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Regularity and Derivative Bounds

for a Convection-Diffusion Problem

with Neumann Boundary Conditions

on Characteristic Boundaries

Aidan Naughton and Martin Stynes

Abstract. A convection-diffusion problem is considered on the unit square, with
convection parallel to two of the square’s sides. Dirichlet conditions are imposed on
the inflow and outflow boundaries, with Neumann conditions on the other two sides.
No assumption is made regarding the corner compatibility of the data. The regularity
of the solution is expressed precisely in terms of the regularity and compatibility of
the data. Pointwise bounds on all derivatives of the solution are derived and their
dependence on the data regularity, its corner compatibility, and on the small diffusion
parameter is made explicit. These results extend previous bounds of Jung and Temam
[Int. J. Numer. Anal. Model. 2 (2005) 367–408] and of Clavero, Gracia, Lisbona and
Shishkin [Z. Angew. Math. Mech. 82 (2002) 631–647].
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1. Introduction

Bounds on derivatives of solutions to singularly perturbed convection-diffusion
boundary value problems are of importance for two main reasons: they reveal
the fine structure of the solution, and they are also needed in the analysis of
numerical methods for such problems. While many papers on this topic address
ordinary differential equations, progress for problems posed in two dimensions
has been much slower – relatively few papers, such as [1, 2, 6, 7, 9, 11, 12], rig-
orously prove pointwise derivative bounds for singularly perturbed problems
posed in two-dimensional domains.
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The problem studied in this paper is posed on the unit square with Dirichlet
conditions along x = 0 and x = 1 and Neumann conditions along y = 0
and y = 1. Related problems on the unit square but with different boundary
conditions were considered in [6,7,11]. Some of this earlier work coincides with
what is here and we shall exploit this overlap fully; nevertheless the alteration
of the boundary conditions changes significantly the nature of the solution.

Problems similar to ours are considered by Clavero et al. [1] and by Jung
and Temam [5], but in both these papers the analysis is simplified by an assump-
tion that the data satisfies certain corner compatibility conditions that exclude
corner singularities. We make no such assumption. Furthermore, unlike these
earlier papers, we make precise the relationship between the given data and the
regularity of the solution.

In [1] Robin conditions are imposed along y = 0 and y = 1 and pointwise
bounds are proved under strong compatibility assumptions at the corners of the
domain, but the arguments are not written down in full. Our pointwise bounds
on derivatives of the solution agree with those of [1] when their corner compati-
bility conditions are satisfied. In [5] only L2 and H1-type bounds on derivatives
are obtained, and our pointwise bounds imply these weaker estimates.

Shishkin [13] considers a convection-diffusion problem on a two-dimensional
rectangle with Dirichlet boundary data, where the differential operator has vari-
able coefficients, with small parameters ε1 multiplying the second-order deriva-
tives and ε2 multiplying one of the first-order derivatives. When ε2 = 0 this
problem is related to our problem (1). The techniques of [13] are suitable for
studying problems with stronger parabolic layers than those considered here.

The problem we shall consider is as follows. Let u(x, y) be the solution to
the boundary value problem

Lu(x, y) : = −ε∆u(x, y) + pux(x, y) + qu(x, y)

= f(x, y) ∀ (x, y) ∈ Q = (0, 1)2 (1a)

uy(x, 0) = hs(x), uy(x, 1) = hn(x) for 0 < x < 1 (1b)

u(0, y) = gw(y), u(1, y) = ge(y) for 0 < y < 1. (1c)

The constants p and q satisfy p > 0, q > 0. As we are interested in the
singularly perturbed case, without loss of generality the diffusion parameter ε
satisfies 0 < ε ≤ min

{
1, 12p2

q

}
. Assume that f(x, y) and the boundary data lie

in certain Hölder spaces:

f ∈ C2ℓ,a(Q̄), gw, ge ∈ C2ℓ,α[0, 1] (2a)
∫ x

0

hs(t) dt ∈ C2ℓ,α[0, 1],

∫ x

0

hn(t) dt ∈ C2ℓ,α[0, 1], (2b)

for some non-negative integer ℓ and α ∈ (0, 1). If ℓ > 0, the condition on hs

and hn is equivalent to requiring hs, hn ∈ C2ℓ−1,α[0, 1].
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By a solution of (1) we mean a function u ∈ C2,α(Q) that satisfies (1a)
and can be extended up to the boundary to satisfy (1b)–(1c). Existence and
uniqueness of this solution can be shown by combining techniques from [3,14].

The purpose of this paper is to derive pointwise derivative bounds for the
solution of (1), while making explicit their dependence on the parameter ε and
on the corner compatibility and regularity of the data.

A typical solution to (1) will have an exponential boundary layer along
x = 1 and weaker parabolic boundary layers along y = 0 and y = 1, with weak
corner layers at the outflow corners (1, 0) and (1, 1). Furthermore, depending
on the compatibility of the data at corners, the solution may contain corner
singularities. We decompose the solution to (1) as

u = S + E + w00 + w01 + w10 + w11 + ŭ in Q; (3)

here each function (except the remainder ŭ) is the solution of a simpler half-
plane or quarter-plane problem. The definitions of these functions will be given
later, but for convenience it is summarized in Table 1, where the column labelled
“L” gives the output when L is applied to each function in the first column and
the other columns show the boundary conditions for each problem.

Dirichlet Dirichlet Neumann Neumann
cond. condition condition condition

L at x = 0 at x = 1 at y = 0 at y = 1

S f ∗(x, y) g∗w(y)
E 0 g∗e(y)−S(1, y)
w00 0 0 h∗s(x)−Sy(x, 0)
w01 0 0 h∗n(x)−Sy(x, 1)
w10 0 −χ(1−y)w00(1, y) −χ(x)Ey(x, 0)
w11 0 −χ(y)w01(1, y) −χ(x)Ey(x, 1)

ŭ 0 ğw(y) ğe(y) h̆s(x) h̆n(x)

where ğw(y) = −E(0, y) − w10(0, y) − w11(0, y)

ğe(y) = −[1 − χ(1 − y)]w00(1, y) − [1 − χ(y)]w01(1, y)

h̆s(x) = −w01,y(x, 0) − w11,y(x, 0) − [1 − χ(x)]Ey(x, 0)

h̆n(x) = −w00,y(x, 1) − w10,y(x, 1) − [1 − χ(x)]Ey(x, 1).

