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Abstract. For one dimensional Schrödinger operators, in terms of local behavior of
the potential, we give some comparison theorems for their eigenvalues. As an ap-
plication, some monotone properties of the first eigenvalue of stepfunction potentials
are given.
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1. Introduction

Consider the Dirichlet problem for the one-dimensional Schrödinger operator
on (−L,L):

u′′ − V (x)u + λu = 0, x ∈ (−L,L) (1.1)

u(−L) = u(L) = 0, (1.2)

with V (x) ≥ 0, L > 0. Denote the n-th eigenvalue of (1.1) by λn(V ), the
corresponding eigenfunction by φn,V . It is well known (see [4]) that λ1(V ) > 0
and φ1,V does not change the sign. We always assume that φ1,V > 0 in (−L,L).
In this article, mainly we give some comparison results of λ1(V ) which depend
on local behavior of V (Theorems 2.3, 2.4). As an application, some monotone
properties of λ1(V ) for V being step functions are given (Theorems 3.1, 3.2, 3.4
and 3.6). Such potentials are interesting in the study of the tunneling effects
of the valence band problems (see [3, 8]). It follows that, in Corollary 3.7, the
infimum of λ1(V ) for those V with fixed integral can be obtained, this was not
known before.
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Properties of eigenpairs related to geometric features of V were investigated
by many authors before. For instance, about the optimum problem: in [6], it is
investigated where to place the support of a central nonnegative potential so to
optimize the principal Dirichlet eigenvalue. In [10,11], some optimization results
of the principal eigenvalue are given (see Theorem A). Between the optimum,
we investigate how λ1(V ) would vary with respect to, say the (maximal) height
of V (in this article), or the location of the support of V (in [2]). It turns out
that some comparison theorems and monotone properties are obtained. It is
interesting to observe that, in Theorems 3.1 and 3.2, although those V being
considered are looked alike, their monotonic behaviors of λ1(V ) are reversed.
From the proofs, this phenomenon can be explained as: the shape of φ1,V is also
mattered. This point of view was mentioned in [9], too. Another important
physical quantity ”spectral gap” is also related to the geometric features of V .
In [5] it is proved that a double-well potential which is large on its support
will produce small gaps λi+1 − λi for i = 1, 2. In this aspect, some estimates
for λ2(V ) as well as for the position of nodal points of φ2,V with V being step
functions are given in [2]. With the comparison results in this article and
the method in [2, Section 3.4], some comparison results on λ2(V ), accordingly
λ2(V ) − λ1(V ), may also be obtained.

The organization of this article is the following: in Section 2 we present the
main comparison results. In Section 3, stepfunction potentials are treated as
mentioned above. The main tool we use is the variational method.

2. Main results

In the following, supp V denotes the support of V . To make the idea clear,
Propositions 2.1 and 2.2 are stated specifically. More general results are stated
in Theorems 2.3, 2.4. Remark 2.5 indicates the intrinsic idea of these results.

Proposition 2.1. Let 0 < b2 < b1 ≤ L. Suppose V1, V2 are two potentials in
(1.1),(1.2). If

1. φ1,V1(x) is strictly decreasing on [−b1, 0], V2 6=V1 only in [−b1, 0], supp V2∩
[−b1, 0] ⊂ [−b2, 0] and V2(x) ≤

(

b1
b2

)

V1

(

b1x
b2

)

for x ∈ (−b2, 0);
or

2. φ1,V1(x) is strictly increasing on [0, b1], V2 6= V1 only in [0, b1], supp V2 ∩
[0, b1] ⊂ [0, b2] and V2(x) ≤

(

b1
b2

)

V1

(

b1x
b2

)

for x ∈ (0, b2).

Then λ1(V2) < λ1(V1).

Proof. We prove 1. only, 2. can be similarly proved.

