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Representations of Relaxations of

Linear-Quadratic Optimal Control Problems

for Elliptic Systems
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Abstract. The paper considers optimal control problems of the type



















I(h, u) =

∫

Ω
[〈B(x)∇u, ∇u〉 + 〈g(x, h(x)), ∇u〉 + F (x, h(x))]dx → min

div[A(x)∇u − f(x, h(x))] = 0 in Ω

u = (u1, . . . , um) ∈ H1
0 (Ω; R

m), h ∈ M,

where the set M of admissible controls h consists of all measurable vector-functions
h(·) with values from a given compact set M ⊂ R

r. The functions f and g are affine
with respect to h, but the matrix B can be negatively definite. It is shown that
the relaxation of such problems can be represented as a joint passage from M to its
convex hull and from F to a new function F , which is lower semicontinuous with
respect to h.

Keywords. Optimal control, elliptic system, weakly discontinuous functional, relax-
ation
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1. Introduction

We consider the optimal control problem










































I(h, u)

=

∫

Ω

[

〈B(x)∇u(x),∇u(x)〉+2〈∇u(x), g(x,h(x))〉+F (x,h(x))
]

dx→ min

div[A(x)∇u(x) − 2f(x, h(x))] = 0 in Ω

u = (u1, . . . , um) ∈ H1
0 (Ω; R

m)

h ∈ M =
{

h ∈ L2(Ω; Rr)
∣

∣h(x) ∈ M(x) a.e. x ∈ Ω
}

,

(1)
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where Ω ⊂ R
n is a bounded Lipschitz domain homeomorphic to the unit ball;

A and B are given measurable nm × nm-matrices, A is positively definite;
M : R

n 7→ 2R
r

is a piecewise constant multivalued mapping with nonempty
bounded and closed values; f : R

n × R
r → R

nm, g : R
n × R

r → R
nm are given

Carathéodory functions, affine with respect to h.

The main features of the problem (1) are the following:

(i) the sets M(x) are not, in general, convex;

(ii) the matrix B can be neither positively nor negatively definite;

(iii) we consider elliptic systems;

(iv) although the state equation in (1) defines an affine control-to-state map-
ping h→ u(h), the resulting functional h→ I(h, u(h)) is, as a rule, weakly
discontinuous and is not, in general, weakly lower semicontinuous.

Our interest in the problem (1) with mentioned above features is caused by
two reasons. The first reason is that the problem (1) is, more or less, the sim-
plest basic problem with weakly discontinuous functionals that involve elliptic
systems. For such problems sufficient relaxations are known (or can be easily
derived from known results) for the scalar case (more precisely, for m < n) with
B nonnegative, F and f affine with respect to h, and g not depending on h,
where the passage from M to its closed convex hull coM gives the relaxation
of (1), see, for instance, Raitums [6, p.104, Theorem 2.1]. As far as we know, for
the general case of (1) with m ≥ n ≥ 2 and r ≥ 2 even the possible functional
type of the relaxed problem is not known.

The second reason is that for standard optimal design problems their second
order approximations (in the L∞ norm) lead to problems of the type (1). For
instance, for the optimal design problem







J(A) =

∫

Ω

〈g(x), ∇u(x)〉dx→ min

div[A(x)∇u(x) − f(x)] = 0 in Ω, u ∈ H1
0 (Ω; Rm), A(x) ∈ A,

where A is a given bounded and closed set of positively definite symmetric
mn×mn-matrices, there is

J(A0+δA)=J(A0)−
∫

Ω

〈δA∇u,∇ψ〉 dx+

∫

Ω

〈A0∇δu,∇δψ〉 dx+O(‖δA‖3
L∞

), (2)

where u and ψ from H1
0 (Ω; Rm) are solutions of the state equation and the

conjugate equation with A = A0, respectively,

div[A0(x)∇u− f(x)] = 0 in Ω, div[A0(x)∇ψ − g(x)] = 0 in Ω,

and δu and δψ satisfy

div[A0(x)∇δu+ δA(x)∇u] = 0 in Ω, δu ∈ H1
0 (Ω; R

m)

div[A0(x)∇δψ + δA(x)∇ψ] = 0 in Ω, δψ ∈ H1
0 (Ω; R

m).
(3)
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In the representation (2) together with the system (3) we are in the framework
of the problem (1) (with A0 and, consequently, u and ψ fixed) with δA = h and

B as the block-matrix 1
2

(

0 A0

A0 0

)

. Obviously, such matrix B is neither positively

definite nor negatively definite.

Therefore, for this case we have the second order approximation of the initial
optimal design problem (in a neighbourhood of A0). In order to understand in-
trinsic properties of optimal design problems, especially for the case of systems,
one has to understand basic properties of problems of the type (1).

The specific property of the problem (1) is that the mapping h → u(h) is
affine. Therefore, it is very natural to consider the relaxation of (1) as a passage
from M to its closed convex hull coM and from the functional h→ I(h, u(h))
to its sequentially weakly lower semicontinuous envelope. Further, because the
cost functional I is a quadratic polynomial (if F = 0) in variables (h, u), then
the impact of the weak convergence of a sequence of controls {hk} to an element
h0 on the value of the cost functional results in a functional depending only on
the difference hk−h0 and not depending on the state u(h0). That together with
the local character of G-convergence, see, for instance, Zhikov et al. [11, p.155],
and results on the relaxation of similar to (1) (with B = 0) problems, see, for
instance, Raitums [6, p. 192], indicate that this resulting functional must be an
integral functional whose integrand can be obtained by means of cell problems,
which do not involve directly the state. This way, the relaxation procedure for
the problem (1) preserves the state equation and consists of the joint passage
from the initial set of controls M to its closed convex hull coM and from the
function F to a new function F̃ in the integrand of the functional I. More
precisely, we have the following result.

Theorem 1.1. Let the hypotheses H1–H5 from Section 2 hold. Let the function

F̃ : Ω × R
r → R be defined by

F̃(x, ĥ) :=







































































inf

{
∫

K

[

〈B(x)∇v(y),∇v(y)〉

+ 2〈∇v(y), g(x, h(y)) − g(x, ĥ)〉 + F (x, h(y))
]

dy
∣

∣

∣

divy[A(x)∇v(y) − 2(f(x, h(y)) − f(x, ĥ))] = 0 in K;

v ∈ H1
loc(R

n; Rm), v isK-periodic, K := (0, 1)n;

h∈L2(K; Rr), h(y)∈ M(x) a.e. y∈K,
∫

K

h(y)dy = ĥ

}

,

if ĥ∈ coM(x)

sup
{

F̃(x∗, ĥ∗) | x∗∈ Ω, ĥ∗∈ coM(x∗)
}

, otherwise,

(4)

and let u(h) denote, for a chosen h ∈ coM, the solution of the equation

div[A(x)∇u(x) − 2f(x, h(x))] = 0 in Ω, u ∈ H1
0 (Ω; Rm). (5)
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Then:

(i) the function F̃ is a normal integrand of Ω × R
r;

(ii) the mapping h→ Ĩ(h, u(h)), where

Ĩ(h, u)

:=

∫

Ω

[

〈B(x)∇u(x),∇u(x)〉 + 2〈∇u(x), g(x, h(x))〉 + F̃(x, h(x))
]

dx
(6)

is sequentially weakly lower semicontinuous on coM;

(iii) for all h ∈ M there is Ĩ(h, u(h)) ≤ I(h, u(h)) and for every h0 ∈ coM
there exists a sequence {hk} ⊂ M such that hk ⇀ h0 weakly as k → ∞
and I(hk, u(hk)) → Ĩ(h0, u(h0)) as k → ∞.

Here by coS we denote the closed convex hull of the set S. A little bit
unexpected feature here is that the function F̃ can be only lower semicontinuous
in ĥ. Nevertheless, we were able to show that the function F̃ can be represented
as F̃ = F̃1 + F̃2 , where the function F̃1 is Carathéodory and exactly defined
by the initial data of the problem (1), but the function F̃2(x, ·) is convex for
h ∈ coM(x).