Table 1: The decomposition used for u.

The functions f ∗, g∗w, g
∗
e , h

∗
s and h∗n are smooth extensions of f, gw, ge, hs and hn,

respectively, that vanish outside some bounded set. In our notation the letter h
is in general reserved for Neumann boundary conditions, while g is used for
Dirichlet boundary conditions.
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To ensure existence and uniqueness of the functions defined in (3) as so-
lutions of problems on unbounded domains, one must impose certain growth
restrictions at infinity. We do not state these explicitly in this current paper as
their derivation is routine but tedious; see [6, Section 3.2] for an example of this.
All the barrier functions that we shall employ on unbounded domains satisfy
the requisite growth conditions. Some of these make use of the assumption that
q > 0; cf. [6, Lemma 3.5].

To bound the derivatives of u, we shall derive bounds separately for each
function in the decomposition (3). One of our estimates (Lemma 4.2) sharpens
a similar bound obtained in [6].

The function S is the principal component in the solution of u. It provides
a good approximation of u on Q except near the ordinary and parabolic layers
and the corner singularities. The other terms in the decomposition handle
these more difficult regions, as we now describe. The function E is a correction
to S along x = 1 that yields the correct boundary condition there for u. The
boundary data for u along y = 0 is provided by w00; any corner singularity in u
at (0,0) is also contained in w00. The function w01 performs a role analogous
to w00 along y = 1 and at (0,1). Any corner singularities at (1,0) and (1,1)
are contained in w10 and w11; these two functions also correct some of the
boundary data of the earlier functions. Any boundary data not accounted for
at this juncture is corrected by the remainder function ŭ.

1.1. Notation. Set Πx = {(x, y) ∈ R2 : x > 0}, Πy = {(x, y) ∈ R2 : y > 0}
and Q = {(x, y) ∈ R2 : x > 0, y > 0}. For various measurable sets Ω, with
integers k ≥ 0 and p ≥ 1, and 0 < α < 1, let W k,p(Ω) denote the usual
Sobolev space of functions on Ω whose weak derivatives of order at most k are
in Lp(Ω), while Ck,α(Ω) denotes the space of Hölder-continuous functions on Ω.
Set Hk(Ω) = W k,2(Ω) and write ‖ · ‖k,p,Ω for the norm in W k,p(Ω).

Finally, we use C to denote a generic constant that is independent of the
parameter ε but may depend on the remaining data of (1); note that C can
take different values in different places during our analysis.

2. Compatibility conditions

To discuss the regularity of u on the closed domain Q̄, one must consider the
compatibility of the data of (1) at the corners of Q̄. Number the corners (0,1),
(0,0), (1,0) and (1,1) as 1, 2, 3 and 4, respectively. The data for the problem (1)
is given by the 5-tuple X = (gw, ge, hs, hn, f). Let ℓ ≥ 1 be an integer and let
0 < α < 1. For each integer k ≥ 2, define the Banach space

Dk,α =
(
Ck−1,α[0, 1]

)2 ×
(
Ck−2,α[0, 1]

)2 × Ck−3,α(Q̄).
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For the Poisson equation ∆w = f with boundary conditions (1b) and
(1c), necessary and sufficient conditions for the solution to belong to the space
Ck,α(Q̄) were established by Volkov [14]. Corresponding conditions for the prob-
lem (1) are given in Theorem 2.1, which can be derived similarly to [11, Theo-
rem 2.1]; see [10] for details.

Theorem 2.1. Let ℓ ≥ 1 and ν be integers. Let X ∈ D2ℓ,α. Let u be the

solution of (1) with data X. Then there are numbers a
(i)
µ,ν, i = 1, . . . , 4, µ ≥ 0

and b
(i)
µ1,µ2,ν, i = 1, . . . , 4, µ1 ≥ 0, µ2 ≥ 0, which depend only on ε, p and q, such

that when one sets (where each sum is interpreted as 0 if the upper limit is less

than the lower limit)

Λ(1)
ν (X) = g(2ν+1)

w (1) +
2ν∑

µ=0

a(1)
µ,νh

(µ)
n (0) +

∑

µ1+µ2≤2ν−1

b(1)µ1,µ2,νD
µ1
x D

µ2
y f(0, 1)

Λ(2)
ν (X) = g(2ν+1)

w (0) +
2ν∑

µ=0

a(2)
µ,νh

(µ)
s (0) +

∑

µ1+µ2≤2ν−1

b(2)µ1,µ2,νD
µ1
x D

µ2
y f(0, 0)

Λ(3)
ν (X) = g(2ν+1)

e (0) +
2ν∑

µ=0

a(3)
µ,νh

(µ)
s (1) +

∑

µ1+µ2≤2ν−1

b(3)µ1,µ2,νD
µ1
x D

µ2
y f(1, 0)

Λ(4)
ν (X) = g(2ν+1)

e (1) +
2ν∑

µ=0

a(4)
µ,νh

(µ)
n (1) +

∑

µ1+µ2≤2ν−1

b(4)µ1,µ2,νD
µ1
x D

µ2
y f(1, 1),

then u ∈ C2ℓ−1,α(Q̄) if and only if

Λ(i)
ν (X) = 0 for i = 1, 2, 3, 4, and ν = 0, 1, . . . , ℓ− 1. (4)

Furthermore, if (4) holds and X ∈ D2ℓ+1,α, then u ∈ C2ℓ,α(Q̄). If ν ≤ ℓ − 1,

the expressions Λ
(i)
ν for i = 1, 2, 3, 4 define bounded linear functionals on D2ℓ,α.