Let ξ1(x) = φ1,V1(
b1x
b2

), x ∈ [−b2, 0], then from the decreasing property
of φ1,V1 ,

φ1,V1(x) < ξ1(x) for x ∈ (−b2, 0). (2.1)
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From the inequality between V1 and V2, a direct computation shows
∫ 0

−b2

V2(x)ξ2
1(x)dx ≤

∫ 0

−b1

V1(x)[φ1,V1(x)]2(x)dx. (2.2)

Using φ1,V1 as a trial function in the Rayleigh quotient for λ1(V2) on [−L,L],
by (2.1) (2.2) we have

λ1(V2)

≤

∫ L

−L
[φ′

1,V1
(x)]2dx +

∫

[−L,L]\[−b2,0]
V2(x)[φ1,V1(x)]2dx +

∫ 0

−b2
V2(x)[φ1,V1(x)]2dx

∫ L

−L
[φ1,V1(x)]2dx

<

∫ L

−L
[φ′

1,V1
(x)]2dx +

∫

[−L,L]\[−b1,0]
V2(x)[φ1,V1(x)]2dx +

∫ 0

−b2
V2(x)ξ2

1(x)dx
∫ L

−L
[φ1,V1(x)]2dx

≤

∫ L

−L
[φ′

1,V1
(x)]2dx +

∫

[−L,L]\[−b1,0]
V1(x)[φ1,V1(x)]2dx +

∫ 0

−b1
V1(x)[φ1,V1(x)]2dx

∫ L

−L
[φ1,V1(x)]2dx

= λ1(V1)

The proof is complete.

Similarly we have

Proposition 2.2. Let 0 < b2 < b1 ≤ L. Suppose V1, V2 are two potentials in
(1.1), (1.2). If

1. φ1,V2(x) is strictly increasing in [−b1, 0]. V2 6= V1 only in [−b1, 0] with
V1(x) ≤

(

b2
b1

)

V2

(

b2x
b1

)

for x ∈ (−b1, 0);
or

2. φ1,V2(x) is strictly decreasing in [0, b1]. V1 6= V2 only in [0, b1] with V1(x) ≤
(

b2
b1

)

V2

(

b2x
b1

)

for x ∈ (0, b1).

Then λ1(V1) < λ1(V2).

We put Propositions 2.1, 2.2 together in Theorem 2.3, which will be used
in Section 3. A general case is stated in Theorem 2.4.

Theorem 2.3. Let [c, d] ⊂ (a, b) ⊂ (−L,L). In (1.1), (1.2), suppose V1 6= V2

only in [a, b].

1. If φ1,V1 has only one local minimum at xm ∈ (a, b), supp V2∩ (a, b) ⊂ [c, d]
and

V2(x) ≤

(

xm − a

xm − c

)

V1

(

(xm − a)(x − xm)

xm − c
+ xm

)

for x ∈ (c, xm)

V2(x) ≤

(

b − xm

d − xm

)

V1

(

(b − xm)(x − xm)

d − xm

+ xm

)

for x ∈ (xm, d),

then λ1(V2) < λ1(V1).
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2. If φ1,V2 has only one local maximum at xM ∈ (c, d) and

V1(x) ≤

(

xM − c

xM − a

)

V2

(

(xM − c)(x − xM)

xM − a
+ xM

)

for x ∈ (a, xM)

V1(x) ≤

(

d − xM

c − xM

)

V2

(

(d − xM)(x − xM)

b − xM

+ xM

)

for x ∈ (xM , b),

then λ1(V1) < λ1(V2).

Proof. 1. Apply Proposition 2.1-1. on [a, xm] and Proposition 2.1-2. on [xm, b].
2. is similarly treated.

Theorem 2.4. Let [c, d] ⊂ (a, b) ⊂ (−L,L). In (1.1), (1.2), suppose V1 6= V2

only in [a, b].

