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Abstract. Littlewood—Paley theory for the differential operator, Ap = 8%16%2 —0?

x€ra)
is developed. This study leads to the introduction of a new class of TriebeIfLizorkign
spaces Fp"9(D) associated with the dilation (z1,z2,x3) — (2“121,2"229, 21117203),
(v1,10) € Z2. The corresponding atomic and molecular decompositions are obtained.
A frame generated by modulations, dilations and translations is also studied. Using
this result, we show that Ap is a linear isomorphism from F4(D) to £ 29(DD).
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1. Introduction and motivation

In this paper, we develop a Littlewood—Paley theory for the operator
0?02 0?

8I12 8.7722 8I32’

A]D) (.1’1,.1'2,5[)3) ERB.

We see that this theory is related to the function spaces associated with the
following dilation group on R3:

D= {(Il,.TQ,LCg) — (2V1$1,2y2$2,2yl+y2I3) . (Vl, VQ) c ZQ} . (1)

Before introducing the Littlewood—Paley theory for Ap and the function
spaces for the above dilation group, let us recall some ideas and notions con-
cerning the function spaces associated with the dilations

(z1,T2,...,00) — (221,209, ...,2'1,), where j € Z, (2)
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and its relation with the Laplacian A, = >, 82;. Frazier and Jawerth [3]
established a framework for the study of the function spaces associated with (2).
A fundamental tool for studying these function spaces is the Littlewood—Paley

analysis: if ¢ € S(R") satisfies
> e =1, #0, (3)

jez
then, for any f € S'(R")/P(R") (P(R™) denotes the set of polynomial),
f=Y ¢i*xf mSRY)/PR",

JET

where ¢(§) = [ e ™*p(x)dx denotes the Fourier transform of ¢ and ¢;(z) =
29 p(29x) (see [8]). Using this identity, we can define the well known Triebel-

Lizorkin spaces F"?(R"), a € R, 0 < p,q < oo. They are defined via the

Littlewood-Paley function ga(£)(€) = g£(£)(€) = ( X,cu(27]; * f1)7) 7, where
@ is a Schwartz function satisfying

supp@C{feR”:%§|£|§2} (4)

and |¢(£)] > C > 0if 2 < [¢] < 2. The Triebel-Lizorkin space consists of those
f € S'(R")/P(R") such that g,(f) € L,(R"). (The definition of £ (R") is
independent of ¢.) Moreover, celebrated atomic and molecular decompositions
for these function spaces are known. One of the important properties between
the Laplacian A,, and the Triebel-Lizorkin spaces F}?’q (R™) is the following pair
of inequalities: there exist C > C5 > 0 such that

Coll fllzgany < NDnfllge-2a < Cillflzgagny, V€ ES4RY).  (5)

Recall that when g = 2, the Triebel-Lizorkin space FZ?"Q is the well-known homo-
geneous Sobolev space and, the analogy of (5) on the inhomogeneous Triebel-
Lizorkin spaces is one of the fundamental properties for the elliptic theory of
differential equation (see [9]).

The proof of (5) is based on the homogeneity properties of the symbol of the
Laplacian, L(§) = & + -+ &, £ = (&,...,&,), under the dilation (2). That
is, L(27¢) = 2% L(&). If o satisfies (4), then on the support of $(277¢), we have
L(€) ~ 2% Furthermore, the function ¢ defined by ¢ = L¢ also satisfies (4).
Thus, we have g7 (A, f)(€) ~ g2(f)(€) and (5) follows from this estimation.

On the other hand, there exists a Littlewood—-Paley theory for a non-hypo-
elliptic differential operator, namely, the bi-Laplacian on R™*"2 n;,n, € N,
A, = (38 &2 (> o ). We see that the family of function spaces

i=1 9,2 i=n1+1 dx;2
associated with it are generated by the following dilations on R™*"2:

(X1, T2, ..., xn) — (212, .., 200y 220 4, .., 272 0,),
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where (ji, jo) € Z*. In this case, (3) should be modified as follows:

Z 95(2]-1517."’2j1§m’2j2§n1+1’“.2j2§n2):1, <Z§3)< Z 5?)7&0
i=1

(J1.,J2)€Z? i=n1+1

The multi-parameter Littlewood—Paley analysis can be derived based on the
above identity (see [8]). With the multi-parameter Littlewood-Paly analysis, the
corresponding results for the Triebel-Lizorkin spaces on product domains can
be obtained, see [11]. For a study of bi-Laplacian, the reader may consult [10].

We now consider our differential operator Ap. Even though it is not hypo-
elliptic, we can obtain a pair of inequalities similar to (5) for Ap. The symbol
of Apis D(§) = &8+ &3, € = (£1,&,&) € R3. We see that Ap is, in some
extent, a hybrid of the differential operators A, and A,,.

The action of the dilation group D on R? induces an homogeneity property
on D(§). More precisely, we have

D(2V1§1, 21/25'2’ 21/1-‘:-1/25'3) _ 22(V1+V2)D<€17 527 £3)

Thus, in order to obtain an analogue of (5) for Ap, we have to construct a
family of function spaces associated with the dilation group D.

There exists another dilation group that induces an homogeneity property
on D(§). For example, we may consider the family of dilations

(xla x27$3) - (2jx17 2jx2a 4]'1.3)’ ] € Z. (6)

We cannot develop a reasonable theory based on this dilation group since the
function ¢ used to define the function space associated with (6) has to satisfy
the condition

[P >C>0 if 2 <[ <

wlot

, (7)

and the function ¢ defined by b= D¢ does not satisfies (7). For instance, it is
equal to zero at £ = (1,0,0). Indeed, this is the main reason why we introduce
a two-parameter dilation group D because that type of technical difficulty can
be avoided for the function spaces associated with D.

In order to establish a framework for studying the function spaces asso-
ciated with I, we need the corresponding Littlewood—Paley analysis for the
dilation group D. Thus, the identities (3) must be modified in order to select
an “analyzing” function ¢ to produce the Littlewood—Paley analysis for D. The
straightforward generalization

Y p(276, 276,201 g) = 1 (8)

(v1,v2)€Z2
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is not appropriate for D. The easiest way to observe the drawbacks of the
above identity is to take a function ¢, where suppp = {(z1,z9,x3) : % <
|z;] < 2,4 = 1,2,3}. We see that the union of the support of the families
{021,226, 2"285) } (1) wmyezz does not cover R?, thus, the summation on
the left hand side of (8) cannot be equal to one.

There are many ways to modify (3) to make it adaptable to this context.
In this study, the following modification is used:

Z Z@(Tlfh 2728, 2u1+1/2£3 _ l) =1, &&£0. (9)

(1/1,112)EZ2 leZ

There are some remarkable features of using (9). First, it is easy to construct
a function satisfying (9) (see Section 3). Second, it provides a localization
for &3, and this extra localization is important in extending the Littlewood—
Paley analysis to functions associated with . Finally, it is related to the
following frame generated by modulations, translations and dilations:

2l/1+l/2ei(21/1+l/2:p3—k3)lg0(21/1x1 . kl, 2V2£U2 o kQ, 21/1—}-1/21,3 - l{;g) (10)

For the first and second variables x1 and x», this is a wavelet-type frame. For the
third variable, it is a Gabor-type frame. Therefore, it is a hybrid wavelet-type
and Gabor-type frame for L*(R?).

We declare some notations which will be used in this paper. For any v =
(v1,1) € Z? and © = (11, 19, 23) € R3, define s(v) = v; + 1, and

2y = (27w, 2% @9, 2T ag) = (2011, 22, 25 ).
For any ¢ € S(R?) and [ € Z, define ¢!(x) by

¢'(61,62,88) = (&1, 6,8 — 1),

Furthermore, let (M) (21, 2o, 13) = €@3lp(z1, 19, 23) be the modulation oper-
ator with respect to the third variable. Then, ¢'(x) = (M;¢)(x).
Let v € Z%, k € Z3. Define o, (v) = 22 p(2V2), o, x(z) = 2°Wp(2"x — k)
and
(@) = (¢ (@) = 220l (27).

Based on (9), we will present and prove the results for the Littlewood—
Paley analysis of the dilation group (1) in Section 2. The convergence of the
Littlewood—Paley expansion for a class of tempered distributions, Theorem 2.2,
will be proved based on a convergence result for a subspace of the rapidly
decreasing functions, Theorem 2.1.