The main ideas to justify these results are to transform the initial problem
(1) to a problem of minimization of an integral functional J = J(h,w), (h,w) ∈
M×W , whose integrand L also is a quadratic polynomial (if F = 0) in variables
(h,w). This property allows to “separate” variables h and w in an analogue
of the standard cell problem for the Γ-limit integrand or for the quasi-convex
envelope, see, for instance, Dal Maso [1, p. 248, formula (2.41)] or Fonseca and
Müller [3, p.1369], respectively, what leads to an analogue of (4) for the relaxed
integrand L̃. After that, the obtained representation for L̃ is transformed back
to initial terms of the problem (1).

The paper is organized as follows. In Section 2 we give precise formulations
of assumptions on the data in the problem (1) and introduce the basic notations
that will be used in the paper. In Sections 3 and 4 we introduce the transformed
problem and our concept of the convexification, and in Sections 5-6 we obtain
a representation of the relaxed problem for piecewise constant controls h and
establish properties of the corresponding integrand L̃ of the relaxed problem.
After that, in Section 7, we show that this representation holds true also for all
controls h from the closed convex hull coM of the initial set M of admissible
controls. Finally, in Section 8, we derive the representation (4)–(6) for the
relaxation of the problem (1) and discuss a simple illustrative example.

2. Preliminaries

Let m, n, r be positive integers, let Ω ⊂ R
n be bounded Lipschitz domain home-

omorphic to the unit cube K = (0, 1)n, let |Q| denote the Lebesgue measure of
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a set Q ⊂ R
n and let coS and coS denote the convex hull and the closed convex

hull of the set S, respectively.

Throughout the paper we suppose that the following hypotheses hold:

H1: A : R
n → R

nm×nm is a fixed nm× nm-matrix function with entries
from L∞(Rn), and there exist positive constants 0 < ν ≤ µ such that
〈A(x)ξ, ξ〉 ≥ ν|ξ|2, |A(x)ξ| ≤ µ|ξ| a.e. x ∈ R

n and all ξ ∈ R
nm.

H2: B : R
n → R

nm×nm is a fixed symmetric nm × nm-matrix function with
entries from L∞(Rn), and there exists a constant µ1 such that µ1 <

ν
2

and
|B(x)ξ| ≤ µ1|ξ| a.e. x ∈ R

n and all ξ ∈ R
nm.

H3: f : R
n × R

r → R
nm, g : R

n × R
r → R

nm, f = f(x, h), g = g(x, h) are
fixed Carathéodory functions, affine with respect to h, and there exists a
constant µ2 such that for a.e. x ∈ R

n and all h ∈ R
r

|f(x, h)| ≤ µ2(1 + |h|), |g(x, h)| ≤ µ2(1 + |h|).
H4: M : R

n 7→ 2R
r

is a fixed multivalued mapping with nonempty bounded
and closed values, and M is piecewise constant. More precisely, there
exist a partition of Ω, Ω = Ω0 ∪ Ω1 ∪ · · · ∪ Ωm0

, and bounded closed sets
M0, M1, . . . , Mm0

⊂ R
r such that Ω0, . . . , Ωm0

are mutually disjoint sets
and Ω1, . . . , Ωm0

are Lipschitz domains, |Ω0|=0, and in every Ωs

M(x) = Ms provided x ∈ Ωs, s = 0, 1, . . . , m0.

In addition, there exists a constant µ3 such that

Ms ⊂ {h ∈ R
r| |h| ≤ µ3}, s = 0, 1, . . . ,m0.

For x ∈ R
n \ Ω we put M(x) = M1.

H5: F : R
n × R

r → R, F = F (x, h), is a given Carathéodory function, and
there exists a constant µ4 such that

|F (x, h)| ≤ µ4 a.e. x ∈ R
n and all h ∈ R

r.

Together with standard Lebesgue and Sobolev spaces we shall use the fol-
lowing spaces:

V =
{

v ∈ L2(Ω; Rnm)
∣

∣ v = ∇u, u ∈ H1
0 (Ω; Rm)

}

N =
{

η ∈ L2(Ω; Rnm)
∣

∣ η = (η1, . . . , ηm), div ηi = 0 in the sense of

distributions, i = 1, . . . ,m
}

V# =
{

v ∈ L2(K; R
nm)

∣

∣ v = ∇u, u ∈ H1
loc(R

n; R
m), u is K-periodic

}

N# =
{

η ∈ L2(K; R
nm)

∣

∣ η = (η1, . . . , ηm), ηi ∈ L2loc(R
n; R

n)

ηi is K-periodic, div ηi = 0 in the sense of

distributions,
∫

K
ηi(x) dx = 0, i = 1, . . . ,m

}

W = V ×N and W# = V# ×N# with elements w =
(

v

η

)

.
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We recall, see, for instance, Zhikov et al. [11, p.138, Lemma 4.4], that every
vector-function φ ∈ L2(Ω; Rn) with div φ = 0 in the sense of distributions has
the representation

where Div =
(

∂
∂x1
, . . . , ∂

∂xn

)

, U is a skew-symmetric matrix with entries Uij

from H1(Ω), and there exists a constant c(Ω, n) such that

‖Uij‖H1(Ω) ≤ c(Ω, n)‖φ‖L2(Ω;Rn); i, j = 1, . . . , n.

For the case of the space N# the entries of U are K-periodic functions, for the
case of elements φ with suppφ ⊂ K the entries of U are elements of H1

0 (K).

By construction,

L2(Ω; Rnm) = V ⊕N , L2(K; Rnm) = V# ⊕N# ⊕ R
nm.

From the existence of “potentials” u and U and well-known properties of Sobolev
spaces we have that in V , N , V#, N# are dense corresponding subsets of
piecewise constant elements.

We shall use also the following notations:

M = {h ∈ L2(Ω; Rr)|h(x) ∈ M(x) a.e. x ∈ Ω}
coM = {h ∈ L2(Ω; Rr)|h(x) ∈ coM(x) a.e. x ∈ Ω}.

Obviously, coM is the closure of M in the weak topology of L2(Ω; Rr). For
properties of convex sets and convex functions we refer to Fonseca and Leoni [4]
and Rockafellar [9]; and for the convenience of readers we present below some
well-known properties of normal integrands and lower semicontinuous envelopes
for the case of a bounded Lipshitz domain Ω ⊂ R

n.

Proposition 2.1 ([2, p.232, Theorem 1.1]). Let D be a Borel subset of R
r. For

f : Ω ×D → R ∪ {−∞} ∪ {+∞} to be a normal integrand, it is necessary and

sufficient that for every ǫ > 0 there exists a compact subset Kǫ ⊂ Ω such that

| Ω\Kǫ |< ǫ for which the restriction of f to Kǫ ×D is lower semicontinuous.

Proposition 2.2 ([2, p. 239, Corollary 1.2]). Let f be a positive normal inte-

grand of Ω × R
r. Then the function h →

∫

Ω
f(x, h(x))dx is nonnegative and

lower semicontinuous from Lq(Ω; Rr) to R ∪ {+∞} for all q, 1 ≤ q ≤ ∞.

Proposition 2.3 ([2, p. 236, Theorem1.2]). Let D be a compact subset of R
r

and f a normal integrand of Ω × D. Then there exists a measurable mapping

h : Ω → D such that for all x ∈ Ω there is f(x, h(x)) = minh∈D f(x, h).