By assumption (2) the data X ∈ D2ℓ+1,α (in fact for the proof of Lemma 3.1
the assumption on f in (2) is stronger than this; see also the comment preceding
Lemma 4.2).

2.1. Definition. Given a set of data X ∈ D2ℓ+1,α, define a compatibility index
ν at each vertex as follows: set jk = 10, 00, 01, 11 if i = 1, 2, 3, 4 respectively,
then for each couple jk set νjk(X) = m if Λ

(i)
ν (X) = 0 for ν = 0, . . . ,m and

Λ
(i)
m+1(X) 6= 0. If Λ

(i)
0 (X) 6= 0, set νjk(X) = −1.

3. Smooth component S

The first component in the decomposition (3) of u is the function S. Let f ∗

and g∗w be smooth extensions of f and gw to Πx and (−∞,∞) respectively
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that vanish outside some bounded neighbourhoods of Q̄ and [0, 1] respectively.
Similar extensions g∗e , h

∗
s and h∗n of ge, hs and hn are used later.

Define S to be the solution of the half-plane problem

LS = f ∗ for (x, y) ∈ Πx, S(0, y) = g∗w(y) for −∞ < y <∞.

Then S ∈ C2ℓ,α(Π̄x). The same function appears in [11]; from there one has

Lemma 3.1 ([11, Theorem 3.2]). There exists a constant C such that

‖S‖m+n,∞,Πx
≤ C

(
‖f ∗‖m+n,∞,Πx

+ ‖g∗w‖Cm+n,α(R)

)
for m+ n ≤ 2ℓ. (5)

Recalling that the parameter ε may be close to zero and the constant C
in (5) is independent of ε, we surmise that the regularity demanded of the data f
in Lemma 3.1 is optimal while that demanded of g∗w is slightly suboptimal.

4. Exponential layer component E

Let E be the solution to the half-plane problem

LE = 0 for x < 1,−∞ < y <∞ (6a)

E(1, y) = −S(1, y) + g∗e(y) for −∞ < y <∞. (6b)

This function E is the same as that defined in [6, Section 5]. Here we use Fourier
transforms to bound the derivatives of E as this requires less regularity than
the approach followed in [6].

For convenience set W (x, y) = E(1 − x, y). Then

L∗W := − εWxx − εWyy − pWx + qW = 0 on Πx (7a)

W (0, y) = g(y) for −∞ < y <∞, (7b)

where g(y) := −S(1, y) + g∗e(y).

We shall need the following Mikhlin multiplier result.

Theorem 4.1 ( [4, Theorem 6.2.3]). Let M ∈ C1(R). Let K be a constant

(independent of η) such that

|M (j)(η)| ≤ K(1 + |η|)−j for j = 0, 1 and η ∈ R. (8)

Let s ∈ Ck,α(R) for some non-negative integer k. Define h ∈ L2(R) implicitly

from its Fourier transform ĥ by setting ĥ(η) = M(η)ŝ(η). Then h ∈ Ck,α(R)
and there exists a constant C such that

‖h‖Ck,α(R) ≤ CK‖s‖Ck,α(R).
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Theorem 4.1 is now used to establish bounds for derivatives of E. The
bounds in the next lemma require more regularity of the data than one would
expect from Theorem 2.1 because we need the constant C to be independent
of ε. Recall that f ∗ ∈ C2ℓ,a(Πx) and g∗w, g

∗
e ∈ C2ℓ,α(R).

Lemma 4.2. Let m and n be non-negative integers and let p̆ ∈ (0, p). Then for

m+ n ≤ 2ℓ− 1 one has

|Dm
x D

n
yE(x, y)| ≤ C

[
‖f ∗‖m+n+1,∞,Πx

+ ‖g∗w‖Cm+n+1,α(R)

+‖g∗e‖Cm+n,α(R)

]
ε−me−

p̆(1−x)
ε for (x, y) ∈ Πx.

Proof. Define the Fourier transform of W with respect to y by

Ŵ (x, η) = (FW )(x, η) =
1√
2π

∫ ∞

−∞
W (x, y)e−ıyηdy.

Similarly define the Fourier transform ĝ of g. The Fourier transform of the
problem satisfied by W is

εη2Ŵ − εŴxx − pŴx + qŴ = 0 for x > 0, −∞ < η <∞ (9a)

Ŵ (0, η) = ĝ(η) for −∞ < η <∞. (9b)

Setting r(η) = 1
2ε

(
p+
√
p2 + 4ε2η2 + 4εq

)
, one can verify that the solution to (9)

is Ŵ (x, η) = e−r(η)xĝ(η). Hence

F(Dm
x W )(x, η) = Dm

x Ŵ (x, η) = (−r(η))me−r(η)xĝ(η). (10)

Set ĝm(η) = (1 + ıη)mĝ(η). Then (10) can be rewritten as

Dm
x Ŵ (x, η) = (−r(η))m(1 + ıη)−me−r(η)xĝm(η). (11)

Since gm(y) = (1 + d
dy

)mg(y) is a linear combination of derivatives of g of order
at most m, it is clear that

‖gm‖C0,α(R) ≤ C‖g‖Cm,α(R) provided that g ∈ Cm,α(R). (12)

We shall use Mm(η) = (−r(η))m(1 + ıη)−me−r(η)x as the Mikhlin multi-
plier. In [11, Lemma 4.1] a related multiplier M(η) is used; in fact |Mm(η)| =

|M(η)r(η)(1 + ıη)−1| and M(η) satisfies (8) with K = Cε1−me−
p̆x
ε . Combining

these facts with the inequalities |r(η)| ≤ C(|η| + ε−1) and |r′(η)| ≤ C, one sees

that Mm(η) satisfies (8) with K = Cε−me−
p̆x
ε . Applying Theorem 4.1 with the

multiplier Mm(η) to (11) yields

‖Dm
x W (x, ·)‖C0,α(R) ≤ Cε−me−

p̆x
ε ‖gm‖C0,α(R) ≤ Cε−me−

p̆x
ε ‖g‖Cm,α(R),

where we used (12). On recalling the definitions of W and g and invoking (5),
the lemma is proved in the case n = 0.