Once the Littlewood—Paley analysis for the dilation group D has been con-
structed, it can be used to define and study the function spaces associated
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with D using the ideas from [3]. We define a family of function spaces in Defi-
nition 3.1 using the following Littlewood—Paley function for Ap,

(Z S @V 1)) f soi!)q)q, v = (1) € 72,

l€Z vez?

and a family of sequence spaces in Definition 3.2. We have an extra term
(1 + |I])* on the above definition because in our case @, is “located” on the
region

2 < e <2 2 < g < 2 2Rl <G| < 2T (JI] 4+ 1),

There is a strong connection between these function spaces and sequence spaces,
and this is justified by the boundedness of the corresponding ¢-1 transforms
defined in Definition 3.3. Moreover, this boundedness result can be used to
prove that our function spaces are well-defined (see Theorem 3.6).

Section 4 follows ideas from [3] and introduces a class of “almost diagonal”
operators on the sequence spaces. It will be shown that they are bounded on the
sequence spaces in Theorem 4.2, and this will be used to produce decompositions
of the functions. Molecular and atomic decompositions will be performed in
Section 5. Furthermore, Theorem 5.5 will show that if ¢ satisfies the inequality

0<B <)Y > [9(276,226,206 - )P <A if&6&#0,

l€Z vez?

then, there exists a dilation of ¢ that generates a frame of the form given by (10).
Thus, the family of function spaces F+?(ID) is not only constructed to produce
an analogy of (5) for Ap, it also has its own independent interest.

In Section 6, the main result for the differential operator Ap is obtained.
We prove an analogy of (5) for the differential operator Ap and the family of
function spaces F;"(ID).

This paper thus, on the one hand, introduces a new class of function spaces
associated with Ap that, in some ways, resemble Triebel-Lizorkin spaces. These
function spaces are induced by a family of dilations given by (1). On the other
hand, the results also provide a framework for studying frames generated by
modulations, dilations and translations (10).

Finally, note that, for the sake of simplicity, most results reported here are
not the best results under the minimal assumptions. The main purpose of this
paper is to present the framework for the study of function spaces associated
with the dilation group D and the differential operator Ap. There is no attempt
to search for the optimal conditions for which this framework holds.
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2. A Littlewood—Paley type identity

This section will establish a Littlewood—Paley type identity for the dilation
group, D. It will first show that a Littlewood—Paley type expansion is valid for
a class of smooth functions. This will then be extended to the distributions by
duality.

For 7 > 0 and N > 3, define

lellry = sup (14 2)V](@7¢)(2)]. (11)

T€ER3, |y|<T
Let Sy(R?) = {p € S(R?) : [ a3p(21, 22, 23)dx; =0, j = 1,2, VA € N} .

Theorem 2.1. Let p € S,(R3) satisfy

YD PO =1 £=(6.6.6) L& £0. (12)

I€EZ veZ?

Then, for any ¢ € S,(R3),

v=>Y "> sy, inS(R).

l€EZ veZ?2

Proof. By Lemma 7.1 with m =0, = (0,0) and &k = h = (0,0,0), we find that
for any L > 1 there exists a constant C'(L) > 0 depending only on L such that

W * 905/(1'17 L2, l’g)’ < C(L)Qz’l7

where

vl . vi(4L+1) 9—v;(4L-1) |28(V)l| -
O = ( H min (2 20,2 2 )) <1 + max (2, 1) 1)>

1=1,2

XK”%)(“%)(”%)V

We assert that

D gl (w,ma, 23)]

vEZ2IEZ

gC(L)Z[(ZJr o+ D+ D>+ ) +Z)le

=y 1/17]/220 v12>0,v9<0 v1>0,v9<0 v1<0,v9>0 v1<0,v9>0 1/171/2<0
s(v)>0 s(v)<0 s(v)>0 s(v)<0

=C(L)I+II+1II+1IV+V4+VI).
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For VI,

2(n +r2)(4L+1)

VI < .
2 Z Z + 27y ) (1 + 272 g ) (1 + 250 g ) H (1 + 25001

l€EZ va=—00 V1=—00

Notice that (1 + 27|z|)~F < 2795277 + |2])~F < 2795(1 + |2|)~* if j < 0. Thus,

1/1+1/2)(4L73L+l) 1

VI C(L .
S DS T+ e = P ILa s e

l€EZ va=—00 V] =—00

Similarly, for V,

2 9(v1—v2)(4L—3)

V<ZZ Z 1+2V1|x1| (14 |22]) (1 + 250 |a3|) (1 + 250 |1))) -

€7 vro=0rvi=—00

)2 vo(6L— 7)

SHIPS 1+|ZIH (A )l

€7 vro=0vi=—00

2(V1—V2)(4L—l)
[(1+ 27|z [) (1 + || ) (1 + |z3]) (1 + [1])]*

I/\

i M8 I M8

o1 (3L7—)271/2(4L7—)

5 3P
EZ: ;V [(L 4 1) TTj=y (1 + g D)E

The estimates for 111 and I are similar to the estimates of V' and IV, respec-
tively. The estimate for [ is easier. In conclusion, we have

| A

1
IT5- (L + J))E

Since for any ¢ € 8(R3) av(ZZGZ ZVGZQ (L 901/) Zzez ZueZ2 (07Y) * 905/7 for
all v € N3, by the above results, || ZleZ DoV * ngH L < for all 7 > 0,

and L > 2. Hence, > ., >, 52 1 % ¢, converges in S(R3) By (12), it is trivial
that for any ¢ € L*(R3), >,c7 >, ez ¥ x ¢!, = ¢ in L*(R?). Therefore, for any
¥ € S(R?), the series Y ;.7 >z ¥ * ¢, converges to ¢ in S(R?). O

Denote the set {f € S'(R®) : suppf C {€ = (&,&,&) € RP: &6 = 0}
by G(R3). By duality and the fact that the dual space of the function space
S,(R?) is §'(R?)/G(R?), we establish the following theorem, which is a Little-
wood—Paley type identity associated with the group D.

[+II+IIT+1V+V+VI<C(L)
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Theorem 2.2. Let p € S,(R?) satisfy (12). Then, for any f € S'(R?)/G(R?),

F=YY fxg, inSRY/GERY.

IEZ veZ?2

Note that it has not be assumed that the analyzing function ¢ in Theo-
rem 2.2 is a band-limited function. Therefore, Bernstein’s inequality cannot
be used to conclude our result. Furthermore, our method provides a new ap-
proach to the original Littlewood—Paley analysis without the compact support
assumption for the analyzing function. The reader is referred to [8] for detail.

3. Function spaces and sequence spaces

In this section, we will define and study some basic properties of the function
spaces and sequence spaces associated with ID. These function and sequence
spaces will be defined in Section 3.1. The -1 transforms for D will be intro-
duced along with a proof that they are bounded in Section 3.2.

3.1. Some definitions. Let ¢q, 14, @1, 1y € S(R) satisfy

SUPP P, SUPP Ya, SUPP Py, supp s C {n €R: L <yl <2};  (13)
> @a2im)da(2n) =1, n#0; (14)
JEZ
Y Gln—Di(n—1)=1, VpeR. (15)
leZ

The functions

(21,72, 73) = ©a(21)Pa(T2)pe(w3) ,  Y(w1, 02, 73) = Va(w1)a(T2)e(23) (16)

then satisfy

Y (2716, 276, 2 1) (21161, 2760, 206 1) = 1, if £465#0. (17)

l/1,l/2,lEZ

Identity (17) can be rewritten as

SN TGN =1, €= (61,6,&), &6 £ 0.

I€EZ veZ?

Let @(x) = p(—x). Theorem 2.2 ensures that if f € §’(R?)/G(R3), then

F=Y) fx& «y, inS'(R%)/G(R?). (18)

l€Z vez?2
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Let T = Q x Z, where Q = {Q.k}vez2 kezs, and the dyadic box Q,, is
defined by

{(xl,xg,l’g) S R3 I/{Zj < 2yjl’j < k’j + 1,] = 1,2, kg < 2U1+U2LE3 < k‘3 + 1}
Given I = (Qux,1) € Z, where v = (v1,15) € Z*? and k = (ky, ke, k3) € Z3,

define the measures of I by |I| = |Q,x| = 272W) |I|; =271, |I|; = 27 and
1|3 = 27°"). The Fourier translation of I is defined by t(I) = [ and

pr(r) = ¢l (x) = 2V (270 — k), Wr(x) = o (0) = 2209127 — k).
Moreover, for any I = (Q,x,0) € Z, let cQ L =C = (cI 1,Cr2,Cr3), where
cr1 = 27k, cro = 2 kg, 13 = 27°Wks, f; = 2°W] and x;(z) is the
characteristic function of Q), 4.