Proposition 2.4 ([4, p.242, Proposition 3.16]). Let X be a normed linear space

with separable dual space and let I : X → R∪{+∞} be coercive. Then for every

h ∈ X :

inf {S(h) | S ≤ I, S weakly lower semicontinuous}
= inf {S(h) | S ≤ I, S sequentially weakly lower semicontinuous}
= inf

{

lim inf
k→∞

I(hk)
∣

∣

∣
{hk} ⊂ X , hk ⇀ hweakly

}

.
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All proofs in Sections below are, in essence, purely local or rely on global
characteristics (such as constants ν, µ, . . . in hypotheses H1–H5) and do not
depend on specific properties of the partition Ω = Ω0∪Ω1∪ · · · ∪Ωm0

. All these
proofs by means of obvious separating the reasoning to subsets Ω1, . . . ,Ωm0, if
necessary, can be reduced to the case, where the mapping M does not depend
on x ∈ Ω. Therefore, for the sake of simplicity of notations only, in what follows
we shall assume that the mapping M is constant on R

n and all references to
the sets Ω0,Ω1, . . . ,Ωm0

, to the dependence on x of sets M(x) and so on will be
omitted, i.e., we shall deal with a constant mapping M(x) ≡ M . Because the
set M is closed and bounded, then its closed convex hull coM coincides with
its convex hull coM and we shall use this notation whenever the closed convex
hull of M is considered.

3. Transformed problem

Analogously as in Raitums and Schmidt [8, pp.152–154] we shall transform our
initial problem (1) to a variational problem depending on the control h as a
parameter.

Let us define the vector functions a : R
n ×R

r → R
2nm, b : R

n ×R
r → R

2nm

and the block-matrix function E : R
n → R

2nm×2nm as

a(x, h) :=

(

0
g(x, h) + f(x, h)

)

, b(x, h) :=

(

g(x, h) − f(x, h)
0

)

E :=

(

As +B + (B + Aa) [As −B]−1 (B − Aa) (B + Aa) [As −B]−1

[As −B]−1 (B − Aa) [As −B]−1

)

.

Here, As and Aa are the symmetric and the antisymmetric part of A, re-
spectively. By virtue of hypotheses H1 and H2 there exist positive constants
0 < ν1 < µ5 such that for a.e. x ∈ R

n and all z ∈ R
nm × R

nm

〈E(x)z, z〉 ≥ ν1|z|2, |E(x)z| ≤ µ5|z|. (7)

Let us denote, for (x, h, z) ∈ R
n × R

r × (Rnm × R
nm),

L(x, h, z) := 〈E(x)(z + a(x, h)), z + a(x, h)〉 + 2〈z, b(x, h)〉 + F (x, h),

and let us define the functional J : coM×W → R as

J(h,w) :=

∫

Ω

L(x, h(x), w(x))dx. (8)

The construction of J ensures that for every h ∈ coM

I(h, u(h)) = min
w∈W

J(h,w).
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Indeed, since the matrix E is uniformly bounded and positively definite (see (7)),
for a fixed h the functional w → J(h,w) is coercive, continuous and strictly
convex on W , and as such attains its minimum on an unique element w(h). By
using the duality principle with respect to the variable η we get

inf
w∈W

J(h,w) = inf
v1∈V

sup
v2∈V

∫

Ω

[

〈(As +B)v1, v1〉 + 2〈v1, b(x, h)〉 − 〈(As −B)v2, v2〉

+ 2〈v2, a(x, h)〉 + 2〈(B − Aa)v1, v2〉 + F (x, h)
]

dx

= inf
v1∈V

sup
v2∈V

∫

ω

[

〈A(v1 + v2), (v1 − v2)〉 + 〈B(v1 + v2), (v1 + v2)〉

+ 2〈(v1 + v2), g(x, h)〉 − 2〈v1 − v2, f(x, h)〉 + F (x, h)
]

dx,

from where and from Euler equations for the saddle point elements it follows
immediately that J(h,w(h)) = I(h, u(h)).

Here and what follows, we omit the reference to the spatial argument x if
that does not cause misunderstanding.

This way, the original problem (1) is equivalent to the problem

{

J(h,w) → min
h∈M, w∈W

. (9)

4. Convexification of the set of admissible controls

Let us consider the set M(K) := {h measurable, h(y) ∈ M a.e. y ∈ K}. This
set can be represented as M(K) =

⋃

ĥ∈coM M(ĥ) with

M(ĥ) :=

{

h ∈ L2(K; Rr)

∣

∣

∣

∣

h(y) ∈M a.e.y ∈ K,

∫

K

h(y)dy = ĥ

}

.

Consider the problem
{

J̃(h,w) → min

h ∈ coM, w ∈ W
(10)

with

J̃(h,w) :=

∫

Ω

L̃(x, h(x), w(x))dx

L̃(x, h, z) := 〈E(x)(z + a(x, h)), z + a(x, h)〉 + 2〈z, b(x, h)〉 + F(x, h)

F(x, ĥ) := inf
h∈M(ĥ)

inf
w∈W#

∫

K

[〈

E(x)(w(y) + a(x, h(y)) − a(x, ĥ)),

w(y) + a(x, h(y)) − a(x, ĥ)
〉

+2
〈

w(y),b(x, h(y))− b(x, ĥ)
〉

+F (x, h(y))
]

dy.

(11)
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Let us denote, for a fixed h ∈ coM, by w(h) the minimizer of J(h, ·) (or
J̃(h, ·)) over w ∈ W . Since the matrix E is bounded and positively definite and
the functions a, b define affine continuous mappings from coM to L2(Ω; Rnm ×
R

nm), then from the Euler equation for minimizers w(h) in (9) or (10) (these
minimizers depend only on h and do not depend on the functions F and F)
it follows immediately that the mapping h → w(h) is continuous on coM.
Hence, due to the hypothesis H5 the functional h → J(h,w(h)) is continuous
and bounded on coM (we recall that we consider the set coM as a subset of
L2(Ω; Rr)). Therefore, from Proposition 2.4 it follows that the functional J0,
defined on coM as

J0(h) := inf
{

lim inf
k→∞

J(hk, w(hk))
∣

∣

∣
{hk}⊂M, hk ⇀ hweakly as k → ∞

}

, (12)

is sequentially weakly lower semicontinuous on coM.

This way, to justify that the problem (10)–(11) is a relaxation of (9) it
sufficies to show that the functional h→ J̃(h,w(h)) on coM coincides with the
functional J0.

5. Properties of solutions and approximations
by continuous or piecewise constant data

We begin with Meyers’ type estimates.

Lemma 5.1. There exist constants p > 2 and c(p) such that

‖w(h)‖Lp(Ω;Rnm×Rnm) ≤ c(p) ∀h ∈ coM.

Proof. From the duality principle and Euler equations for w(h),

E(·)(w(·) + a(·, h(·))) + b(·, h(·)) ∈ L2(Ω; Rnm × R
nm) ⊖W,

we have that every element w(h) = (v, η) has the representation

v = 1
2
(∇φ+∇ψ)

η = 1
2
(As−B)(∇φ−∇ψ) − 1

2
(B−Aa)(∇φ+∇ψ) − g(·, h(·)) +f(·, h(·)), (13)

where the pair (φ, ψ) is the solution of the elliptic system
{

div[A(x)∇φ− 2f(x, h(x))] = 0 in Ω, φ ∈ H1
0 (Ω; Rm)

div[A∗(x)∇ψ + 2B(x)∇φ+ 2g(x, h(x))] = 0 in Ω, ψ ∈ H1
0 (Ω; Rm).

(14)

The elements f and g are uniformly bounded in the L∞ norm, hence, by Meyers’
type theorems, see, for instance, Meyers and Elcrat [5, p. 130, Theorem 2], it
follows that the gradients (∇φ,∇ψ) of solutions of (14) belong to a bounded
set in Lp(Ω; Rnm × R

nm) for some p > 2 uniformly with respect to h ∈ coM.
From here and (13) follows the desired estimate.
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Lemma 5.2. There exist constants p > 2 and c(p) such that for a.e. x ∈ Ω,

all ĥ ∈ coM and all h ∈ M(ĥ) the minimizer w(x, ĥ, h) for the inner infimum

in the definition (14) of F satisfies ‖w(x, ĥ, h)‖Lp(K;Rnm×Rnm) ≤ c(p).

Proof. Due to the K-periodicity of elements w ∈ W# it is sufficient to use
interior Meyers’ type estimates. Analogously as in the proof of Lemma 5.1 we
have for w(x, ĥ, h) the representation (13) with vector functions (φ, ψ), which
satisfy in K the same type of equations as in (14), but with periodic boundary
conditions. These equations can be extended via K-periodicity to the cube
(−1, 2)n and inner estimates from Meyers and Elcrat [5, p.123, Theorem 1] give
the desired estimate.