1. If φ1,V1 has only one local minimum at xm ∈ (a, b), supp V2 ∩ (a, b) ⊂
[c, d]. Let w(x) be a strictly increasing and differentiable (except possibly
at x = xm) function from [c, d] onto [a, b] with w(xm) = xm. Suppose
V2(x) ≤ w′(x)V1(w(x)) for x ∈ [c, d]\{xm}. Then λ1(V2) < λ1(V1).

2. If φ1,V1 has only one local maximum at xM ∈ (c, d). Let w(x) be a strictly
increasing and differentiable (except possibly at x = xM) function from
[a, b] onto [c, d] with w(xM) = xM . Suppose V1(x) ≤ w′(x)V2(w(x)) for
x ∈ [a, b]\{xM}. Then λ1(V1) < λ1(V2).

Proof. It suffices to prove 1. for the case in Proposition 2.1-1., that is, suppose
a = −b1, b = 0 = d = xm, c = −b2 > −b1.

Let ξ2(x) = φ1,V1(w(x)), x ∈ [−b2, 0], then from the decreasing property
of φ1,V1 ,

φ1,V1(x) < ξ2(x) for x ∈ (−b2, 0). (2.3)

From the inequality between V1 and V2, we have
∫ 0

−b2

V2(x)ξ2
2(x)dx ≤

∫ 0

−b1

[V1(x)]φ2
1,V1

(x)dx. (2.4)

Using φ1,V1 as a trial function in the Rayleigh quotient for λ1(V2) on [−L,L],
by (2.3) and (2.4), along the same lines as in the proof of Proposition 2.1-1., we
have λ1(V2) < λ1(V1).

Remark 2.5. 1. Observe that, for instance, in the background of Proposi-
tion 2.1-2., we have

∫ b1

0
V (x)dx =

∫ b2

0
b1
b2

V
(

b1x
b2

)

dx for any V , b1, b2. So in all
comparison results in this section, V is deformed under the condition that its
”total quantity” is not increased. However, to lower the first eigenvalue, accord-
ing to Theorems 2.3, 2.4, the way to deform V depends on the (local) shape
of φ1,V .

2. In Theorem 2.4-1., from the proof we see that the pointwise inequality
relating V1, V2 can be replaced by the weaker condition (2.4). So do Proposi-
tions 2.1, 2.2 and Theorem 2.3.
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3. Applications - monotone behavior of the first
eigenvalues for stepfunction potentials

In this section, first in Theorems A-C and 3.5, the shape of φ1,V for V being
stepfunctions are revealed. Then through Theorem 2.3, we get some monotone
properties of λ1(V ) in Theorems 3.1, 3.2, 3.4, 3.6.

It is known that if V is a step function, then φ′
1,V is absolutely continuous in

[−L,L] (see [4]). Some terminology goes ahead: for fixed positive real numbers
A,L,M , denote

A =

{

V ≥ 0

∣

∣

∣

∣

∫ L

−L

V (x)dx = A

}

; AM =

{

V ∈ A

∣

∣

∣

∣

max
x∈[−L,L]

V (x) = M

}

and µ := π+
√

π2+8LA
4L

. The even functions Vmax(x) ∈ A and WM ∈ AM are
defined by

Vmax(x) =

{

µ2 for x ∈ [0, L − π
2µ

]

0 for x ∈ (L − π
2µ

, L];
WM(x) =

{

0 for x ∈ [0, L − A
2M

)

M for x ∈ [L − A
2M

, L].

Some known results are quoted below. We remark that in contrast to The-
orem A-1., λmin = infV ∈A λ1(V ) will be got in Corollary 3.7, which is unknown
before.

Theorem A ([10, Theorem 3], [11, Theorem 1]).

1. The unique potential that attains λmax := maxV ∈A λ1(V ) = µ2 = λ1(Vmax)
is Vmax with

φ1,Vmax =

{

c > 0 in [0, L − π
2µ

]

c · sin(µ(L − x)) in [L − π
2µ

, L].