Using Shannon’s formula on each term on the right hand side of (18) yields

F=0 3 (Lol =Y (fentr, (19)

l€Z ve7? keZ3 Iez
for f € S'(R3)/G(R?).
The function spaces and sequences spaces associated with the dilation group

D can now be defined. Let o € R, 0 < ¢ < 0o and ¢ satisfy (13)-(17). For any
f € S'(R3)/G(R?), define the Littlewood—Paley function associated with Ap by

1

- <Z D (@ I)*If sOf,I)q)q-

l€Z veZ?

Definition 3.1. Let &« € R and 0 < p,q < oo. The function space F;’Q(D)
consists of those distributions f € &'(R?)/G(R?) which satisfy

[l g0y = 4G Lo sy < 00, (20)
where ¢ satisfies (17) for some 1) € S(R?) and
Suppgﬁ, Suppzﬁ - {5 = (51752753) S R?) : % < |£_7‘ < %7 .] = 17273}

Definition 3.2. Let @ € R and 0 < p,¢ < oo. The sequence space f;’q(D)
consists of those sequences s = {s;};c7 which satisfy

bl = | (3 0170+ kD))

< 00,
LP(R3)

where ¥;(z) = || 2 x/(z).

Comparing these formulations with the original Triebel-Lizorkin spaces (for
example, the one in [3]), note the extra term 2mtra)a(] 4 |l|) in the definition
of F4(D). It comes from the derivatives of the function ¢!,. This can be better
illustrated by using the expression

i2(r1+v2) [
O (14, 9, 13) = 2212212 80 (2% g, 22 9, 22y
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3.2. The -1 transforms. Based on the identity (19), we can introduce the
-1 transforms for F;’Q(ID)) and f;"q (D). The “original” -1 transforms for
the Triebel-Lizorkin spaces were first introduced by Frazier and Jawerth in [3].
Using their ideas, the corresponding (-1 transforms for F;’Q(D) and f;vq (D)
can be defined as follows.

Definition 3.3. Let ¢, be the Schwartz functions given by (16). Define the
operators S, and Ty, by

So(f) ={(f,or)}1er and Ty(s) = Zsﬂ/}h

ez
where f € §'(R%) and s = {s;} is a sequence indexed by Z.

We will show that S, is a bounded linear operator from F;"q(]])) to f;“’q(]D)),
and that T}, is a bounded linear operator from f;“’q(D) to F;“q(]D)). From (19),
the composition Ty o S, is the identity operator in F¢(D). Call S, and Ty
the ¢-1 transforms for D. Some notation and theorems will now presented for
proving of the boundedness of S, and T}

Let Mg be the strong maximal operator on R3. Tt is obvious that Mg(f) <
(M,, o M., o M,,)(f) for any locally integrable function f, where M,, is the
(ordinary) maximal operator corresponding to the variable z;, i = 1,2,3, x =
(71,2, 23) € R3. So, an iteration of the Fefferman—Stein vector-valued maximal
inequalities produces the following theorem for the strong maximal operator.

Theorem 3.4. Suppose 1 < p,q < . Then,

[eLE0)

A simple modification of Lemma A.2 and Remark A.3 of [3] establishes the
following lemma.

< Cpg
LP(R3)

(mef

1€Z

Lr(R3)

Lemma 3.5. Supposel € Z,0 < a <r < oo and A > %. There exists a constant
C > 0 which depends on X\ — = only, such that for each I = (Qux,h) € T and
each x € Qu,

3 -
> ]l (1+ 10 — 1] )
[J]1=27H1 |J|g=2"H2 o=1 maX<|I|m |J|a)
t(J)=l

Q=

< 02(M1—V1)+%2(M2—V2)+% MS< Z |ﬁJ|aXJ) ()|,

[J1=27H1,|J|g=27H2
t(J)=1

where py = max(u,0).
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This leads to an analogue of [3, Lemma 2.3| for our setting. Let r > 0 and
A > 1. For any s = {s;} ez, define sy by

3
sir= > s T+ 11 ero — eaol) ™
o=1

[J11=I1]1.|J]2=II]2
t(J)y=t(I)

Using Lemma 3.5 with » = min(p,q), a = 1%:)\ and 4 = v, Theorem 3.4 with

indices £ and I yields [siallfoamy < Cllsll oo for some constant €' > 0
independent of s € f(D). Notice that the above inequality still holds if
(cr1,¢12,¢13) in the definition of (s} ,); is replaced by any (w1,72,73) € Q
where I = (Q,1).

The proof of the following theorem is based on ideas from [3]. Thus, for
simplicity, only an outline of the proof is provided.

Theorem 3.6. Let « € R and 0 < p,q < oo. The definition for the function
space F+9(D) is independent of the function ¢ in (20). The operator S, is a
bounded linear operator from F(D) to f(D). The operator Ty is bounded
from f9(D) to F9(D).

Proof. We use | f| geap,,) to denote the norm for Fpa’q(]D)) by using the func-
tion ¢. It will now be shown that if ¢ and 6 both satisfy the conditions in
Theorem 3.1, then || - || poa(p ) and || - [| gooa(p g) are equivalent quasi-norms.

Prove first the boundedness of T},. It will be shown that for any ¢ sat-
isfying the conditions in Definition 3.1, there is a constant C' > 0 such that
1Ty ()| izam,gy < Cllsll fea oy

Let f = Ty(s) = > ez s1¢r. Taking the convolution on both sides with ¢!,
by the compactness of the support of ¢, we assert that

Poxf=> > 55 (05 % ¢l,),

()P |J|1=27H1,|J|z=2"#2

where P = {(p,1) € 2% : v; =2 < p; <v;+2,5=1,2,1 —4 < t(J) <1+4}.
Similar to [3, Theorem 2.2], for any I € Z with ¢(I) = [, we find that there
exists a collection {/,},ep C Z such that I C I, |I|; < |I,|1 < 4|I]1, [I|z <
|L,]a < 4|I| and [ — 4 < t(I,) <+ 4. Moreover,

(o, * )] <C Y > (s72)1, X1 (%), (21)

YEP |I|1=27Y1,|I|2=2""2

where 7 = min(p, ¢) and A > 1. Multiply 7|72 (1 + [t(I)|)® = 2°@)(1 + |I])* on
both sides of (21); then, take the [ norm and apply the LP(R?) norm. Taking
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the summation for v and [, by Minkowski’s inequality,

1ol sy < C D <Z (L1750 + It(fw)|)a|(8i,x)w~<uI)q>q

yeEP IeT
< 225C sl jga o)

LP(R3)

because x; < x,, and card(P) < 225.

The boundedness of S, will now be established. Let I = (Q,!) € Z. Recall
that 7 = min(p, ¢). Using Peetre’s inequality,

ST IS Hilu@) < 20 Ms (8, £

[I]1=27"1,[I]g=27"2

Multiplying |I]72 (1 + ¢(1))® = 25®(1 + |I|)®, summing over v and I, taking
the % power and applying the LP/" norm on both sides; then using Theorem 3.4
with indices £ and £ yields |[S,(f) joom) < [If]l pooan,g)-

The independence of ¢ of the definition of F;Q(D) can now be demon-
strated. Once this is proved, the boundedness of S, follows. Suppose ¢, and
0, ¢ are two pairs of functions satisfying the conditions in Theorem 3.1. Then,

> (o)t

IeT (D)

= 1T (So(NN o2y
< Cl(Se(fDl o)
< Ol fll g y-

The results then follow obviously from the above inequalities. [l

Hf“F;,l’q(D,@) =

Let ¢ satisfy the conditions of Definition 3.1 with
B< Y PP <A = (6,5 &) R L& A0,

l€eZ,vel?

for some constants A > B > 0. Theorem 3.6 then allows using ¢ to define
S . . . S . 0,2

Fg (’q (3) By using this function to define F;;*9(ID), it is easy to see that F)?(D) =
L*(R?).

4. Almost diagonal matrices

In [3], there is an important class of operators acting on the little Triebel-
Lizorkin spaces. This section presents the corresponding class of operators on
f;’q (D) and proves that they are bounded operators. Begin with the definition
of this class of operators.
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Definition 4.1. Let § > 0 and L > 1. The class of almost diagonal matrices
w(f, L) associated with D consists of those sequence A = {as;}1er which
satisfies

|aIJ| S OWIJ(B7 L)7 (22)

where

3 A -*
({2 Y (s
7L - ’ 1 3 3
wrs(B, L) lem(|J|a \I[U] +DOBLX(|[‘31>|J’31)

CIO’ CJO'
] ) )
. ( (| |07| |O>>

o=1

)

and C' > 0 is a constant independent of I,.J € Z. The norm |[{as;}|ws,z) is the
infimum of the constant C' > 0 for which (22) holds.

Compared to the almost diagonal matrices in [3], the one used in this paper
has an extra decay for the Fourier translation. This extra decay is used to assert
the boundedness of these operators on the sequence spaces f;/(D).