Theorem 5.3. Let the hypotheses H1–H5 hold. Then the function F = F(x, ĥ),
defined by (11), is a bounded normal integrand of Ω × coM , measurable in x

and continuous in h on the relative interior ricoM of the convex hull of M .

Proof. For (x, ĥ) ∈ Ω × coM the value F(x, ĥ) is defined by (11) as

F(x, ĥ) = inf
h∈M(ĥ)

inf
w∈W#

∫

K

[〈

E(x)(w(y) + a(x, h(y)) − a(x, ĥ)),

w(y) + a(x, h(y)) − a(x, ĥ)
〉

+ 2
〈

w(y), b(x, h(y)) − b(x, ĥ)
〉

+ F (x, h(y))
]

dy.

(15)

Let us denote by w(x, ĥ, h) the minimizer for the inner infimum in (15) and
let the vector functions a and b have the representation

a(x, h) = a1(x)h+ a2(x), b(x, h) = b1(x)h+ b2(x),

where a1, b1 are 2nm × r-matrices. From hypotheses H1–H5, Lemma 5.2 and
estimate (7) standard calculations give that for h1 ∈ M(ĥ1), h2 ∈ M(ĥ2)

‖w(x1, ĥ1, h1) − w(x2, ĥ2, h2)‖L2(K;Rnm×Rnm)

≤ 1

ν1

(c(p) + 2µ2(1 + µ3))‖E(x1) − E(x2)‖

+
1

ν1

µ2(1 + µ5)

(
∫

K

|h1(y) − h2(y)|2 dy
)

1
2

+
1

ν1

µ3(1 + µ5)[‖a1(x1) − a1(x2)‖ + ‖b1(x1) − b1(x2)‖]

+
1

ν1

µ3(1 + µ5)[|a2(x1) − a2(x2)| + |b2(x1) − b2(x2)|],

(16)

where the constant c(p) is from Lemma 5.2 and by ‖C‖ we denote the standard
norm of a constant matrix C.
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From (15) and the Euler equation for w(x, ĥ, h) we have

F(x, ĥ) = inf
h∈M(ĥ)

G̃(x, ĥ, h) (17)

with

G̃(x,ĥ,h) :=

∫

K

[

−〈E(x)w(x,ĥ,h)(y),w(x,ĥ,h)(y)〉+〈E(x)a(x,h(y)),a(x,h(y))〉

− 〈E(x)a(x, ĥ), a(x, ĥ)〉 + F (x, h(y))
]

dy.

In Lemma 9.1 (see Appendix) it has been shown that for every hs ∈ M(ĥs)
there exists an h0s ∈ M(ĥ0) such that

‖h0s − hs‖L2(K;Rr) → 0 as s → ∞ provided that ĥs → ĥ0 as s → ∞.

This property together with continuity of the mapping h → G̃(x, ĥ, h) (esti-
mate (16) and hypotheses H1–H5) ensure that the function F for a.e. x ∈ Ω
is lower semicontinuous with respect to ĥ ∈ coM . In turn, the representa-
tion (17) and estimate (16) together with measurability properties of E, a, b, F
and Lemma 5.2 ensure that the function F is bounded on Ω × coM and mea-
surable in x. Moreover, for every fixed ε > 0 there exists a compact Dε ⊂ Ω
with | Ω \ Dε |< ε such that the function F is uniformly (for all ĥ ∈ coM )
continuous with respect to x ∈ Dε. Consequently, F is a normal integrand of
Ω × coM .

Finally, continuity of the mapping h → G̃(x, ĥ, h) together with Lemma
9.1 and Corollary 9.2 give that the function ĥ → F(x, ĥ) is continuous on
ricoM .

Let us denote, for a cube Q ⊂ R
n with edges parallel to the axis of co-

ordinates, by W0(Q) the set

W0(Q)=

{

(v, η)

∣

∣

∣

∣

v = ∇u, u ∈ H1
0 (Q; Rm), η = (η1, . . . , ηm), ηi = DivU i,

U i is skew-symmetric with entries from H1
0 (Q), i=1, . . . ,m

}

.

Obviously, W0(K) ⊂ W#, and we shall denote this set simply by W0.

Lemma 5.4. In definition (11) of the function F the space W# can be replaced

by the set W0.

Proof. Since W0 ⊂ W#, then it is sufficient to show that for every fixed h0 ∈
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M(ĥ), w0 ∈ W#, ǫ > 0, there are hk ∈ M(ĥ) and w0
k ∈ W0 such that

∫

K

[

〈E(x)(w0
k(y)+a(x, hk(y))−a(x, ĥ)), w0

k(y)+a(x, hk(y))−a(x, ĥ)〉

+ 2〈w0
k(y), b(x, hk(y))−b(x, ĥ)〉+F (x, hk(y))

]

dy

≤
∫

K

[

〈E(x)(w0(y)+a(x, h0(y))−a(x, ĥ)), w0(y)+a(x, h0(y))−a(x, ĥ)〉

+ 2〈w0(y), b(x, h0(y))−b(x, ĥ)〉+F (x, h0(y))
]

dy+ǫ.

(18)

Let (u,U) are the corresponding ”potentials” for w0, i.e. w0 = (∇u,DivU). We
extend u, U and h0 via K-periodicity to the whole R

n and define

wk(y) =
(

∇
[

1
k
u(ky)

]

,Div
[

1
k
U(ky)

])

hk(y) = h0(ky)

w0
k(y) =

(

∇
[

ξ(y) 1
k
u(ky)

]

,Div
[

ξ(y) 1
k
U(ky)

])

for k large enough and with an appropriate cut-off function ξ,

ξ ∈ H1
0 (K), |∇ξ(y)| ≤

√
k, meas{y ∈ K| ξ(y) 6= 1} ≤ 4n√

k
.

By construction, w0
k ∈ W0, k = 1, 2, . . . ; the value of the integral in the right-

hand side of (18) does not change if we replace (h0, w0) by (hk, wk); and the
value of this integral after replacing wk by w0

k and taking the limit as k → ∞
is the same as with (h0, w0), what concludes the proof.

Lemma 5.5. Let H1–H5 hold.If J0(h) = J̃(h,w(h)) for all h ∈ coM provided

that the functions A,B, f, g, F are piecewise constant with respect to x ∈ Ω,

then this equality is true in the general case too.

Proof. Due to H1–H5 the mappings E,B,f, g are measurable on Ω with bounded
values and the function F is Carathéodory on Ω×coM and with bounded values
too. Therefore, by virtue of Scorza–Dragoni theorem, see, for instance, Ekeland
and Temam [2, p. 234], for every δ > 0 there exists a closed subset Dε ⊂ Ω such
that the functions E,B, f, g, F are continuous on Dε × coM and the measure
|Ω\Dε| < ε. According to Stein [10, p.272], for every continuous vector function
ϕ : Dε × coM → R

s there exists an operator E of extension such that

(i) the function Eϕ is defined on the whole R
n × R

r;

(ii) the function Eϕ coincides with ϕ on Dε × coM ;

(iii) for all arguments the values of Eϕ belong to the closed convex hull of the
set of values of ϕ on the set Dε × coM .

Further, continuous on Ω × coM functions can be approximated in the
maximum norm by means of piecewise constant (with respect to x ∈ Ω) func-
tions. This way, for every δ > 0 we have subsets Ω0,Ω1, . . . ,ΩN and functions
Eδ, Bδ, gδ, fδ, Fδ such that
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(i) Ω = Ω1 ∪ · · · ∪ ΩN ; Ωs, s = 1, . . . , N, are mutually disjoint Lipshitz
domains, and |Ω0| < δ;

(ii) in every Ωs, s = 1, . . . , N, the functions Eδ, Bδ, gδ, fδ, Fδ are constant with
respect to the argument x;

(iii) the functions Eδ, Bδ, fδ, gδ, Fδ satisfy hypotheses H1–H5;

(iv) for all x∈ Ω\Ω0 and all h∈ coM , ‖E(x)−Eδ(x)‖ < δ, ‖B(x)−Bδ(x)‖ < δ,
|f(x) − fδ(x)| < δ, |g(x) − gδ(x)| < δ, |F (x, h) − Fδ(x, h)| < δ.