Now suppose that n ≥ 1. Set v(x, y) = Dn
yW (x, y), apply Dn

y to (7), and
apply the case n = 0 result to the function v.
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Remark 4.3. Lemma 4.2 requires less data regularity than the bound

|Dm
x D

n
yE(x, y)| ≤ C[‖ge‖2ℓ,∞,(0,1) + ‖S(1, ·)‖2ℓ,∞,R]ε−me−

p(1−x)
ε

of [6, p.119].

The following result will be needed in the proof of Lemma 6.2.

Lemma 4.4. For m ≤ 2ℓ− 2 there is a constant C such that

∣∣∣Dm
x

(
e

px
ε Ey(1 − x, y)

)∣∣∣ ≤ C (‖f ∗‖m+1,∞,Πx
+ ‖g∗w‖m+2,∞,R + ‖g∗e‖m+1,∞,R)

on Πx.

Proof. Apply Dy to (6) to get LEy = 0 for x < 1, Ey(1, y) = (g∗e)
′(y) −

Sy(1, y). This is a problem similar to (6) but with one degree less regularity.
Set W1(x, y) = e

px
ε Ey(1−x, y); then LW1 = 0 on Πx and W1(0, y) = −Sy(1, y)+

(g∗e)
′(y). Now invoking Lemma 3.1 yields the desired result.

5. Incoming corner functions

At this stage of our construction the function S + E essentially matches the
boundary data for u in Q along the inflow (x = 0, where E is exponentially
small) and outflow (x = 1) boundaries but may not agree with ∂u

∂y
on the sides

y = 0, 1. The incoming corner function w00 will handle the Neumann boundary
data along the side y = 0 and any corner singularity at the point (0, 0). A related
problem in [6] defines an incoming corner function z00 with Dirichlet boundary
conditions; our analysis is based on [6, Section 2] but has many differences,
especially in the construction of the function ζ below.

Define w00 ∈ L2(Q) to be the solution of the quarter-plane problem

Lw00 = 0 on Q (13a)

w00,y(x, 0) = h∗s(x) − Sy(x, 0) for x > 0 (13b)

w00(0, y) = 0 for y > 0. (13c)

By the Lax-Milgram theorem, this problem is well-posed in H1(Q). Then [8,
Sections 10 & 12] imply that w00 ∈ C2ℓ,α(Q). The well-posedness of later
boundary value problems can be handled similarly.

We shall present our arguments in the setting of a general quarter-plane
problem so that the results can be applied to the later problem (32) as well as
to (13). Set β = min

{
p
12
, q

2p
,
√
q
}
. Assume that g and h are functions with
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g ∈ C2ℓ,α(R+),
∫ x

0
h(x) dx ∈ C2ℓ,α(R+) for some integer ℓ ≥ 0 and α ∈ (0, 1),

and that for some constants Ḡ2ℓ and H̄2ℓ one has

|g(k)(y)| ≤ Ḡ2ℓε
1−k
2 e

− βy

2
√

ε , for k = 0, . . . , 2ℓ (14a)

|h(k)(x)| ≤ H̄2ℓ, for k = 0, . . . , 2ℓ− 1 (14b)

(for ℓ = 0, take |h(x)| ≤ H̄0). Define the function w by

Lw = 0 on Q

wy(x, 0) = h(x) for x > 0

w(0, y) = g(y) for y > 0.

Assume that w has compatibility index ν at (0, 0).

The function w will be decomposed into a sum of solutions of half-plane
problems. Extend h(x) to a function h1(x) that vanishes for x ≤ −1 with∫ x

−∞ h1(t) dt ∈ C2ℓ,α(R). Let w1 ∈ C2ℓ(Π̄y) satisfy the grazing half-plane problem

Lw1 = 0 on Πy (15a)

w1,y(x, 0) = h1(x) for x ∈ R. (15b)

Write ŵ1(ξ, y) for the partial Fourier transform of w1 with respect to x. Then
transforming (15) yields

εξ2ŵ1 − εŵ1,yy + ıpξŵ1 + qŵ1 = 0 for −∞ < ξ <∞, y > 0

ŵ1,y(ξ, 0) = ĥ1(ξ) for ξ ∈ R.
(16)

Let r(ξ) =
√
ξ2 + qε−1 + ıpξε−1. One can verify that r(ξ) = s + ıt where

s = 1√
2

[
ξ2 + qε−1 +

√
(ξ2 + qε−1)2 + p2ξ2ε−2

] 1
2 > 0 and t = pξε−1

2s
. Thus

ŵ1(ξ, y) = − ĥ1(ξ)√
ξ2 + qε−1 + ıpξε−1

e−r(ξ)y (17)

is the solution of (16).

We bound the pure y-derivatives of w1 in Lemma 5.1 and the remaining
derivatives of w1 in Lemma 5.2.

Lemma 5.1. For n ≤ 2ℓ there is a constant C such that

‖w1(·, y)‖Cn,α(R) ≤ Ce
−

√
qy

2
√

ε ε
1−n

2 ‖h1‖Cn,α(R).

Proof. Assume that n ≥ 1 as the case n = 0 can be proved by a similar
argument. From (17), using the same idea that took us from (10) to (11), for
n ≥ 1 we write

F(Dn
yw1)(ξ, y) = Dn

y ŵ1(ξ, y) = e−r(ξ)y[−r(ξ)]n−1(1 + ıξ)1−nĥ1,n−1(ξ), (18)
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where ĥ1,n−1(ξ) = (1 + iξ)n−1ĥ1(ξ). Thus for n = 1, . . . , 2ℓ one has h1,n−1(x) =
(1 + d

dx
)n−1h1(x) and ‖h1,n−1‖C0,α(R) ≤ C‖h1‖Cn−1,α(R). We shall apply Theo-

rem 4.1 to (18) with the multiplier

M(ξ) = [−r(ξ)]n−1(1 + ıξ)1−ne−r(ξ)y and K = Cε
1−n

2 e
−

√
qy

2
√

ε .