2. The (unique) potential in (1.1),(1.2) that attains λM,min = minV ∈AM
λ1(V )

is WM .

Since some results in [2] will be used, we use notations as in [2]. For c > 0, let
cF b0(c) ∈ A be the step function which is supported on [b0(c), |b0(c)|] ⊂ [−L,L]
and with constant height cµ2 there (in fact, 0 > b0(c) = 1

c
(−L + π

2µ
)). We see

that Vmax ≡ F
−L+ π

2µ (since b0(1) = −L + π
2µ

). Theorem B describes the shape
of φ1,cF b0(c) :

for c > 1, φ1,cF b0(c) has exactly one minimum on supp(cF b0(c));

for c ≤ 1, φ1,cF b0(c) has exactly one maximum on supp(cF b0(c)).

Theorem B ([2, Theorems 1–3]).

1. For c > 1, φ1,cF b0(c) is even and has exactly two peaks. Let p ∈ [−L, 0] be
one of them, then p ∈ (−L + π

2µ
, b0(c)).

2. For c ≤ 1, φ1,cF b0(c) is even and has only one peak at x = 0.
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Moving the support of cF b0(c) toward L (moving toward −L can be similarly
treated), denote the moved function by cF b such that it is supported on [b, b̄]
with the height still being cµ2 (we remark that b ∈ [1

c
(−L+ π

2µ
), L(1− 2

c
)+ π

cµ
];

b̄ = b + 2
c
(L − π

2µ
)). Theorem C describes the shape of φ1,cF b :

for c = 1, φ1,F b is decreasing in [b, b̄];

for c 6= 1, the shape of φ1,cF b depends.

Theorem C ([2, Theorems 1–3]).

1. φ1,F b has exactly one peak which is located in (−L + π
2µ

, b).

2. For c < 1, φ1,cF b has exactly one peak which is located in (−L + π
2µ

, 0).

3. For c > 1, let b1(c) = b0(c) + (1 − 1
c
)(L − π

2µ
) (so b̄1(c) = L − π

2µ
). Then:

If b ≥ b1(c), φ1,cF b has exactly one peak which lies in (−L + π
2µ

, b).

If b ∈ (b0(c), b1(c)), either φ1,cF b has exactly two peaks p and −p with
p ∈ (−L+ π

2µ
, b); or φ1,cF b has only one peak which is located in (−L+ π

2µ
, b).

A more general situation is the following:

Theorem D ([1, Theorem 2; Theorem 6 (i)]).

1. In (1.1) (1.2), suppose that V ∈ AM and V −1({M}) contains an interval J

with positive length. If M > µ2, then φ1,V is convex in J .

2. If φ1,V is concave down in [−L,L], so is φ1,cV for all 0 < c < 1.

Apply the comparison results in section 2, we get some ”reversed” monotone
behaviors of λ1(V ) in Theorems 3.1, 3.2.

Theorem 3.1. For c > 1, λ1(cF
b0(c)) is decreasing with respect to c.

Proof. Suppose 1 < c1 < c2, due to c1|b0(c1)| = c2|b0(c2)|, we see that |b0(c1)| >

|b0(c2)|. Moreover, on [b0(c2),−b0(c2)],
[

c2F
b0(c2)(x)

]

= b0(c1)
b0(c2)

[

c1F
b0(c1)

(

b0(c1)x
b0(c2)

)]

.
From Theorems B-1. and 2.3-1., we know that the conclusion has to be true.

Similarly, from Theorems B-2. and 2.3-2., we have

Theorem 3.2. For c < 1, λ1(cF
b0(c)) is increasing with respect to c.

Remark 3.3. In Theorem A-1., we see that φ1,Vmax is constant on supp Vmax.
Theorems 3.1, 3.2 present a different view from that of [10]: φ1,Vmax must be
constant on suppVmax, or λ1(Vmax) will not attain the maximum of λ1(V ) in A.