The main purpose of this section is to show the boundedness of the almost
diagonal matrix in the sequence spaces [ (D). The precise statement of this
result is given in Theorem 4.2.

Again note, however, that for the sake of brevity, no attempt has been
made to present the best result under the minimal assumptions for the following
theorem.

Theorem 4.2. Suppose a« € R and 0 < p,q < co. Let J = m. If 6, L
satisfy B > 5J + 4la| and L > 2|a| + 27, then an almost diagonal matriz,
A = A{ars} € w(B, L) is a bounded operator on fy*'(D) and [|A(s)| joop) <

O”{(Z[J}Hw(g,[/)HSHf‘;)x,q(D) for some C' > 0.
Proof. Without loss of generality, assume that |[{a;;}|lws,) = 1. We deal first
with the case where @ > 0, r = min(p,q) > 1. The case a < 0 will follow
similarly. It will be shown that, in this case, it is sufficient to assume that
8 >4+ 4a.

Take A = Z?Zl A; where

(AIS)I = Z arjsy, (AQS)I = Z arjSyg

[I]1>]J)1,|I|2>] ]2 [T 2]J]1,1]2<]J]2
[I13>|J]3
(ASS)I = E arjsy, (A4S)I = g arjsy
11 >1J11,Il2<] ]2 [T11<|J]1,I]2>|T]2
[T3<]JI3 [T]3=]J]3
(Ass)r = g arysy, (Aes)r = § arySJ-
[T <] J]1,1 1222 [T <] |1, ]2<| |2

[TI3<I|Jl3
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We will estimate Ay and Az. The others follow similarly. Let |I|; = 27,
[I]s = 27%2, |J|1 = 27" and |J|, = 27#2. Moreover, let f; = 2°®k and
fr =25y

By the Holder inequality, 37 Jaibi| < (2 lasl|bil3) 7 (3, [0:]5) 7, with
indices ¢, ¢’ satisfying % + 5 = 1 and Definition 4.1, there is a constant C' > 0
independent of I, J € Z such that

oy

QU1 Qh2 28(#) s 1 evs( s —gL
[Tl12[J11,TI2<] ]2
|[I|3<|J]3,l€Z
el ] 5]
Clo —CJo
X 14 : : ) ,
[H (1 T ]
because L > 2, 3 > 2 and
% _Q
Z Z ( ) 1+|]1| 1|CI,1_CJ,1’) 3 Z 9(5m=1)(r1—p1)
p1=v1 |J|1=2"H1 H1=v1

for some constants C' > 0 independent of 1 and 1.

It is now permitted to apply Lemma 3.5 with 5; = |s|?, a = é and r =1,
since L > 2. This gives

2" 2M228(M) —s(v) |9s(v s — 4
<oy 3 3 (B2 oo

I€Z p1=v1 pa=—00

S (M( > |ijjr)<x>)q]

[J]1=27H1,|J|g=27H2
t(J)=l

for z€ @, where I =(Q, k). Let M(x) :MS(Z|J|1:2—u1,|J|2:2—u2,t(J):z ssxs]) (@),
so that

o

v B_ ﬁ_1>

2 grioguz\ 1(5-2) 795w 93
sl <C [ XSS (MW) (—QSM)

ver? €L p1=vi pg=—00

kEZL (23)
23(1/ qa(1_|_|k|)qa ]q

(142502500 — 250 ]) %

X (M(z))*

because |I|72 = 25¢)=s)| J|=2 and |I]| = 2725,
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We have
2°") (1 + |k|) _(20Y 20 (1 + |k])
(14 2= |25 — 2sW)]|) = \ 25() } (1 4 27|25 | — 2s(w)]|) (24)
223(1/)
< S (1)
when s(v) > s(u). Using ¢ > 1 and § > 4o + 2, yields
= o rgaguy (i)
2 12#2 2
e (DR 3 Sl
veZ?, keZ lEZ p1=v1 pa2=—00
1
2s(maer(1 IHES a
x (Mi(x))® =
(1 + 250|250 — 2s])2(5 )
Lr
Interchanging the order of summations of v, k and u, [, we assert that
K1 * 21/12#2 §_2
laslpm=c|| XY S ((55)
WEZ2,1€Z vi=—00 va=p2 kEZ
1
23(u)a 1 e q|a
) e )
(14 2= |25 — 2s(w)]]) 2~
Lr
1
qlaq
<C Z {MS <23(“)°‘(1 + 1))* Z |3J>~CJ’) (37)1 ] ;
WEZZ IEZ [J]1 =271 | J|p=27H2 Ip
t(J)=l

because 3 > 4 and L > 2a + 2. Using Theorem 3.4, we obtain || Aszs|| jo.ap) <
C||S||f;ﬂ(m>)‘
The estimate for A, is similar. Instead of (23), the formulation is
o0 V2 QU1 QH2 a(5-2) 9s(v) £
SY> Y (5) Gw)

I1€T I€Z p1=v1 p2=—00

|’A25||f374(m) <C

1

28(1/)(]05(1 + |k|)qa ] q

x (M(x))?
(M(2)) (1 + 275 |25() g — 2s()]]) %

Lp

In this case,
2°W(1 + [k|)
(14 2-sW)|25)k — 2s(m)]|)

< 220 (14 ]1)) (25)
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can be used when s(v) < s(u). This leads to

G 00 5-2 3
QV19H2 \ 2 25(1’) 2
el oy < CJl | D0 30 ZZ((MW) (—W)

HEZ2 €L vi=—00 va=p2 kEZ

1

28(/1,)0& 1 e q|aq
< M(z) e B 8
(1 + 25 [25)f; — 2s(w)]|) 5o

Lp

since

1 () —s(v)
Z (1 + 2_5(”)|25(V)]€ _ 2s(u)l|)N < CNQ (26)
keZ

for some constant Cy depending only on N > 1. This yields the desired result,
because G > 4a + 4. The estimates for the other operators, A;, A4, A5 and Ag,
follow similarly.

The case for » < 1 can be proved through an argument similar to the
one presented in [3, p. 55]. According to the definition of an almost diagonal
matrix, for any {a;;} € w(f, L), there exists 7 < r = min(p, ¢) such that 7
satisfies {|a;s|"} € w(73,7L), 76 > 5 + 4Fa and 7L > 207 + 2. Thus, A =
{]aU\F(|I|/]J|)%’3} € w(fﬁ - % + g,fL). Furthermore, for1 any s = {ss}rez,
define ¢ = {t;}7ez by t; = |I]27%|s;|". Then, s jovo(my = HtH;a;W(D). We have

P

145]l oy < || At

L
Fo (D)

by the 7-triangle inequality, since fﬁ—%—i—% > fﬁ—% > 44+4ar and 7L > 2ar4-2.
The boundedness of A follows from the boundedness of A. O]

5. The main results for the function spaces

The atomic, molecular and frame decompositions are some of the important
results for the Triebel-Lizorkin spaces F;*(R"). This section presents the
corresponding decompositions for (D).

5.1. Molecular estimate. We begin with the definition of molecules.

Definition 5.1. Let 3 > 0. The space of molecules of order 3 for F;"q(D), Mg,
consists of {m;} ez that satisfy, for some constant C' > 0,

[(0"my) (21, 22, 23)| < C|[]*%(1 +|H()]) H

o=1

|]‘;’YU (27)
L+ 15 7o = crol)”

C|I|z2
(X4 T[4 )& ) (L + [T]2]&]) (X + 15| — f1)]°

|mf(£17 627 g3)| S

(28)
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where v = (71,72,73) € N> and 0 < v; < [B]; i = 1,2,3; and m; satisfies the
vanishing moment conditions

A A
/m[(:pl,xg,xg)xldml =0 and /m]($1,$2,1'3)$2dl'2 =0,
R R

where A € N and A < [3]. Define [[{m}|sr, to be the infimum of constant C
satisfying (27) and (28).

The molecules in My have a decay in the third variable of the Fourier
domain. This is introduced on purpose because it is essential on the molecular
decompositions for Ff’q(ﬂ)). The utility of this decay cannot be seen explicitly
in the following theorem. The use of this decay is absorbed in Lemma 7.1.

Theorem 5.2. Let a € R, 0 < p,q < oo and 3 > 20J + 16|a| + 6. Suppose
that s = {sr}rer € f3"9(D) and let {m;}rer be a family of molecules of order (3
for F;"Q(D).

L If f =3 crsimy, then | € F;’Q(D) and || fllpeamy < Cllsl joamy for
some constant C' > 0 independent of s.

