫw)(r̄) while, with our choice of ε,
u(r̄ − δ) > (v + ǫw)(r̄ − δ).

Using the comparison principle in the annulus ]r̄ − δ, r̄[ one gets that u ≥
v+ǫw in that set and we also get that for r̄−δ < r < r̄, u(r) ≥ v(r)+ǫσ(r̄−r).
(In particular if u(r̄) = v(r̄), dlu(r̄) ≤ dlv(r̄)− σǫ, Dlu(r̄) ≤ Dlv(r̄)− σǫ with σ
and ǫ some positive constants which depend only on r̄, δ, g h, a, A).

One can do the same on the right hand side of r̄, more precisely one defines
w = eσ(r−r̄) − 1, and choosing σ large enough, and ǫ small enough, one obtains
that u > v + ǫw for some ǫ.
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Proof of Theorem 3.1. Let us recall that either Ω = B(0, 1) or Ω = B(0, 1) \
B(0, ρ). We shall give the proof in this second case, the other proof being similar
but easier.

Let Γ = sup ψ

φ
and γ = inf ψ

φ
. We know that by [5, Proposition 3.4] and the

Hopf principle, Γ <∞ and γ > 0. We want to prove that Γ = γ.

Step 1. The extrema of ψ

φ
are reached on the boundary, in the following

sense : There exists some sequence rn which goes either to r = 1 or to r = ρ

with ψ

φ
(rn) → Γ, and there exists r′n which goes either to r = 1 or to r = ρ with

ψ

φ
(r′n) → γ.

To prove this claim, let Kn be a strictly increasing sequence of annulus of
center 0,

⋃

Kn = Ω, such that Kn ⊂⊂ Ω. Then λ(Kn) > λ̄(Ω) by Proposi-
tion 3.3. We prove that supΩ\Kn

ψ

φ
→ Γ.

Assume by contradiction that limn→+∞ supΩ\Kn

ψ

φ
< Γ. Let δ > 0 be such

that Γ − δ ≥ γ, and such that, for n ≥ N , supΩ\Kn

ψ

φ
≤ Γ − δ, one would have

on ∂Kn
ψ

φ
≤ Γ − δ and using the comparison principle in Proposition 3.2 on

Kn, one would get that ψ

φ
≤ Γ − δ both in Ω \Kn and in Kn for n ≥ N , which

contradicts the definition of Γ. A similar proof will imply that infΩ\Kn

ψ

φ
→ γ.

Step 2. We prove that ψ

φ
admits a limit on each of the two parts of the

boundary, these two limits being respectively the supremum and the infimum
of the ratio. Without loss of generality we can suppose that the supremum Γ
is reached at r = 1

In what follows, we shall prove that ψ

φ
(r) converges to Γ when r goes to 1.

Once this will be done , we shall derive similarly that, ψ
φ
(r) converges to γ when

r goes to ρ.

Let rn be a strictly increasing sequence such that ψ

φ
(rn) = Γn → Γ. Let

δ > 0 and N0 be such that for n ≥ N0,
ψ

φ
(rn) ≥ Γ − δ. Let then δ1 = 1 − rN0

.

We now prove that for any r ∈]1 − δ1, 1[, ψ

φ
(r) ≥ Γ − δ. Indeed for any n ≥

N0, since the inequality holds on the boundary of B(0, rn) \ B(0, rn+1) using

Proposition 3.2, we obtain that ψ

φ
≥ Γ − δ in B(0, rn) \ B(0, rn+1). Since

B(0, 1)\B(0, rNo
) =

⋃

n≥No
B(0, rn)\B(0, rn+1), we have obtained the required

result .

Step 3. We prove that ψ ≡ Γφ in a left neighborhood of 1. Suppose not,
then there exists δ such that δ < 1−ru

2
, with ψ(1−δ) < Γφ(1−δ) and ψ ≤ Γφ in

a left neighborhood of 1. By Proposition 3.4, there exists C > 0 which depends
only on δ and on the data, such that for r ∈ [1 − δ, 1[

ψ(r) ≤ Γ(φ(r) + C(r − 1)). (4)

But φ is Lipschitz with Lipschitz constant L, hence 1−r
φ(r)

≥ 1
L
. Dividing (4) by φ
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and passing to the limit when r goes to 1 we get Γ ≤ Γ(1− C
L
), a contradiction.

We would do the same in a neighborhood of ρ.

Conclusion. We denote by rφ and rψ the points on which φ and ψ have
respectively their maximum. If rφ = rψ this ends the proof. Indeed in that case
φ′ 6∼ 0 in (ρ, rφ) and in (rφ, 1). Hence, by Remark 3.5

ψ = γφ in (ρ, rφ) and ψ = Γφ in (rφ, 1),

since in a neighborhood of 1 and ρ these equalities hold. By continuity of the
solution γ = Γ and ψ = Γφ in Ω.

We shall prove that rφ 6= rψ leads to a contradiction. Observe that, in that
case the derivatives of ψ and φ are never zero in the same point and we can, at
any point, apply Proposition 3.4. This implies that

r̄ = inf{r, such that ψ = Γφ, in (r, 1]} = ρ.

Indeed, if r̄ > ρ using Remark 3.5 since ψ coincides with Γφ on the right of r̄, it
is still true on a neighborhood [r̄ − δ, r̄] for δ < r̄ − ρ. And this contradicts the
definition of r̄. But if r̄ = ρ, then ψ ≡ Γφ and then their maximum coincide also
i.e. rψ = rφ contradicting the hypothesis. So we have obtained that rφ = rψ
and, as mentioned before, this ends the proof.
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