For every δ > 0 and every collection {Eδ, Bδ, fδ, gδ, Fδ} that satisfies (i)–(iv)
we define the function Fδ and the functionals Jδ, J0δ, J̃δ by the same formulae
as F , J, J0, J̃ with the functions Eδ, Bδ, fδ, gδ, Fδ instead of E,B, f, g, F , respec-
tively.

Since H1–H5 hold, then the results of Lemma 5.1 and Lemma 5.2 apply
to the minimizers wδ(h) and wδ(x, ĥ, h) defined by means of Eδ, Bδ, fδ, gδ, Fδ

instead of E,B, f, g, F , respectively; and the constants p, c(p) do not depend
on δ. From here and the estimate (16) (the minimizer wδ(x, ĥ, h) can be treated
as w(x0, ĥ, h) with some fixed ”virtual” x0) we have the existence of a continuous
function γ1 with γ1(0) = 0 and depending only on constants from H1–H5 such
that for all δ ∈ (0, 1]

|Fδ(x, ĥ) −F(x, ĥ)| < γ1(δ) ∀x ∈ Ω \ Ω0, ∀ĥ ∈ coM.

In turn, hypotheses H1–H5 ensure that all functions F and Fδ (with δ ∈
[0, 1]) are uniformly bounded, what ensure that the integral over Ω0 goes to zero
as δ → 0. Hence, there exists another continuous function γ2 with γ2(0) = 0
such that for δ ∈ [0, 1]

∫

Ω

|Fδ(x, h(x)) −F(x, h(x))| dx ≤ γ2(δ) ∀h ∈ coM.

Analogous estimates for Jδ − J, J0δ − J0, J̃δ − J̃ , for instance,

sup
h∈coM

| J̃δ(h,wδ(h)) − J̃(h,w(h)) |≤ γ3(δ), γ3(δ) → 0 as δ → 0,

are obvious due to the hypotheses H1–H5, estimate (5) and Lemmas 5.1 and
5.2. Here wδ(h) denotes the minimizer of the functional J̃δ(h, ·) on W .

Now, if J0δ(h) = J̃δ(h,wδ(h)) for all h ∈ coM, then for every h ∈ coM

|J0(h) − J̃(h,w(h))|
≤ |J0(h) − J0δ(h) + J0δ(h) − J̃δ(h,wδ(h)) + J̃δ(h,wδ(h)) − J̃(h,w(h))|
≤ |J0δ(h) − J0(h)| + |J̃δ(h,wδ(h)) − J̃(h,w(h))| → 0 as δ → 0,

what completes the proof.
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6. Equivalence on piecewise constant controls

In this section, we prove the equality

J0(h) = J̃(h,w(h)) (19)

for piecewise constant elements h ∈ coM. In the previous Section it was shown
in Lemma 5.5 that it is sufficient to prove our equality (19) for the case where the
functions E,B, f, g, F satisfy H1–H5 and, in addition, are piecewise constant
with respect to x ∈ Ω . In the sequel, we assume that this property holds.

Lemma 6.1. If h0 ∈ coM is piecewise constant, then J̃(h0, w(h0)) ≤ J0(h0).

Proof. Let us suppose the contrary, i.e., that there exist a piecewise constant
element h0 ∈ coM and a constant d > 0 such that J̃(h0, w(h0)) ≥ J0(h0) + 2d.
Then from the definition of J0 by (12) it follows the existence of a sequence
{hk} ⊂ M such that

hk ⇀ h0 weakly as k → ∞, w(hk) ⇀ w(h0) weakly as k → ∞
J̃(h0, w(h0)) − lim

k→∞
J(hk, w(hk)) ≥ d.

From here, Euler equations for w(hk) and w(h0) and definitions of J and J̃

by (8) and (11), respectively, we deduce (Euler equations are affine with respect
to (h,w) and do not depend on F or F)

lim
k→∞

inf
w∈W

∫

Ω

[〈

E(x)(w(x) + a(x, hk(x)) − a(x, h0(x))),

w(x) + a(x, hk(x)) − a(x, h0(x))
〉

+2
〈

w(x), b(x, hk(x)) − b(x, h0(x))
〉

+ F (x, hk(x))
]

dx

≤
∫

Ω

F(x, h0(x))dx− d.

(20)

Because hk ⇀ h0 weakly and Euler equations for the inner minimizers wk

in the left-hand side of (20) are affine with respect to (h,w), then wk ⇀ 0
weakly as k → ∞. By virtue of Lemma 5.1 all wk belong to a bounded set in
Lp(Ω; Rnm × R

nm) with some p > 2, and (by virtue of embedding theorems),
wihout loosing generality, we can assume that the corresponding “potentials”
(uk,Uk) converge to zero strongly in [Lq(Ω; R)]m × [Lq(Ω; Rnn)]m as k → ∞ for
some q > 2.

All functions E,B, f, g, F,F and h0 are piecewise constant with respect to
x ∈ Ω. These properties are sufficient in order to guarantee the existence of a
finite number of cubes Qs, s = 1, . . . , N with edges parallel to the coordinate
axes and a set Ω0 with the following properties: (i) Ω = Ω0∪Q1∪· · ·∪QN ; (ii) in
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every Qs the functions E,B, f, g, F,F do not depend on x; (iii) the measure |Ω0|
is small enough such that the contribution of integral over Ω0 in the left-hand
side of (20) with w = wk, k = 1, 2, . . . , and in the integral in the right-hand side
of (20) is less than d

4
for all k = 1, 2, . . .. From here it follows that there exists

a cube Q with edges parallel to the coordinate axes such that

lim
k→∞

∫

Q

[〈

E(x0)(wk(x) + a(x0, hk(x)) − a(x0, h0(x0))),

wk(x) + a(x0, hk(x)) − a(x0, h0(x0))
〉

+2
〈

wk(x), b(x0, hk(x)) − b(x0, h0(x0))
〉

+ F (x0, hk(x))
]

dx

≤ F(x0, h0(x0))|Q| −
1

2|Ω| |Q|d,

(21)

where x0 is an arbitrary fixed point from Q.

Because the “potentials” (uk,Uk) of minimizers wk converge to zero strongly
in the corresponding Lebesgue spaces Lq(Ω; R) and Lq(Ω; Rnn), respectively,
then by means of appropriate cut-off functions, analogously as in the proof of
Lemma 5.4, we can replace in (21) the sequence {wk} by a sequence {w̃k} ⊂
W0(Q), which also converges to zero weakly and is bounded in some Lebesgue
space Lp1

(Q; Rnm × R
nm), p1 > 2. After obvious similarity transform Q 7→ K,

without loosing generality and for the sake of simplicity of notations only, we
can assume that Q = K.

Since hk ⇀ h0 weakly as k → ∞, we have that hk ∈ M(ĥk) with ĥk →
ĥ0 = h0(x0) as k → ∞. By virtue of Lemma 9.1 (see Appendix) for every hk

there exists a corresponding element h
′

k ∈ M(ĥ0), k = 1, 2, . . ., such that

‖h′

k − hk‖L2(K;Rr) → 0 as k → ∞,

and, because the set M is bounded, the exponent 2 in this relationship can be
replaced by an arbitrary exponent q, 2 ≤ q < ∞. These properties together
with Lemma 5.4 and boundedness of the set {w̃k} ⊂ Lp1

(K; Rnm × R
nm), after

replacing hk by h
′

k in (21), give that the limit as k → ∞ in the left-hand side
of (21) is greater than or equal to F(x0, h0(x0)), what gives the contradiction
F(x0, h0(x0)) ≤ F(x0, h0(x0)) − d

2
.

Lemma 6.2. Let h0 ∈ coM be piecewise constant, then J̃(h0, w(h0)) ≥ J0(h0).