2. For any f € FH(D), [[{(f, mn)}H|poam) < Cllf || ooy for some constant
C > 0 independent of f.

Proof. Using the -1 transforms for D to m;, we have

F=Y smi=> s1y arhy =Y (As)y = (Ty o0 A)(s),

17 IeT JeT JeJ

where ar; = (my, ;) and A = {a;;}. From the assumption for 3, Lemma 7.1
and the inequality

ou1 911 Qh2 QU2 9s(v) 9s(u)
mn{—,— |min{ —,— | <min | —, — |, (29)
v’ Qi vz’ Q2 2s()? 2s(v)
A is an almost diagonal matrix for f}?’q(ﬂ)), hence |[f|lgoamy < Clisll joom),
where C' is the product of the operator norms of T;, and A.
The second part is straightforward. The pairing (f, m;) is interpreted by
(fymr) =3 ;7 9,(f) (s, my). This is the desired result, because {(¢;, ms)}

is an almost diagonal matrix for f;"q(D) and S, is bounded. [

5.2. The generalized -1 transforms. Observe that the functions ¢ and v
for the -1 transforms are band-limited. This section will show that, in some
ways, this condition can be relaxed. Furthermore, we generalize the results of
the -1 transforms to the functions ¢ and v that also depend on [. That type
of generalization seems unnecessary, but it is crucial on the estimate for the
differential operator Ap in Section 6. The following theorem asserts that if a
family {¢y}iez of Schwartz functions parameterized by [, | € Z, satisfies (30)
and (31), then a dilation of {yp }icz can generate an identity similar to (19).
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Theorem 5.3. Let {ophez C Suo(R?) satisfy the discrete Littlewood—Paley
inequality:

0<B< Y |pu@6.276,2W6 ~ D <A ifa&#0,  (30)

veZ2, el

where A and B are constants and

||90[l]||T,N S CT,Na (31)

where Crn > 0 is a constant depending on 7 and N only and || - ||, n is the
semi-norm of the Schwartz functions defined in (11). For any n € Z?, let

90%@) — 28(V)+2S(n)g0lm(2n(211x — k), 1€Z,veZ? kecZ

There exist an n € Z* and a family {wllf}g} € Ngso Mg such that for any
[ € S, (R?),

F= > (Fulben= Y (f.o)usn inS,(RP.  (32)

veZ?, e veZ2, e
In addition, for any f € S'(R?)/G(R3), we also have
f= 22 {heed= Y (fepul nS®R)/GRY),  (33)
veZ2, e veZ2,1eZ

where S'(R3)/G(R?) is endowed with the weak topology induced from S,(R?).

Proving Theorem 5.3 requires some preparation. For any {¢y ez C S,(R?)
satisfying (30) and (31), define the function ®(§) by

)= Y |pu(276,2726,2°W — 1)|" when &€ # 0.
veZ?,IEL
It is obvious that ®(¢) satisfies B < ®(£) < A. We define ¢y (z) by

o)
(51752753 + l)

and gE[l] (£1,0,&3) = ém(O, §2,&) = 0. Then, the function ¢y (z) is well defined,
and ¢y(x), oy (x) satisfy

(&) = when € = (&, 6, &) € R® and 616 #0,

Z 95[1](21/151,2V252,28(V)§3—l)<5[l](2"151,2"252,23(”)53—1):1 if £16,7#0, (34)

vEZ2IEL

because ®(27¢) = ®(&) for any v € Z2.
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It will now be shown that ¢p belongs to S,(R?). Estimate first the partial
derivatives of ®(§). Since ¢y € S(R?),

(1 +73)r19(v2+y3)ve
L 218 (1 + 272[ &) (1 + 2147285 — )Y

(@@)(61, 6,69 < Crov D 7

u622
lez

for all v = (71,72,7v3) € N> and N > 0. As

Z 2]')\ —[logs |yl] i 2j)\
e <Y 2y = < Cly
1+ 2 y)M — 27 |lyH)M — ’
= (1+27yl) = it @ lyl)

when M > A. Thus, if we take N > 1 + 75 4+ 3 + 2, we have

|((97<I>)(€1> 627 53)| S C,Y|€1|_’Yl—73|§2|_72_,y3.
By the product rule and the fact that 0 < B < ®(¢),

(0771 (€1, 62, & + D] < Oy ler| [ 27 (35)

Since ¢ € Sy(R?), for any A\, N > 0 and v € N?, there exists a constant
Cx~.n > 0 independent of [, such that

[Slaisly
[+ &) A + €)1 + &)Y

By (35) and (36), we assert that é[l} (&) belongs to S(R?) and, hence, {¢y ez C
S,(R?) and satisfies (31). With the family {¢y}, we are now ready to prove
Theorem 5.3.

[(07@u) (&1, 62, 63)] < Chrpn (36)

Proof of Theorem 5.3. Ideas from [3, Theorem 4.2 and Theorem 4.4] will be
used to prove this theorem. For brevity, for the families {pp }iez C Sy(R?) and
{op ez C Su(R?), we write (¢p), = ¢, and (¢))}, = ¢'. For any fixed n €
72 = {(k,K) : KEZ, Kk < 0} and any {m;} € [\ Mg, by (34) and Theorem 2.1,
we have

_ ! 71
my = § (IOVJrT] * ¢1/+77 *my,

veZ?, e’
where
! 7l _ ! —y) — & - 5 d
(pu—‘,—n* ¢y+n*mJ Z o [901/—‘,—77(1" y) QDV_H](ZL' CQu,k)} (¢V+n*mf)(y) Yy
k v,k
b ehinla—co.) | [ @ ma) ) = @l 7
v,k

+27 20l (2 — g, ) (@ * mJ)(CQ”’k)}'
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For any 1 € Z? and f € S,(R?), define

= 3 N 220w —eq,, ) (0 * Flcou)

veZ?, 1€l kel3

Yo D (Leel

veZ?, 1€l kelZ3

Since (¢!, #ms)(cq,,) = [ M) (Y — cq,,)dy = 250 (my, 657, we assert
that

(1= ) m,)
S OND VIR § B TR R TEET S (A e

lvyak" Qufn,hCQV,k v=mh

+<P,l/(x—CQyn,h){/Q (&L s mp) (y)dy — 2725250 (G s ) <CQVn,h):|} (37)

v—mn,h

= Z(SIJUI +tryvr),
IeT

where, for I = (Qux, 1), 517 = |Qux|™ > Yo, nhCQukaV 6!, «m(y)|dy, when
sry # 0,

ur(x) = sy, ( / —y) — @ (x = cq,_, )] (8 * mJ)(y)dy> ;
Qu_n,hCQu Qu— "h

b= 1@l Y [/Q

(B xm) () — <$L*mJ><ch_n,h>\dy] ;
Qu_n,hCQu

v—mn,h

and when t;; # 0,

wl) =t} ¥ le-ca,) [ y (@) ) (6o e, )]

Qu—n,nCQuk —mh
Since {my} € [ Mg, using arguments from [3, Theorem 4.2 and Theorem 4.4]
(especially, inequalities [3, (4.19) and (4. 26)] for any 5, L > 0 there exists a
constant C' > 0 such that |[{u;}|lr, < 2% and [{vr}|m,; < C. Moreover,
by Lemma 7.1, [[{s7,}|uc5.0) < C and [[{trs} 5.0y < €27, where § > 65+4,
L > 3+ 1. Thus, for any § > 0, by Theorem 7.3, there exists a 3 such that

(L = F)(me) Hlag <02

for some constant C' > 0 independent of 7. Let 6, ( satisfy the condition of
the p-1) transforms. As the -1 transforms are bounded on L?*(R?®) and [? and
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T¢0Sp is the identity operator in L*(R?), for any f € L*(R?), f = >, ..(f,0r)¢.
Hence, by the molecular estimate,

sm
< C27 || fll2gme)
L2(R3)

(I = Fp) (Pl 2re) =

> (00U = F) ()

IeT

for some constant C' > 0 independent of f and 7.

Since s(n) goes to minus infinity as K — —o0, n = (k, k). This guarantees
that F, is an invertible operator on L*(R?) for some 7. Our results follow by
taking

W= Fo ) = D (L= FY (6%)-

=0
The family {@Z’ﬂ} belongs to Mg because

[{z-7r@n}],, < (c2¥)

for some sufficiently large 3, and M 3 is a Banach space.

Wiy, - sen. @)
B

Inequality (38) is valid because, for instance when j = 2, we find that
by (37) there exist almost diagonal matrices {s;;} and {¢;;}, and families of
molecules {u;} and {U]} such that

(I JT) ZS[J [ F)U_[“‘t[J(] f)l)[, J: (Q%k,l).
Iez
Applying (37) to (I —F,)us and (I —F,)v; yields almost diagonal matrices {5[1”;(]}
and {t{[n;(]}, m = 1,2, and families of molecules {u[[?]} and {v?]}, m = 1,2, such
that

(! - F Z S1J (Z SIKUK IK“K) (Z tIKUK IKU?)