Note that |ℜ(r(ξ))| = s ≥
√
ξ2 + qε−1 ≥ |ξ|+√

qε−
1
2√

2
. Also

∣∣ r(ξ)
1+ıξ

∣∣ ≤ Cε−
1
2 . Hence

|M(ξ)| ≤ K. Now r′(ξ) = 2εξ+ıp

2ε
√

ξ2+qε−1+ıpξε−1
so

M ′(ξ) = (−1)n+1e−r(ξ)y
{
(n− 1)[r(ξ)]n−2r′(ξ)(1 + ıξ)1−n

−r′(ξ)y[r(ξ)]n−1(1 + ıξ)1−n + ı[r(ξ)]n−1(1 − n)(1 + ıξ)−n
}
.

It follows that

|M ′(ξ)| ≤ C
∣∣[r(ξ)]n−1(1+ıξ)1−ne−r(ξ)y

∣∣ {|[r(ξ)]−1r′(ξ)| + |r′(ξ)|y + |(1+ıξ)−1|
}
.

Recall that r = s+ ıt; now |t| = p|ξ|ε−1s
2s2 ≤ s from the formula for s. Hence

|r(ξ)ye−r(ξ)y| ≤
√

2sye−sy ≤ Ce
− sy√

2 ≤ Ce
−

√
qy

2
√

ε .

Using this inequality to bound the second term in {· · · } above, we get

|M ′(ξ)| ≤ Cε
1−n

2 e
−

√
qy

2
√

ε

{
|[r(ξ)]−1r′(ξ)| + |(1 + ıξ)−1|

}

≤ Cε
1−n

2 e
−

√
qy

2
√

ε

[∣∣∣∣
2εξ + ıp

2εξ2 + 2q + ı2pξ

∣∣∣∣+
1

1 + |ξ|

]

≤ K

1 + |ξ| ,

on considering separately the cases |ξ| ≤ 1 and |ξ| > 1. Thus M(ξ) is seen to
satisfy (8) with j = 1. The lemma follows from Theorem 4.1.

We now proceed to bound all derivatives of w1 in terms of the norm ‖·‖∞,Πx
.

Lemma 5.2. For m+ n ≤ 2ℓ− 1 there is a constant C such that

‖Dm
x D

n
yw1‖∞,Πy

≤ Ce
−

√
qy

2
√

ε ε
1−n

2 ‖h1‖m+n+1,∞,R. (19)

Proof. Let v(x, y) = Dm
x w1(x, y). Applying Dm

x to (15) yields Lv = 0 on Πy

with v(x, 0) = Dm
x h1(x) for x ∈ R. Then an invocation of Lemma 5.1 gives

‖w1(·, y)‖Cm+n,α(R) ≤ Ce
−

√
qy

2
√

ε ε
1−n

2 ‖h1‖Cm+n,α(R). The inequality (19) follows.
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Continuing with the decomposition, set w2(x, y) = w(x, y) − w1(x, y) and
g2(y) = g(y) − w1(0, y). Then w2 satisfies the quarter-plane problem

Lw2 = 0 on Q

w2(0, y) = g2(y) for y > 0

w2,y(x, 0) = 0 for x > 0.

Like w, the function w2 will have compatibility index ν at (0, 0), which implies

g
(2k+1)
2 (+0) = 0 for k = 0, . . . , ν. Let w3(x, y) and g3(y) be even extensions of w2

and g2 for y < 0. The functions w3,x, w3,xx and w3,yy are even functions of y and
hence continuous across y = 0. Furthermore, w3,y is an odd function of y and
w3,y(x, 0) = 0 so w3,y(x, y) is continuous across y = 0. Thus w3(x, y) is a classical
solution of the boundary value problem Lw3 = 0 on Πx, w3(0, y) = g3(y) for
y ∈ R.

Next, we deal with discontinuities in derivatives of g3(y). As g3 is even, its
even-order derivatives are automatically continuous on R. Define the numbers
d0, d1, . . . , dν+1 by setting

ν+1∑

µ=0

dµ22kµ =

{
1 if k = 0

0 if k = 1, . . . , ν + 1.
(20)

(If ν = −1, set d0 = 1.) This Vandermonde system of linear equations has a
unique solution d0, . . . , dν+1. Define the even function ζ(y) =

∑ℓ
j=ν+1 cjζj(y)

for all y ∈ R, where

ζj(y) =
√
ε

ν+1∑

µ=0

dµ(
√
q+j)2µ exp

{
−(

√
q + j)2µ|y|√

ε

}
for j = ν+1, . . . , ℓ (21)

and the ℓ− ν numbers cj will be chosen shortly. For all k, clearly

ζ
(2k+1)
j (±0) = ∓ε−k(

√
q + j)2k+2

ν+1∑

µ=0

dµ2(2k+2)µ. (22)

From (20) and (22) we see that ζ
(2k+1)
j (y) is continuous at y = 0 for k = 0, . . . , ν.

All even-order derivatives of ζj are automatically continuous at y = 0. Thus
ζj ∈ C2k+2(R). To specify the ℓ − ν numbers cj, we first impose the ℓ − ν − 1
conditions

ζ(2k+1)(+0) = g
(2k+1)
3 (+0) for k = ν + 1, · · · , ℓ− 1.