Proof. Let a piecewise constant h0 ∈ coM and ε > 0 be fixed. Piecewise
constant elements are dense in W , hence there exist a partition Ω = Q0 ∪Q1 ∪
· · · ∪Qs0

by means of mutually disjoint sets and an element w0 ∈ W such that:

(i) Qs, s = 1, . . . , s0, are cubes with edges parallel to the coordinate axes and
|Qs| ≤ ε, s = 0, 1, . . . , s0;
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(ii) in every Qs, s = 1, . . . , s0, the functions E, a, b, F , h0, F , w0 are constant
with respect to x;

(iii) with some arbitrary fixed xs ∈ Qs, s = 1, . . . , s0,

J(h0, w(h0))

≥
s0

∑

s=1

∫

Qs

[〈

E(xs)(w0(xs) + a(xs, h0(xs))), w0(xs) + a(xs, h0(xs))
〉

+ 2
〈

w0(xs), b(xs, h0(xs))
〉

+ F(xs, h0(xs))
]

dx− ε

and

∫

Q0

∣

∣

〈

E(x)(w0(x) + a(x, h0(x))), w0(x) + a(x, h0(x))
〉

+ 2
〈

w0(x), b(x, h0(x))
〉

+ F(x, h0(x))
∣

∣ dx <
ε

4
.

The functions a and b are affine with respect to h, the mean values of elements
w ∈ W0(Qs), s = 1, . . . , s0; are equal to zero, hence, from the definition of F
by (11) and Lemma 5.4 via simple calculations we get for s = 1, . . . , s0

[〈

E(xs)(w0(xs) + a(xs, h0(xs))), w0(xs) + a(xs, h0(xs))
〉

+ 2
〈

w0(xs), b(xs, h0(xs))
〉

+ F(xs, h0(xs))
]

|Qs|

≥
∫

Qs

[〈

E(xs)(w0(xs) + ws(y) + a(xs, hs(y))), w0(xs) + ws(y) + a(xs, hs(y))
〉

+ 2
〈

w0(xs) + ws(y), b(xs, hs(y))
〉

+ F (xs, hs(y))
]

dx− 1

4|Ω|ε|Qs|,

for some ws ∈ W0(Qs), hs ∈ M,
∫

Qs
hs(y) dy = h0(xs)|Qs|, s = 1, . . . , s0.

Since for every h ∈ M,

w∗ = w0 +

s0
∑

s=1

χQs
( · )ws(·) ∈W,h∗ =

s0
∑

s=1

χQs
(·)hs( · ) + χQ0

(·)h(·) ∈ M,

where χQ denotes the characteristic function of Q, then

J(h0, w(h0)) ≥
∫

Ω

L(x, h∗(x), w∗(x)) dx−
∫

Q0

L(x, h∗(x), w0(x)) dx−
3

2
ε

∫

Qs

h∗(x) dx =

∫

Qs

h0(x) dx, s = 1, . . . , s0; |Qs| < ε, s = 0, 1, . . . , s0.

After passing to the limit ε → 0 in this relationship we get J(h0, w(h0)) ≥
J0(h0), what completes the proof.
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Lemma 6.3. The function G = G(x, h) := 〈E(x)a(x, h), a(x, h)〉 + F(x, h) is

a bounded normal integrant of Ω× coM , convex in h ∈ coM and continuous on

the relative interior ricoM of coM .

Proof. Due to the hypotheses H1–H5 and Theorem 5.3 we have to prove only
that the function G(x, ·) is convex on coM . The functional J̃ can be represented
as

J̃(h,w(h)) := J1(h) + J2(h) (22)

where

J1(h) := min
w∈W

∫

Ω

[

〈E(x)w(x),w(x)〉 + 2〈w(x),b(x,h(x)) + E(x)a(x,h(x))〉
]

dx

J2(h) :=

∫

Ω

[

〈E(x)a(x, h(x)), a(x, h(x))〉 + F(x, h(x))
]

dx.

Since the functions a and b are affine with respect to h and the mapping h →
w(h) is continuous on coM, then the functional J1 is continuous and concave
with respect to h ∈ coM, and, as a consequence, weakly upper semicontinuous
on coM. Results of Lemmas 6.1 and 6.2 give that for piecewise elements h ∈
coM the functional h → J̃(h,w(h)) coincides with J0. By construction, the
functional J0 is sequentially weakly lower semicontinuous, hence

J2(h0) ≤ lim
k→∞

inf J2(hk) (23)

whenever hk ⇀ h0 weakly as k → ∞ and all h0, hk, k = 1, 2, . . . , are piecewise
constant elements from coM.

The integrand of J2 is the function G and from (23) it follows that for every
fixed h1, h2 ∈ coM,λ ∈ [0, 1] and a fixed cube Q ⊂ Ω there is

∫

Q

G(x, λh1 + (1 − λ)h2)dx

≤ lim
k→∞

inf

[
∫

Q

χk(x)G(x, h1)dx+

∫

Q

(1 − χk(x))G(x, h2)dx

]

for every sequence {χk} of piecewise constant characteristic functions of subsets
of Q such that χk ⇀ λ weakly in L2(Q) as k → ∞. This property is sufficient
in order to guarantee that the function h → G(x, h) is convex on coM for a.e.
x ∈ Ω.

Corollary 6.4. The function F has the representation F = F1 + F2, where

F1 := −〈E(x)a(x, h), a(x, h)〉, F2 := F(x, h) + 〈E(x)a(x, h), a(x, h)〉.

Here the function F1 is explicitely defined by the initial data, but the function

F2 is convex and lower semicontinuous in h ∈ coM .
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7. Relaxation of the transformed problem

We recall that by virtue of Lemma 5.5 we have to consider only the case of
piecewise constant with respect to x functions E,B, f, g, F,F .

Lemma 7.1. For every fixed h0 ∈ coM there exists a sequence {hk} ⊂ coM of

piecewise constant elements with values in ricoM such that

hk → h0 as k → ∞
J̃(h0, w(h0)) ≥ J̃(hk, w(hk)) − εk, k = 1, 2, . . . ; εk → 0 as k → ∞.

Proof. Let h0 ∈ coM be fixed. We shall use the functionals J1 and J2, in-
troduced in (22). The functional J1 does not depend on influence of specific
properties of the function F , and hypotheses H1–H4 ensure that J1 is continu-
ous on coM for a.e. x ∈ Ω. Let us fix an element h∗ ∈ ricoM , which we shall
consider also as a constant element of coM. From continuity of J1 we have the
existence of a continuous function γ1 with γ1(0) = 0 such that

J1(h+ λ(h∗ − h)) − J1(h) ≤ γ1(λ) ∀h ∈ coM.

The function G (the integrand of the functional J2) is convex in h and bounded
on Ω × coM . Therefore,

G(x, h+ λ(h∗ − h)) ≤ (1 − λ)G(x, h) + λG(x, h∗)

= G(x, h) + λ[G(x, h∗) −G(x, h)]

≤ G(x, h) + c1λ,

where the constant c1 does not depend on the choice of h, h∗ ∈ coM . From
these estimates it follows

J̃(h0, w(h0))

≥ J1(h0 + λ(h∗ − h0)) + J2(h0 + λ(h∗ − h0)) − γ1(λ) − c1λ|Ω|
= J̃(h0 + λ(h∗ − h0)), w(h0 + λ(h∗ − h0)) − γ1(λ) − c1λ|Ω|.

(24)

For every fixed λ ∈ (0, 1) all elements hλ, hλ(x) := h(x)+λ(h∗−h(x)), x ∈
Ω, with h ∈ coM takes values from some convex closed set Mλ ⊂ ricoM . By
construction, h0+λ(h∗−h0) → h0 as λ→ 0. Since the function F is continuous
with respect to h ∈ Mλ , then the functional h → J̃(h,w(h)) is continuous on
Mλ := {h ∈ coM | h(x) ∈ Mλ a.e. x ∈ Ω}. Obviously, the subset of piecewise
constant elements is dense in Mλ. From here and (24) immediately follows the
assertion of the Lemma.