IeT Kel Kel

KeTl IeT IeT
N (Z mty;) oy (Zt th> Ugl}
IeT Iel

By Theorem 74 the matrices {d, ., SIJSIK} {ZI€ZSIJS[K} {ZIeItIJtm

and {> 7 trt] K} are almost diagonal matrices of order (3, L. Therefore, the
desired result follows for j = 2 by using Theorem 7.3. The general result for
J € N is concluded by using Theorem 7.5. The convergence of the expansion
in (32) is guaranteed by Theorem 7.3 again. The identities (33) follow from the
duality of S,(R3) and §'(R3)/G(R3). O
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5.3. Atomic decomposition and frames. The atomic decompositions of
F+4(D) will now be presented using Theorem 5.3. Say that the family {a;} ez

is a family of smooth atoms for F;’Q(D) if, for each I = (Q,1), there exist
constants K, Cr, C,, > 0 such that

suppa; C KQ;
/af(xl,x2,$3)xi\da:1 =0, /a[(xl,@,xg)x%‘dxg =0, VAeN;
R R
1]2
(TR L+ T]2l&) (14|l — fi])])

lar(&1,&2,63)| < Cp VL > 0;

and
(@ ar)(@)] < C T2 |17 1157 1115 (L 1)),
where 7 = (1,72,73) € N°.
As with the molecules for F;"q (D), there is an extra decay for the atoms for
F3+4(D) in the third variable of the Fourier domain. With this definition, we
can establish the atomic decomposition for F(DD).

Theorem 5.4. Let v € R, 0 < p,q < oo. There exists a family of smooth atoms
{ar}ier such that, for each f € F;»(D), we have the atomic decomposition

f =Y iersiar, where s = {sr} € (D) and ||| joamy < Cllfllppam) for
some constant C' > 0 independent of f.

Proof. Tt is obvious that there exists a function ¢ € S,(R3) satisfying (30) and
supp ¢ C [3,2]®. According to Theorem 5.3, there exist an 1 € Z* and a family

L Ly, b
of molecules {17} € Np=oMp such that f = > s 0z pems(f, 00000 Let
a; = @i’}c and s; = (f, wly’,ﬂ) when I = (Qux,1). The desired decomposition
then resorts and {a;} satisfies the requirement for being a family of smooth
l7
atoms. Furthermore, [[{s1}|| o0y = [{{f, ¥, 0) Hljoamy < Cllf [l pooa ), because

the family {1/1517,1} satisfies the condition in Theorem 5.2. O

Recall that the family of functions {¢ }er is a frame for L*(R?) if and only
if there exist constants A > B > 0 such that

Bl fII72@sy < DI o) < Allfl1F2ms)-
~ver
The frame used should reflect the translation on the Fourier domain. Therefore,
we study the following family of functions:

i(ov1t+vo _
2”1_‘—”261(2 T3 k3)lg0(2l/1$1 — ]{51, 2V2$2 — ]{52, 2V1+V2(L’3 — ]{?3),

where | € Z, v = (v1,v5) € Z* and k = (ky, ko, k3) € Z3. If the above family is
a frame, call it a Wavelet-Gabor type frame for L*(R?). Theorem 5.3 provides
a condition for a ¢ that generates a Wavelet—-Gabor type frame for L?(R3).
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Theorem 5.5. If ¢ € S,(R?) satisfies

0<B< Y [p(276,226, 206 - )" <A ifa&#0,  (39)

vEZ2,IEL

for some constants A > B > 0, then there exists an ny € 7Z such that for any
n = (K, k), & <1, the family

2V1+V2€i22n(2ul+u2m3—k3)130<2n<2V1I1 o kl), 2n(2u2$2 o k’g), 227]<2u1+1/2x3 o kg)),
where |l € Z, v = (v1,10) € Z* and k = (ky, ko, k3) € Z3, is a frame for L*(R?).

Theorem 5.6. Let {py}icz C S,(R?) satisfy (30). For any a € R, 0 < p,q <
00, there exist an ny € Z and constants Cy, Cy > 0 such that for any n = (k, k),
k<o and f € FH(D),

Cull Al < [|{ £ i)}

<C o, q .
oy S Col i)

Furthermore, for any 3 > 0 there exists a family of molecules of order j3, {wiz ,
such that

=Y {fubmyen =3 (f.emyn, vf € FeD).

L,k Lk

The proofs of Theorem 5.5 and Theorem 5.6 are straightforward and, thus,
omitted here.

6. The main result for the differential operator Ap

In this section, we prove the analogy of (5) for the differential operator Ap.

Theorem 6.1. Let 0 < p,q < 0o, a« € R and m € Z. There exist constants
Cy > Cy > 0 such that for any f € F9(D),

ol oy < N85 Fllgg2may < Crll fll gy (40)

In particular, Ay : F;’q(D) — F;_Q’Q(D) has both trivial kernel and closed
range. Moreover, the operator Ay is a linear topological isomorphism.

Proof. For brevity, we just prove inequalities (40) for m = 1 as the other cases

follow similarly and the conclusion follows easily from this special case.
Let ¢ € S,(R?) satisfy suppg C [3,2]*> x [—2, 2] and (39). For brevity, we

assume that the g associated with ¢ in Theorem 5.6 equals to zero. For any
f € F(D), we have

<A]D)f7 (pf/,k> = <f7 ADgpf/,k> (41)
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by the duality of Schwartz function and Schwartz distribution. We find that

ADQDL,k = 2%0) ((9319§2<ﬂ)i,k + lQ‘Pf/,k - Qil(ams@)f/,k - <a§390>f/,k) .

Let
1

Py = 7572 (02,02,0) + P = 2il(0n,0) = (97,0)).

therefore, @y € S,(IR?) satisfies condition (31) and

221+ ) (@) i = Doy (42)

Moreover, we find that $y(;, &, &) = SEEEH 66, ¢, ¢), and hence

b 2¢2 2
i v v s(v +
[l](? 161,27%65,2 ( )53 — 1) = §i& +&5

= 12 88 sonie ovag, 95We, ),
2,23(1,)(1 _‘_lg)gp( 51, §2a 53 )

We assert that on the support of $(21&;, 272&,, 25 €5 —1), there exist constants,
C7 > (5 > 0 that are independent of v and [, such that C5 < ’%’ < (.
Thus, @ also satisfies (30). Without loss of generality, we assume that the
no associated with the family {®j} is equal to zero. By (41) and applying

Theorem 5.6 to the family {¢},,} we have a constant C' > 0 such that

C H{<f, AD@L,IJ}Hﬁﬂ,q(D) =C H{<A]D)f7 pr/,k>}||f§*2vq®) < ||ADf||F;*27q(D)-

By (42) and applying Theorem 5.6 to the family {(®y),,} there exists C' > 0
such that

C”fHF;“q(]DJ) <C H{<f, (q)[l]>f/,k>}||fqu(m>) < HADfHF;?_Q’q(D)'

The proof of the second inequality in (40) follows similarly. [

7. Technical results

The first lemma of this section asserts that the “inner product” of two families
of molecules generates an almost diagonal operator. It comes from iterating the
result from [3, Lemma B.1] but with some major modifications.

Lemma 7.1. Let 2N > 2M+3,1 € Z, v = (v1, 1) €Z* and k = (ky, ko, k3) € Z3.
Suppose that g(x) satisfies

C2Mvitr2re +s(v)

a/y b ) S )
|( 9)(I1 ) $3)| [(1_|_|21/1x1_k1|)(1+|2y2$2_k2|)(1+|25(l/)$3_k:3|)]2]\7

(43)
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for v = (711,72,0) € N> and v; < 2M] +2,i=1,2;

/g(xl,xg,xg)m{‘dxl =0, /g(ZEl,JfQ,I3>ZE%\d$2 =0, (44)
R R

for any A € N, and A < [2M] + 1 and

2N

9(61, &0, &)| < C27°0) (L+27 &) (142726 (A +27°Ve — 1)) (45)

for some constant C > 0. Suppose that h(x) satisfies (43)—(45) with I, v
and k replaced by m € Z, p = (1, p2) € Z* and h = (hy, ho, hs) € Z3, re-
spectively. Then, there is a constant C >0 independent of I, m,v,u, k,h and
r = (21,79, 23) € R? such that

(g * 1) (@1, %2, 73)]
13[ 2”] 2o\ () . 1250)] — 25|\
max(QS(V)’ 25(M))
j=1
2 -N
L 12— 2l \ (2 k=2 W hg—ay
H 14
ey max(27%,27H) max(2-5(), 2-s(w)
Proof. Without loss of generality, assume that m = 0, u = (1, u2) = (0,0) and

h = (hl,hg,hg) - (0,0,0)
If 1y >0, <0 and s(v) =1 + 15 <0, then

(46)

1
o

(g% h) (1, w2, 3)| = / g(@1 —y1 + 27" k1, 27 ys, y3)

X h(yr — 27" ky, 29 — 272ys, w3 — y3) dy1dy2dys)|.