Equivalently, using (22) and ζ =
∑ℓ

j=ν+1 cjζj, we require

εkg
(2k+1)
3 (+0) = −

(
ν+1∑

µ=0

dµ2(2k+2)µ

)
ℓ∑

j=ν+1

cj(
√
q + j)2k (23)

for k = ν + 1, . . . , ℓ− 1.
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Recall that g3(y) is an even extension of g2(y) and g2(y) = g(y) − w1(0, y),
so g2 ∈ C2ℓ,α(R). From (14) and Lemma 5.2 one sees that

εk|g(2k+1)
3 (y)| ≤ C for k = 0, . . . , ℓ. (24)

Now
∣∣∣∣
∫ ∞

0

g3(y) dy

∣∣∣∣ =

∣∣∣∣
∫ ∞

0

g2(y) dy

∣∣∣∣ =

∣∣∣∣
∫ ∞

0

[g(y) − w1(0, y)] dy

∣∣∣∣ ≤ Cε

by (14) and (19), while (21) and (20) yield
∫∞
0
ζ(y) dy = ε

∑l
j=ν+1 cj

∑ν+1
µ=0 dµ =

ε
∑l

j=ν+1 cj. We now impose the further condition

∫ ∞

0

g3(y) dy =

∫ ∞

0

ζ(y) dy ; (25)

our calculations above show that this is equivalent to setting

ℓ∑

j=ν+1

cj = φ, where |φ| ≤ C. (26)

As the dµ are already determined, (23) and (26) together form a Vandermonde
system for the cj. Furthermore, (24) and |φ| ≤ C imply that the cj are bounded
independently of ε. Finally, the construction of ζ ensures that g3 − ζ is in
C2ℓ,α(R).

To shorten the analysis we now aim to appeal to a result in [6], but this
cannot be done directly because we have even boundary data for our half-plane
problems while [6] has odd boundary data. This motivates the main idea in the
proof of Lemma 5.3, which reveals the purpose of the condition (25).

Define the function Φ(x, y) by

LΦ = 0 on Πx, Φ(0, y) = ζ(y) for y ∈ R.

Set w4(x, y) = w3(x, y) − Φ(x, y) and g4(y) = g3(y) − ζ(y). Then w4 is the
solution of the half-plane problem

Lw4 = 0 on Πx, w4(0, y) = g4(y) for y ∈ R.

Lemma 5.3. Let ε < p2

q
. Then for non-negative integers m and n satisfying

2m+ n ≤ 2ℓ− 1 there exists a constant C such that for all (x, y) ∈ Π̄x one has

|Dm
x D

n
yw4(x, y)| ≤ Cε

1−n
2 e

−βx
2p e

−
√

q|y|
2
√

ε .



Bounds for a Convection-Diffusion Problem 175

Proof. Our construction puts g4 in C2ℓ,α(R). By (14), (21) and Lemma 5.2, the
even function g4 satisfies

|g(k)
4 (y)| ≤ Cε

1−k
2 e

−
√

qy

2
√

ε for y ∈ R and k = 0, 1, . . . , 2ℓ− 1. (27)

Define the function G4 by

G4(y) =

{∫ y

∞ g4(t) dt if y ≥ 0
∫ y

−∞ g4(t) dt if y < 0.

Then G′
4(y) = g4(y) for y 6=0 and G4 is an odd function. Furthermore, G4(0)=0

because (25) holds. Hence G4 ∈ C2ℓ+1,α(R), and from (27) and the definition
of G4 we infer that

|G(k)
4 (y)| ≤ Cε

2−k
2 e

−
√

qy

2
√

ε for y ∈ R and k = 0, 1, . . . , 2ℓ. (28)

Define the function W4 by

LW4 = 0 on Πx, W4(0, y) = G4(y) for y ∈ R. (29)

Bearing (28) in mind, we see that the problem (29) is identical to [6, (3.12)]
except that the data has been multiplied by ε. Thus one can multiply the bound
of [6, Theorem 3.2] by ε to get

|Dm
x D

n
yW4(x, y)| ≤ Cε

2−n
2 e

−βx
2p e

−
√

q|y|
2
√

ε on Πx for 2m+ n ≤ 2ℓ;

this result is valid for ε < p2

q
. But w4 = W4,y, so we are done.

Set r =
√
x2 + y2 ; this is the distance from (x, y) to, the corner (0, 0). The

following two definitions will recur frequently in subsequent bounds. Set

φ2(x, y) = exp

(
−qx

2p

)
exp

(
− βy

2
√
ε

)
(30)

and

ψ(ν,m, n, r) =

{
r2ν+3−m−n| ln r| if m+ n ≤ 2ν + 3

r2ν+3−m−n if m+ n > 2ν + 3.
(31)

For µ = 0, . . . , ν+1 and j = ν+1, . . . , ℓ, let Φµ,j be the solution to the half-plane
problem

LΦµ,j = 0 on Πx, Φµ,j(0, y) =
√
ε e−(

√
q+j)2µ|y|/√ε for y ∈ R.

Thus Φ(x, y) =
∑ℓ

j=ν+1 cj
∑ν+1

µ=0 dµ(
√
q + j)2µΦµ,j(x, y) on Πx.
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Lemma 5.4. Let r∗ ≥ ε be given and n be a non-negative integer. Then there

exists a constant C which depends on r∗, n and ν such that

∣∣Dn
y Φ(x, y)

∣∣ ≤ C
[
ε

1−n
2 + ε−ν−1r2ν+3−n

]
for r < ε

∣∣Dn
y Φ(x, y)

∣∣ ≤ Cε
1−n

2

[
1 + rν+ 3−n

2

]
φ2(x, |y|) for ε ≤ r ≤ r∗.

Proof. First consider the case n = 0. Use the barrier functions W1(x, y) =

C
√
ε e

− qx
2p e

− βy

2
√

ε and W2(x, y) = C
√
ε e

− qx
2p e

βy

2
√

ε . Then for j = ν + 1, . . . , ℓ and
i = 1, 2 one has LWi ≥ 0 = LΦµ,j in Πx and Wi(0, y) ≥ |Φµ,j(0, y)|. The growth
conditions derived in [6, Section 3] show that the use of a maximum principle is
justified; this establishes the bounds on Φµ,j. By linear superposition the same
bounds hold for Φ.