Corollary 7.2. For all h ∈ coM there is

J0(h) ≤ J̃(h,w(h)). (25)
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Proof. By virtue of Lemma 6.2 the inequality (25) holds for piecewise constant
elements h ∈ coM. Let us fix an element h0 ∈ coM. By virtue of Lemma 7.1
and lower semicontinuity of J0 there exists a sequence of piecewise constant
elements {hk} ⊂ coM such that

hk → h0 strongly as k → ∞
J̃(h0, w(h0)) ≥ lim

k→∞
inf J̃(hk, w(hk)) ≥ lim

k→∞
inf J0(hk) ≥ J0(h0),

what gives the assertion of Corollary.

Theorem 7.3. Let the hypotheses H1–H5 hold. Then themapping h→ J̃(h,w(h))
is sequentially weakly lower semicontinuous on coM, and for all h ∈ coM there

is J̃(h,w(h)) = J0(h), where the functionals J̃ and J0 are defined by (11) and

(12), respectively.

Proof. Let {hk} ⊂ coM, hk ⇀ h0 weakly as k → ∞, and let us suppose that
there exists a d > 0 such that J̃(h0, w(h0)) ≥ limk→∞ J̃(hk, w(hk)) + d, i.e.,
we suppose that the mapping h → J̃(h,w(h)) is not sequentially weakly lower
semicontinuous. Let h∗, J1, J2, γ1, c1,Mλ,Mλ are the same as in the proof of
Lemma 7.1. The inequality (24) for hk gives

J̃1(hk) + J̃2(hk) ≥ J̃1(hk + λ(h∗ − hk)) + J̃2(hk + λ(h∗ − hk)) − γ1(λ) − c1λ|Ω|.

On the other hand, the functionals J̃1 and J̃2 are lower semicontinuous on coM.
Therefore J̃1(h0) + J̃2(h0) ≤ limλ→0

[

J̃1(h0 +λ(h∗ − h0)) + J̃2(h0 +λ(h∗ − h0))
]

.
Our three inequalities give that for some λ0 > 0

J̃
(

h0 + λ0(h∗ − h0), w(h0 + λ0(h∗ − h0))
)

≥ lim
k→∞

J̃(hk + λ0(h∗ − hk), w(hk + λ0(h∗ − hk)) +
d

2
.

In this inequality all arguments take values from a closed convex set Mλ0
⊂

ricoM , and on the set Mλ0
the mapping h → J̃(h,w(h)) is continuous. This

mapping remains continuous (the function F is contionuous on ricoM) on every
subset M∗ ⊂ coM of elements with values from a closed convex set M∗ ⊂
ricoM . In particular, we can choose the set M∗ so that there exists a constant
δ > 0 such that {h ∈ coM | dist(h;Mλ0

) ≤ δ} ⊂M∗. That is sufficient in order
to guarantee that there exist a piecewise constant element h̃0 ∈ coM and a
sequence of piecewise constant elements {h̃k} ⊂ coM such that

h̃k ⇀ h̃0 weakly as k → ∞, J̃(h̃0, w(h̃0)) ≥ lim
k→∞

J̃(h̃k, w(h̃k)) +
d

4
. (26)

The obtained inequality in (26), however, contradicts to the facts that the
functional J0 is sequentially weakly lower semicontinuous on coM and that
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J0(h) = J̃(h,w(h)) for piecewise constant elements h ∈ coM. This way, we
have obtained that the mapping h → J̃(h,w(h)) is sequentially weakly lower
semicontinuous on coM.

Since coM is a convex, closed and bounded set in the separable Hilbert
space L2(Ω; Rr), then from Proposition 2.4 (after an appropriate extension of
mappings h → J0(h) and h → J̃(h,w(h)) outside coM), from Corollary 7.2
and sequentially weak lower semicontinuity of the mapping h → J̃(h,w(h)) on
coM it follows immediately that J̃(h,w(h)) = J0(h) on coM, what concludes
the proof.

8. Relaxation of the initial problem

By construction, see Section 3, I(h, u(h)) = J(h,w(h)) for all h ∈ M. Exactly
the same reasoning as in Section 3 gives that, for h ∈ coM, J̃(h,w(h)) coincides
with Ĩ(h, u(h)) provided that F(x, h) = F̃(x, h) on Ω × coM .

By using the duality principle with respect to the variable η in the relation-
ship (11) that defines the function F , we get

inf
w∈W#

∫

K

[〈

E(x)(w(y)+a(x, h(y))−a(x, ĥ)), w(y)+a(x, h(y))−a(x, ĥ)
〉

+2
〈

w(y), b(x, h(y)) − b(x, ĥ)
〉

+ F (x, h(y))
]

dy

= inf
v1∈V#

sup
v2∈V#⊕Rnm

∫

[

〈A(x)(v1(y) + v2(y)), v1(y) − v2(y)〉

+
〈

B(x)(v1(y) + v2(y)), v1(y) + v2(y)
〉

+ 2
〈

v1(y) + v2(y), g(x, h(y)) − g(x, ĥ)
〉

− 2
〈

v1(y) − v2(y), f(x, h(y)) − f(x, ĥ)
〉

+ F (x, h(y))
]

dy.

(27)

Since the functions f and g are affine with respect to h, then the “right-hand
sides” of Euler equations for the saddle point pair have zero mean values and we
can consider elements v2 ∈ V#. Hence simple calculations and Euler equations
for the saddle point in the right-hand side of (27) give that the value of the right-
hand side in (27) is equal to the inner infimum over v in (4). That is sufficient
in order to guarantee that the formulae (11) and (4) (after an appropriate
extension of F to the whole Ω × R

r) define one and the same function F = F̃ .

Therefore, Theorem 5.3 gives the statement (i) of Theorem 1.1 and, together
with Corollary 6.4, it gives additional properties of F̃ . Because Ĩ(h, u(h)) coin-
cides with J̃(h,w(h)) on coM, then the statements (ii) and (iii) of Theorem 1.1
now are straight consequences from Theorem 7.3. This way, we have proved the
statements of Theorem 1.1.
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We conclude this Section with a simple illustrative example. Consider, for
n = 2, the problem



















I =

∫

K

[

a(x)u2
x1

+ b(x)u2
x2

]

dx→ min

4∆u = 2 ∂
∂x1

[f(x)h(x)], x ∈ K, u ∈ H1
0 (K)

h ∈ M := {hmeasurable, h(x) = 0 or 1, a.e. x ∈ K},

(28)

where ∆ denotes the Laplace operator. The relaxation of (28), according to
Theorem 1.1, consists of the passage from M to its closed convex hull and
introducing in the integrand of I an additional term F̃ . In turn, the function
F̃ is defined according to (4) as

F̃(x, ĥ) := inf

{
∫

K

[a(x)v2
y1

+ b(x)v2
y2

]dy
∣

∣

∣

4∆v(y) = 2 ∂
∂y1

[f(x)h(y)] in K, v is K-periodic

h(y) = 0 or 1 a.e. y ∈ K,

∫

K

h(y)dy = ĥ

}

.

(29)

The problem (28) is specific, i.e., the control variable h is a scalar function. It
was shown in Raitums [7, pp.81–83] that for problems of kind (29) the infimum
over h can be obtained by means of rank-1 laminates, i.e., that it is sufficient
to consider controls h in the form h(y) = h(〈l, y〉), l := (l1, l2), l1, l2 ∈ Z. For
such controls h the infimum in the right-hand side of (29) can be computed
explicitely, what gives

F̃(x, ĥ) =











0 if a(x) ≥ 0, b(x) ≥ 0
a(x)

4
f 2(x)ĥ(1 − ĥ) if a(x) ≤ 0, a(x) ≤ 2b(x)

− a2(x)
4(a(x)−b(x))

f 2(x)ĥ(1 − ĥ) if b(x) ≤ 0, a(x) ≥ 2b(x).

(30)

The formula (30) shows that the additional term (defined by F̃) can be convex
or concave depending on values (a(x), b(x)).

9. Appendix

In this section, we prove the basic properties of the multivalued mapping ĥ 7→
M(ĥ).