For any fixed but arbitrary v, x1 and x3, let §(y2) = g(x1—y1+27" k1, 27"2ys, y3)
be a function of y,. Similarly, for any fixed but arbitrary ys, 22 and z3, define
h(y1) = h(?/l - 27 1/€1, Ty — 27ys, 13 — Y3).

Let ¢ and h(® , .5 € N, denote the ordinary derivatives of the single
variable functions g and 7L, respectively. We assert that

g {?(w) - > W(w - 2”2$2)T]

0<r<[2M]+1

o L) (1
X {h(yl) - Z s(! ) (y1 — $1)S] dy1dyzdys|.

0<s<[2M]+1

(g % h)(x1, 22, 73)[ =277

The above identity is valid because of the vanishing moment conditions (44).
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Let 61 = 1 and d5 = 2"2. Decompose R into three regions:

Dj1={y; €R: |y; — 6;x;] < 3}
Djs={y1 € R: |y; — bz;] > 3 and |y;| < (0,25}
Djs={y; € R: |y; — 6;2;] > 3 and |y;| > 3|0;2;]}.

We have [(g * h)(z1, 22, 23)] < 32, —1 93 Luw, Where

5(r) (9ve
o g (2 xQ) v r
9(y2) — E (Y2 — 2"1y) ]
/[)LMXDQ’UXR [ r!

0<r<[2M]+1

Iy, =27"

o o) (x
X {h(yl) - > 8(! 1)(91 - 1’1)8} dy,dyxdys

0<s<[2M]+1

When y; € Dy and ys € Doy, (43) yields

< (r) (ove o r
y 9" (272132) (y2 — 2"20)
‘9(92) - > .
0<r<[2M]+1
< 25 |22y — yp|PMIF2
B [(1 421 (21 = y)[) (1 + 2222 — ko) (1 + [250)ys — Ks[)]2N
Similarly,

N A (2,
h(y1) — Z i S(! )(yl—fﬂl)S’

‘5171 o y1|[2M}+2

<C .
T A e = 27 R ) (1 [ = 27720 ]) (1 + |2 — ys[)]2Y

Therefore, I;; can be estimated as

2N
gra \M+3 1
L,<C (T) |5 —ks| '
2n (L + a1 = 27k [)(1 + |22 — kol ) (1 + o 0)

max(2-5(®) 1

The estimate for x3 comes from [3, Lemma B.2].

Notice that I; ; was estimated by iterating the estimate for [ , in [3, Lemma
B.1]. Similarly, if (y1,92) belongs to the other domains D;, x Ds,, use the
corresponding results for [,, [; and [, in [3, Lemma B.1] (f,, [, and [, are
notations in [3, Lemma B.1]). Thus, when v; > 0 and v, < 0, we obtain our

desired result.
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Similarly, when 14 < 0 and v, > 0, we have

(g * h) (1, 23, 75)]

o1 2M+% 1 2N
=C (ﬁ) ( |z3—Fs] ) ’
(1+ 2221 = k) (1 + 22 — 272ke|) (1 + (o 3=0)

For 11 <0 and vy, < 0, by the vanishing moment conditions,

(g % h)(21, 9, w3)| = 277

/2 927" y1,27ye, ys)
R

X h(xy — 27" yy, 0 — 27 2ys, x5 — y3)dy1dy2dys

In this case, let G(y1, ya, y3) = 27" 7"2g(27"y1, 27"y, y3), We have
(g * h) (21, 29, 3)]

ar G) (2 21, ya, o
/ |:§<y17y2>y3) - E (9,9)( L2 yg)(yl — 2 xy) }
R2

rl
0<r<[2M]+1

X h(xy — 27" y1, xy — 27y, k3 — y3)dy1dy2dys

For any fixed but arbitrary zi, let

1 v 9
R(y17 Yo, 3/3) = ([2M] + 1)' /; (yl - t)[QM}Jrl (89[521M1+2g) <t7 Y2, y3) dt.
. l/lxl

The right-hand side of the above identity is the remainder term of Taylor’s
expansion of §(y1, ¥z, y3) on the first variable y; in integral form. Use the integral
form of the remainder term to define R(y1, 2, y3) instead of using the differential
form:
i . (a:[v%MHzfl) (w, y2,Y3)
(ylay%yS) - ([2M]+2)'

for some |w — yi| < [2"2; — y1| because, in general, w depends on y,. The
existence of d;, R relies on the differentiability of w as a function of y,. Since w

(yr — 2%y )PV

is not necessarily a smooth function of s, the Taylor expansion of }?(yl, Y2, Y3)
cannot be used to establish the following identity (47). We have

(g h) (1, 72, 73)]

/ R(y1,y2,y3)h(x1 — 27" y1, w0 — 272 ys, y3) dy1dy=dys
R2

— ‘/}Rp [R(yl,yg,yg) _ Z (05, R)(y1, 222, y3) (2 — 2”2952)5} (47)

s!
0<s<[2M]+1

X h(xy — 27" y1, 9 — 27Ys, 3 — Y3) dyrdyadys
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because of Fubini’s Theorem and the vanishing moment conditions. Applying
the differential form of the remainder term for Taylor’s expansion and the mean-
value theorem for integrals shows that there exists a constant C' > 0 such that

95 R)(y1, 2" 29,y b s
Z 02BN 18| - 3)(92—2%2)

0<s<[2M]+1 (48)
|y1 _ 2V1x1|[2M]+2|y2 _ 2ugx2|[2M}+2

<(C )
- [(]. + ’2V1$1 — ]{31|>(1 + |28(V).T3 — k’3|)(1 + ‘2”21’2 — l{?2|)]2N

R(?h, Y2, y3) -

By using (47), (48) and the argument from [3, Lemma B.1],

(g h)(x1, %2, 23)]

| _k —2N
S 02(y1+l/2)(2M+§) <(1+|2l’1m1—]{j1|)(1+|21/2x2_k2|> (1+|x3—3|1))) .

max (2-5()

The estimate for the case 11 > 0 and vy > 0 follows similarly. As a conclu-
sion, there is a constant C' > 0 independent of v, u, k, h and x = (xq, 29, 23) €
R? such that

|(g * h)(xlax2>$3)|

2 ov o 2M+3
kg " DV (49)

i=1

2 —
27"k — 27" hy — ;| 2750 kg =27 "W hg — 4]
1 1
% [ H < + maX(Q_”J', 2_“1') * max(Q—S(V), 2—S(M))

j=1

2N

Finally, estimate g % h by using (45) and [3, Lemma B.2] on the variable £. We
assert that

o 125017 — 25| \ 72V
o) < [ la@ioue< e (14 2T EEN L 6o
Multiplying inequality (49) with inequality (50) and taking the square root
yields (46). O

A second result is that, roughly speaking, the family of molecules is “invari-
ant” under the mapping of the almost diagonal operator. The precise statement
is given in Theorem 7.3. Some notation and basic results will be introduced
before presenting Theorem 7.3.

Let Q = {277[0,1] + k : j,k € Z} be the set of dyadic intervals in R and
Qjr = 2[0,1] 4+ k. For each Q = Q;, € Q, let g = 277k and 1(Q) = 277.
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Let M > 1. This leads to the following inequalities which are extensions
of [3, Lemma D.1]:

> (i) (i)

1(P)=2—

Sc(l max(l(’;)_ o z(RM>> max (1 min(lggﬂl(i») v

< c(1+ TR %' ) ma ( maxal((czP)),wR))) (52)
X maX( mln( (( )) = )

for a constant C' > 0 dependent on M > 1 only. The last inequality re-

sults because 1 + max|(a;(_Qx)}?l‘( By < max(ll((g)),l(R)) (1+ ‘xlz;)R‘), provided that [(P) >
max(l(Q), [(R)).