Assume that n ≥ 1. For j = ν + 1, . . . , ℓ, let θj be the solution of the
half-plane problem Lθj = 0 on Πx, θj(0, y) = ζj(y) for y ∈ R. Applying Dy to θj

yields L(Dyθj) = 0 on Πx with

Dyθj(0, y) = ζ ′j(y) = −
ν+1∑

µ=0

dµ(
√
q + j)222µ(sgn y) exp

{
−(

√
q + j)2µ|y|√

ε

}

for y ∈ R. Equations (20) and (22) give ζ
(2k+1)
j (+0) = 0 for k = 0, . . . , ν. Thus

Dyθj has the same properties as z(x, y) in [6, §4]. Consequently [6, Corollary
4.1, Lemmas 4.6 and 4.8] provide bounds for Dn

y θj(x, y) and by linearity for
Dn

y Φ.

Bounds for all derivatives of Φ(x, y) are given in Lemma 5.5.

Lemma 5.5. Let r∗ ≥ ε be given. Let m and n be non-negative integers. Then

there exists a constant C which depends on r∗, m, n and ν such that

∣∣Dm
xD

n
y Φ(x, y)

∣∣≤C
[
ε

1−n
2 + εν+2−m−n+ ε−ν−1ψ(ν,m, n, r)

]
for r<ε

∣∣Dm
xD

n
y Φ(x, y)

∣∣≤ Cε
1−n

2

[
1 + rν−m+ 3−n

2

]
φ2(x, |y|) for ε≤r≤r∗.

Proof. The case m = 0 is covered in Lemma 5.4. The inductive argument on
m of [6, Theorem 4.1] gives the bounds for the higher-order x-derivatives.

Recall that w = w1 + w4 + Φ. Combining Lemmas 5.2, 5.3 and 5.5 yields

Lemma 5.6. Let m and n be non-negative integers satisfying 2m+n ≤ 2ℓ− 1.
Fix r∗ ≥ ε. Then there is a constant C which depends on r∗, ℓ and ν, such that

∣∣Dm
xD

n
y w(x, y)

∣∣≤C
[
ε

1−n
2 + εν+2−m−n+ ε−ν−1ψ(ν,m, n, r)

]
for r<ε

∣∣Dm
xD

n
y w(x, y)

∣∣≤Cε 1−n
2

[
1 + rν−m+ 3−n

2

]
φ2(x, |y|) for ε≤r≤r∗,

where the functions φ2 and ψ were defined in (30) and (31).
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To close this section, we define the incoming corner function w01, which
handles the boundary data h∗n on the side y = 1 of Q and any corner singularity
at (0, 1). It is the solution of the quarter-plane problem

Lw01(x, y) = 0 for x > 0, y < 1

w01,y(x, 1) = h∗n(x) − Sy(x, 1) for x > 0

w01(0, y) = 0 for y < 1.

6. Outgoing corner functions

The next term in our decomposition of u is the outgoing corner function w10

which deals with the Dirichlet boundary data along the side x = 1 of Q as well
as corner singularities that (1) may have at (1,0). The inadvertent introduction
of any incompatibility at other corners of Q is avoided through a C∞ cut-off
function χ : R → [0, 1] that satisfies

χ(t) =

{
0 for t ≤ 1

3

1 for t ≥ 2
3
.

Define w10 to be the solution of the quarter-plane problem

Lw10(x, y) = 0 for x < 1, y > 0 (32a)

w10(1, y) = −χ(1 − y)w00(1, y) for y > 0 (32b)

w10,y(x, 0) = −χ(x)Ey(x, 0) for x < 1. (32c)

The functions S,E,w01, w10 and w11 are all smooth at (0,0) and – as we
shall see in Section 7 – the function ŭ is compatible to arbitrary order at (0,0).
Thus, recalling the decomposition (3), it follows that w00 enjoys the same degree
of compatibility ν00 at the corner (0, 0) as the function u. A similar argument
demonstrates that each of our four corner functions has the same degree of
compatibility at its “home” corner as u has there.

Lemma 6.1. Let m and n be nonnegative integers satisfying 2m+ n ≤ 2ℓ− 1.
Fix r∗ ≥ ε. Then there is a constant C, which depends on r∗, ℓ and ν00, such

that

∣∣Dm
x D

n
y w00(x, y)

∣∣ ≤ C
[
ε

1−n
2 + εν00+2−m−n

]
for m+ n < 2ν00 + 3, r < ε

∣∣Dm
x D

n
y w00(x, y)

∣∣ ≤ C
[
ε

1−n
2 + ε−ν00−1 ln |r|

]
for m+ n = 2ν00 + 3, r < ε

∣∣Dm
x D

n
y w00(x, y)

∣∣ ≤ C
[
ε

1−n
2 + ε−ν00−1r2ν00+3−m−n

]
for m+ n > 2ν00 + 3, r < ε

∣∣Dm
x D

n
y w00(x, y)

∣∣ ≤ Cε
1−n

2

[
1 + rν00−m+ 3−n

2

]
e

−βy

2
√

ε for ε ≤ r ≤ r∗.
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Proof. We have just seen that w00 has degree of compatibility ν00 at the corner
(0, 0). Furthermore, (2) and Lemma 3.1 imply that the boundary conditions
(13b), (13c) satisfy (14). We can therefore invoke Lemma 5.6 to obtain the
desired bounds for w00.

Let
rij =

√
(x− i)2 + (y − j)2 (33)

denote the distance from (x, y) to the corner (i, j) of Q. Bounds on the deriva-
tives of w01 follow from Lemma 6.1 on making the change of variable y 7→ 1− y

with ν00 and r replaced by ν01 and r01.

The next result resembles [7, Lemma 2].

Lemma 6.2. Let m and n be nonnegative integers satisfying 2m+ n ≤ 2ℓ− 2.
Fix r∗ ≥ ε. Then there is a constant C, which depends on r∗, ℓ and ν10, such

that
∣∣Dm

xD
n
y w10(x, y)

∣∣≤Cε−m+ 1−n
2 for m+n<2ν10+3, r10<ε

∣∣Dm
xD

n
y w10(x, y)

∣∣≤C
[
ε−m+ 1−n

2 +ε−ν10−1 ln |r10|
]

for m+n=2ν10+3, r10<ε

∣∣Dm
xD

n
y w10(x, y)

∣∣≤C
[
ε−m+ 1−n

2 +ε−ν10−1r2ν10+3−m−n
10

]
for m+n>2ν10+3, r10<ε

∣∣Dm
xD

n
y w10(x, y)

∣∣≤Cε−m+ 1−n
2

[
1+r

ν10+
3−n

2
10

]
e−

p(1−x)
ε e

− βy

2
√

ε for ε≤r10≤r∗.