Numerical simulation shows that λ1(cF
b) do not have a simple monotonic

property (with respect to c) as λ1(cF
b0(c)) does. Still, some interesting results

exist. With similar arguments as in Theorems 3.1, 3.2, by Theorem C, we have
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Theorem 3.4. It holds:

1. For b > b0(1) and c < 1, λ1(cF
b) < λ1(F

b). That is, in A, fix the the
left boundary of the support, as the height of F b (uniformly) decreases, the
first eigenvalue decreases as well.

2. For b > b0(1) and c > 1, λ1(cF
b̃) < λ1(F

b), where cF b̃ is supported in
[b̃, b̄]. That is, in A, fix the right boundary of the support, as the height of
F b (uniformly) increases, the first eigenvalue will decrease.

3. Fix c̄ > 1 and b > b1(c̄), then for c < c̄, λ1(cF
b) < λ1(c̄F

b).

Proof. 1. By Proposition 2.2-2. (with V2 ≡ F b) and Theorem C-1., we know
that the result has to be true.

2. By Proposition 2.1-1. (with V1 ≡ F b) and Theorem C-1., we know that
the result has to be true.

3. By Proposition 2.2-2. (with V2 ≡ c̄F b) and Theorem C-3., we know that
the result has to be true.

Now for c > 0, we consider another subfamily of stepfunction potentials.
Let cW d(c) ∈ A be supported in [−L,−d(c)]∪ [d(c), L] and with constant height
cµ2 there (in fact, d(c) = L − |b0(c)| > 0, and cW d(c) is varied from cF b0(c) by
splitting the support evenly toward L and −L respectively). We describe the
shape of φ1,cW d(c) below.

Theorem 3.5. For c > 0, each φ1,cW d(c) is even and has only one peak at x = 0.

Proof. The evenness of φ1,cW d(c)(x) is owing to the nondegeneracy of the first

eigenvalue. Observe that φ′′
1,cW d(c)(x) = −λ1(cW

d(c))φ1,cW d(c)(x) < 0 in [0, d(c)).

Being a C1 even function, we have φ′
1,cW d(c)(0) = 0, which implies φ′

1,cW d(c)(x) <

0 in [0, d(c)]. From the Hopf maximum principle, we know that φ′
1,cW d(c)(L) < 0.

Since φ′′
1,cW d(c) ≡ constant · φ1,cW d(c) on [d(c), L], due to φ′

1,cW d(c)(d(c)) < 0,

we see that no matter which sign φ′′
1,cW d(c)(x) has in [d(c), L], we always have

φ′
1,cW d(c)(x) < 0 in [d(c), L]. This completes the proof.

By Theorems 2.3 1., 3.5, with similar arguments as before, lead to

Theorem 3.6. For c > 0, λ1(cW
d(c)) is decreasing with respect to c.

From Theorem 3.6 and Theorem A-2., we have

Corollary 3.7. infV ∈A λ1(V ) = limc→∞ λ1(cW
d(c)).

Proof. Let cµ2 = M , then WM ≡ cW d(c) on [−L,L]. From Theorem A-2., WM

attains the minimum of λ1(V ) for V ∈ AM . From Theorem 3.6, we know that
λ1(M) = λ1(cW

d(c)) is decreasing with respect to c, accordingly M . Notice that
A =

⋃

M>0 AM , and the result follows.
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Remark 3.8. As in Remark 3.3, by the comparison theorems, we may get some
control on the shape of eigenfunctions as well. For instance, suppose V2 6= V1

only in [−b1, 0] with supp V2 ∩ [−b1, 0] ⊂ [−b2, 0], 0 < b2 < b1. If we know
λ1(V2) ≥ λ1(V1), then by Proposition 2.1-1., φ1,V1 is not decreasing in [−b1, 0].

Acknowledgement. The author is indebted to the referees for their suggestions
to add Theorem 2.4 and to improve the presentation, as well as to call attention
to related papers.
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