Lemma 9.1. Let M ⊂ R
r be a nonempty bounded and closed set, let M := {h ∈

L2(K; Rr) |h(y) ∈ M a.e. y ∈ K} and let M(ĥ) =
{

h ∈ M
∣

∣

∫

K
h(y) dy = ĥ

}

for ĥ ∈ coM . Let ĥ0, ĥk ∈ coM , k = 1, 2, . . . , ĥk → ĥ0 as k → ∞. Then for

every hk ∈ M(ĥk) there exists an element h0k ∈ M(ĥ0) such that

‖hk − hk0‖L2(K; Rr) → 0 as k → ∞.
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Proof. To begin with, we point out that due to the Carathéodory’s theorem [4,
p. 306, Theorem 4.95] the sets M(ĥ) for ĥ ∈ coM are not empty. Let us denote
by r0 the dimension of coM .

Step 1. Let ĥ0 ∈ ricoM . Then there exists d > 0 such that ĥ ∈ ricoM
whenever ĥ ∈ coM and |ĥ − ĥ0| ≤ d. Let us fix ǫ > 0, 0 < ǫ < d

4
, and let

|ĥ− ĥ0| ≤ ǫ. Then ĥ∗ := ĥ+ d

ǫ(ĥ0−ĥ)
∈ ricoM.

Let h ∈ M(ĥ), h∗ ∈ M(ĥ∗) be arbitrary chosen elements. By virtue of
Lyapunov’s theorem of the range of vectorial measures for every λ ∈ [0, 1] there
exists a measurable set Eλ ⊂ K such that

|Eλ| = λ,

∫

Eλ

h(y) dy +

∫

K\Eλ

h∗(y) dy = λĥ+ (1 − λ)ĥ∗.

For a special choice λ = λ0 = 1 − ǫ
d

there is

h0(·) = χEλ0
(·)h(·) + (1 − χEλ0

(·))h∗(·) ∈ M(ĥ0)
∫

K

(h(y) − h0(y))
2 dy =

∫

K\Eλ0

(h(y) − h0(y))
2 dy ≤ 4µ2

3

ǫ

d
,

where µ3 is defined in H4. This way, the assertion of Lemma holds whenever
ĥ0 ∈ ricoM .

Step 2. Assume that ĥ0 does not belong to ricoM . Because ricoM is not
empty (provided that M consists of more than one element) then there exist a
vector a ∈ R

r and a constant c such that

|a| = 1, 〈a, ĥ0〉 = c < 〈a, ĥ〉 for all ĥ ∈ ricoM.

Without loosing generality, we can assume that c = 0, otherwise we can use the
transform ĥ 7→ ĥ− ĥ0.

Let M1 := {h ∈M | 〈a, h〉 = 0}. Because the sets M and M1 are compact,
then there exists a continuous function γ, γ(t) = 0 if t ≤ 0, γ(t) > 0 if t > 0,
such that

〈a, h− ĥ0〉 ≥ γ(dist{h;M1}) for all h ∈M. (31)

Without loosing generality, we can assume that the function γ is convex, other-
wise we can pass to the bipolar γ∗∗, which has the desired properties. By con-
struction, for nonnegative τ there exists the inverse function γ−1, γ−1(γ(t)) = t

for t ≥ 0, which is continuous and stritly increasing on {τ ∈ R | τ ≥ 0}. Now,
from (31), Proposition 2.3 and convexity of γ it follows that for every chosen
h ∈ M there exists an element h∗,

h∗ ∈ M1 = {h′ ∈ L2(K; Rr) |h′

(y) ∈M1 a.e. y ∈ K},
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such that

‖h− h∗‖2
L2(K;Rr) ≤ c(r, µ3)

∫

K

|h(y) − h∗(y)| dy

≤ c(r, µ3)γ
−1

(

γ

(
∫

K

|h(y) − h∗(y)| dy
))

≤ c(r, µ3)γ
−1

(
∫

K

〈a, h(y) − h∗(y)〉dy
)

≤ c(r, µ3)γ
−1

(∣

∣

∣

∣

∫

K

h(y) dy −
∫

K

h∗(y) dy

∣

∣

∣

∣

)

.

This way, for our situation with a fixed ĥ0 ∈ coM1, for every ĥ ∈ coM and
arbitrary chosen h ∈ M(ĥ) there exists a corresponding h∗ ∈ M1 such that

‖h− h∗‖2
L2(K; Rr) ≤ c(r, µ3)γ

−1(|ĥ− ĥ0|).

By construction,
∫

K
h∗(y) dy = ĥ∗ ∈ coM1, M(ĥ0) ⊂ M1, M(ĥ∗) ⊂ M1 and

the dimension of coM1 is less than r0. From now on, we have to approximate
the element h∗ ∈ M(ĥ∗) by elements from M(ĥ0), i.e., we have reduced the
dimension r0 of our problem to the problem with dimension less than or equal
to r0 − 1.

Step 3. To conclude our reasoning by induction over the dimension r0 we
have to prove our assertion for the case r0 = 1.

Let r0 = 1. If ĥ0 ∈ ricoM , then we applay reasoning from Step 1. If ĥ0

does not belong to ricoM , then the set M1 from the Step 2 consists of only one
element ĥ0 and the set M1 consists of one constant function h0(y) = ĥ0 a.e.
y ∈ K. For this case we can apply the same reasoning as in Step 2, what gives
the assertion of Lemma for r0 = 1.

Corollary 9.2. If ĥ0 ∈ ricoM and the sequence {ĥk} ⊂ coM converges to ĥ0,

then for every h0 ∈ M(ĥ0) there exist hk ∈ M(ĥk), k = 1, 2, . . . , such that

hk → h0 in L2(K; R
r) as k → ∞.

Proof. The proof is the same as in Step 1.

Remark 9.3. In general, the function F , defined by (11), can be discontinuous
with respect to ĥ ∈ coM . We illustrate this property by a simple example. Let
n = 3, m = 1, F = 0, A is the unit matrix,B = −1

4
A, g = 0, f(x, h) = h and

M := {(−1, 0, 0); (1, 0, 0); (−1, 0, 1); (0, t, t2)} | t ∈ [0, 1]} ⊂ R
3.

For this case F does not depend on x. Because ĥ(t) = (0, t, t2) with t > 0 is an
extremal point of coM and for such ĥ(t) the set M(ĥ(t)) consists of one constant
function h(y) = ĥ(t), y ∈ K, then F((0, t, t2)) = 0 for all 0 < t ≤ 1. On the
other hand, simple calculations with laminated structures give F((0, 0, 0))≤−1.
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[2] Ekeland, I. and Temam, R., Convex Analysis and Variational Problems. Ams-
terdam: North-Holland 1976.

[3] Fonseca, I. and Müller, S., A-quasiconvexity, lower semicontinuity, and Young
measures. SIAM J. Math. Anal. 30 (1999), 1355 – 1390.

[4] Fonseca, I. and Leoni, G., Modern Methods in the Calculus of Variations: Lp

spaces. New York: Springer 2007.

[5] Meyers, N. G. and Elcrat, A., Some results on regularity for solutions of non-
linear elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975),
121 – 136.

[6] Raitums, U., Optimal Control Problems for Elliptic Equations (in Russian).
Riga: Zinatne 1981.

[7] Raitums, U., Relaxation of a weakly discontinuous functional depending on
one control function. Math. Model. Anal. 13 (2008), 79 – 86.

[8] Raitums, U. and Schmidt, W. H., On necessary optimality conditions for op-
timal control problems governed by elliptic systems. Optimization 54 (2005),
149 – 160.

[9] Rockafellar, R. T., Convex Analysis. Princeton: Princeton Univ. Press 1997.

[10] Stein, E. M., Singular Integrals and Differentiability Properties of Functions.

Princeton: Princeton Univ. Press 1970.

[11] Zhikov, V. V., Kozlov, S. M. and Oleinik, O. A., Homogenization of Differential

Operators and Integral Functionals. New York: Springer 1994.

Received February 19, 2008; revised April 8, 2009