Proof. Let v(x, y) = e
px
ε w10(1 − x, y). Then

Lv(x, y) = 0 for x > 0, y > 0

v(0, y) = −χ(1 − y)w00(1, y) for y > 0

vy(x, 0) = −e px
ε χ(1 − x)Ey(1 − x, 0) for x > 0.

From Lemmas 4.4 and 6.1 the boundary conditions for v satisfy (14) with 2ℓ
changed to 2ℓ− 1. Also the function v has the same compatibility ν10 at (0,0)
as the function w10 had at (1,0). We can therefore apply Lemma 5.6 to v. Now

∣∣Dm
x D

n
yw10(x, y)

∣∣ ≤ C
∑

i+j=m

∣∣∣Di
x(e

− p(1−x)
ε )Dj

xD
n
y v(1 − x, y)

∣∣∣

≤ Ce−
p(1−x)

ε

∑

i+j=m

ε−i
∣∣Dj

xD
n
y v(1 − x, y)

∣∣

and the desired result follows; note that in the case m+n < 2ν10 + 3 and r < ε

we get the bound

∣∣Dm
x D

n
yw10(x, y)

∣∣ ≤ C
[
ε

−m+(1−n)
2 + εν10−m−n+2

]
= Cε

−m+(1−n)
2

[
1 + ε

ν10+(3−n)
2

]
,

but m+ n < 2ν10 + 3 implies that ε
ν10+(3−n)

2 ≤ C.
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The outgoing corner function w11 is introduced to deal with the boundary
conditions at the corner (1, 1). It is the solution of the quarter-plane problem

Lw11(x, y) = 0 for x < 1, y < 1

w11(1, y) = −χ(y)w01(1, y) for y < 1

w11,y(x, 1) = −χ(x)Ey(x, 1) for x < 1.

Bounds on the derivatives of w11 follow from Lemma 6.2 on making the change
of variable y 7→ 1 − y with ν10 and r10 replaced respectively by ν11 and r11.

7. The remainder term ŭ

Finally we come to the remainder term ŭ. This function satisfies

Lŭ = 0 on Q

ŭ(0, y) = ğw(y) := − E(0, y) − w10(0, y) − w11(0, y)

ŭ(1, y) = ğe(y) := [χ(1 − y) − 1]w00(1, y) + [χ(y) − 1]w01(1, y)

ŭy(x, 0) = h̆s(x) := [χ(x) − 1]Ey(x, 0) − w01,y(x, 0) − w11,y(x, 0)

ŭy(x, 1) = h̆n(x) := [χ(x) − 1]Ey(x, 1) − w00,y(x, 1) − w10,y(x, 1).

We check compatibility at the origin; the other vertices are similar. Near (0,0)
the boundary data for ŭ can be written as

ğw(y) = −E(0, y) − w10(0, y) − w11(0, y) − w01(0, y)

h̆s(x) = −Ey(x, 0) − w01,y(x, 0) − w11,y(x, 0) − w10,y(x, 0).

Thus the boundary data for ŭ is compatible to arbitrary order at (0,0) since
E, w10, w11 and w01 are all C∞ functions in a neighbourhood of (0,0). As
in [6, Theorem 5.1], an energy argument and Sobolev imbedding now show that
‖ŭ‖2ℓ−2,∞,Q ≤ C.

8. Bound on the derivatives of u

In Section 1 we outlined a decomposition for u into half-plane and quarter-
plane problems. Subsequent sections proved derivative bounds for the solutions
to each of these problems. In Theorem 8.1 the derivative bounds for the half-
plane and quarter-plane problems are brought together to give derivative bounds
for u.
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Theorem 8.1. Let m,n be non-negative integers satisfying 2m + n ≤ 2ℓ − 2.
Let rij be defined by (33). Let β = min

{
p
12
, q

2p
,
√
q
}
. Let p̆ ∈ (0, p). Let νij

give the compatibility of the data at the corner (i, j). Then for (x, y) ∈ Q, the

solution u of (1) satisfies

|Dm
x D

n
yu(x, y)| ≤ C(1 + T00 + T01 + T10 + T11 + TE)

with TE = ε−me−
p̆(1−x)

ε , where for µ = 0, 1, one has

T0µ = ε
1−n

2 + εν0µ−m−n+2 for m+ n < 2ν0µ + 3, r0µ < ε

T0µ = ε
1−n

2 + ε−ν0µ−1| ln r0µ| for m+ n = 2ν0µ + 3, r0µ < ε

T0µ = ε
1−n

2 + ε−ν0µ−1r
2ν0µ+3−m−n
0µ for m+ n > 2ν0µ + 3, r0µ < ε

T0µ = ε
1−n

2

[
1 + r

ν0µ−m+ 3−n
2

0µ

]
e
(−1)µ β(µ−y)

2
√

ε for r0µ ≥ ε

and

T1µ = ε−m+ 1−n
2 for m+ n < 2ν1µ + 3, r1µ < ε

T1µ = ε−m+ 1−n
2 + ε−ν1µ−1| ln r1µ| for m+ n = 2ν1µ + 3, r1µ < ε

T1µ = ε−m+ 1−n
2 + ε−ν1µ−1r

2ν1µ+3−m−n
1µ for m+ n > 2ν1µ + 3, r1µ < ε

T1µ = ε−m+ 1−n
2

[
1 + r

ν1µ+ 3−n
2

1µ

]
e−

p(1−x)
ε e

(−1)µ β(µ−y)

2
√

ε for r1µ ≥ ε.

Proof. Use the decomposition (3) and add the bounds that we have proved for
each of its terms.
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