Lemma 7.2. If 7>~ and 1+ 7 > N, then

;% (1 + maLx(ZQ(é)’xZL))>_N(min ((;Eﬂ;) ’ <%>>)r+é
<1 + |xl(_Pa;P|)

<ClQ) ™z (1 N %)—N

Proof. Let I[(Q) = 27" and I(P) = 277. Then,

£, (0 5g) (i) o (i)

I(P)<I(Q)

1, |$—$Q|)_
< C|lQ| (1+—Z(Q)

N

x [(P)™~

by (51). Moreover,

2 () (i) o (o)

(P)>1(Q)

1—1 N
< 025t N oUmdthitr—N) ( Q) )
- j=—00 Z(Q) + |ZB - xQ|

— 02%+i'y
(1 +1(Q) 7 — $Q|)
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by using I(P) > [(Q) and 1 + 7 > N. ]

The technical result used in the proof of Theorem 5.3 can now be stated
and proved. In order to simplify the notation, we write

- (Mo |]s
m1n17J:m1n(|J|0,|]|a , o=1,23

where I,J € Z. The proof of the following theorem is inspired by the ideas
n [7, Theorem 6.4].

Theorem 7.3. Let 7 > 1, L > 7+ 1 and f > max(l + 27,L). Suppose
that {m;} € M, and {ar;} € w(B,L). Then, the family {n;}, where n; =
> arymy belongs to M. Moreover, there is a constant C' > 0 such that

H{nrHm, < Cl{ars}lwe,oll{mstim, -

Proof. Without loss of generality, assume |[{m;}||s, = 1 and ||[{ars}||w@,) = 1.
For any vy = (717727’73) S N3 and h/ll < T, 1= 172737

g < > ap|myl+ Y ap|d"my| =X +Y.
[I3<I11s 715> 1113

The reasoning for estimating X and Y are similar, so, for brevity, only Y will be
treated in detail. According to Definition 4.1, inequality (29) and Definition 5.1,
for any § > max(1+ 27, L) and L > 7 + 1,

3 |fr = f4] -
Y < Z [HmmU <1+max(\f!31,\J|3l>>

[J]3<]1]s Lo=1

3 -L —V1=7Y3— 23—
Y H(1+ ero — Caol ) I (1 )
max((]s, 1) [Ty (1 + 11 0 — enal))”

o=1
lcrn — ¢l )L -1 \B |J|1_71_73_1
= 1+ ’ ’ min — Y5,
Z ;( max(|/|y, [J]1) (ming,) (L+ I ey = eaal)”

because |J|;' = |J|1|J|5", where

B

‘J’*’YQ*WS*l

|CI2_CJ2‘ )_L . 2 \B 2
min Y7
=D > ( max (|12, [J]2) (winf.,) (1 + [J[5 z2 — csa)™ °

JEL |J|3=2-7

and

e 5 (ot o)
3 = — — 4-
—j 1+|I‘31‘CI,3_CJ,3| 1+|J|31|3§'3—CJ73|

[J]3=2
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Recall also that f; = |J|3't(J), by (25) and (26), we assert that

_ : g (L4 [Js]fs])7 s
e %: (min.;) (14 [ T3] fr — fs])" < C )

Estimate Y3 using inequality (51), and then estimate Y and Y, with Lemma 7.2
(because § > 27+ 1 and § > L), we find that

3
Y <C|J —1-71—73 I —1—72—73 ‘x — CIJ|
<O P (1 + () [H (141270l

For the estimate for X, we also have

‘Cll_CJll —* 1 B—T
X< 2 ( (T, ) (mine)

JEZ |Jh1=

-7

‘J’l—’h—’w,—l

L+ I e = eaal)”

Xo.

X5 is defined by

lere = ool \NF L, e T[>
X;.
X Y (i) i 7 :

JEL |J|a=2- (14 [ T3 w2 — cyal)

The estimate for X5 is thus the same as for Y;. For Xs,

X3 = min3 ( — > ( - ) X4
( I)J) Z ‘ 1+‘J’31’C[,3_CJ,3| 1+|J|31|$3—CJ,3’

|J|s=2"7

. T J|3 "
< C (min® ( | ) X
< Clminn ) \ T e =a1)

113 )T
C Xy.
(|f|3+|01,3—f| !

Finally, using (24), we find that

oy e (L LD
X4_fZJ( 1.s) (L + [I]s]fr = f41)* CU+ D™

IN

Since |I]3 = |I]1]1]2, we have

3

3 —
0" <CTT G0+ (D)l [H (141270l ‘—HCLJ')]
Jj=1 o

o=1

To check (28), observe that [n;(§)| < > 7 ars|my(§)]. Demonstrating the
result follows the same reasoning as the estimate of ny. Therefore, for the sake
of brevity, the estimate for | (£)| is left to the reader. Finally, the vanishing
moment conditions for the family {n;};cz are inherited from the corresponding
conditions for {m}jez. O
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By some modifications of the method used in [7, Theorem 6.2], we show that
the composition of the almost diagonal matrices A € w(3, M) and B € w(B, M)
is an almost diagonal matrix belonging to w(min(3, 3), min(M, M)).

Theorem 7.4. Let 3,3, M, M > 0 satisfy 8 # 3 and ﬁ—i-é > min(M, M).
Suppose that A = {a;;} € w(B, M) and B = {bjx} € w(B, M) are almost
diagonal matrices. Then, the matrix Ao B =C = {cik}, where

CIk = Z arsbi (53)
J

is an almost diagonal matriz and C = {cix} € w(min(3, 5), min(M,N]\;[)). More-
over, there is a constant C' > 0, depending continuously on M, M only, such
that ||Cl|min(s.5)minara1y) < ClAllw@an 1Bl o 5.0m)-
Proof. We only provide the estimate for the case where |I|; < |K|i, |I|2 >
|K|o and [I|3 < [K]|3 since the estimates for the other cases follow similarly.
Without loss of generality, assume that 5 > 5, M > M, |[{ars}||w@,m = 1 and
{bicHlugs iy = 1- Let 1] = 27209, 1] = 27240, ] = 27509,

f- il YT ero =l \]
w=(1 1 S
( +max<|f|31,|J|31>) [H( *rnax(ma,u\a))]

o=1

Decompose the summation in (53) into twenty seven summations,

|CIK| = Z Z arsbix = Z Z,

k=(k1,kg,k3)EN3 JEA k=(kq,kg,k3)EN3
1<ky,kg,k3<3 1<kq,kg,k3<3

where Ak = Akl,kg,kg = Uk1,1 N Uk2’2 N Uk3,37 Ul,m = {J . |K‘m S ‘J’m}, UZ,m =
{J | m < |J|m < |K|n} and Us,, = {J 2 || < ||m}, for m = 1,3; and
ULQ = {J : |I|2 < |J|2}, U272 = {J : |K|2 < |J|2 < |]|2} and U3’2 = {J |J|2 <
| K2}

Set Z, = 0 when A = (. We illustrate the estimates by considering the
terms Z; 11 and Zso3. For Zy 14, by inequality (52) and the Cauchy-Schwartz
inequality,

i< () () () () () () w
NI VNG 71s) \ 171 712 ) \ 175
- Z (@)25(’K|1)25—2M(&)5—M(’K’2)ﬂ 2
B JeA111 [/l /]y |12 |2
Y 3 PR 1
o 3 (Y (Y MY R
JEAL 11 |12 |12 |3 |3

== U1U2W
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For Uy, note that 1y < k1 < pp and 15 < s < Ko, hence,

5o 8
= [ K1Y

Ny B K1 5 B 2 5 B %
2 !KIQE Z 9v1(26+26-2M) Z gv2(B+L—M)

5 1=—00 V2=—00
—4 ( e )5<IK|2)2

K1)\ |1]2
3 B

1 ( 7]y )ﬁ(m?)z

KL )\ 2 /)’
because 3 > 3 and |I|; < |K|1. For Uy, use the following range for 14 and vs:

vy < o < Ko and vy + 15 < K1 + ko < g + pe. Introduce the substitution,
v3 = 11 + 5 to obtain

IN

- K1t+K2
|I[2 |K|2 |I\ﬂ|K|ﬁ M1< Z ova(B+6-M) Z 92v3(5+6— M~ 1))
Vop=—00 V3=—00
4(!%) (mg)
]2 | K3
é ~
<4(!Klz)2<|f|3 )ﬂ
RN | K3

Hence, we assert that |Z; 11| < UyUsW = 16(“—”)5(&)%&)61/1/.

For Zs 43, by inequality (52),
Zial < Y (@)ﬂl<&)ﬁ(%)"f”l( s )ﬁ(ymg)ﬂ( s )5W
T JEAs 2 3 |‘[|1 |]|2 |I|3 |K|1 |J|2 |K|3
and then, by the Cauchy-Schwartz inequality, we obtain
| Z503] < Z (ﬂ)wg_l)(“]’l)Qﬁ(ub)ﬁ(’[(b)ﬂ
o [ (Kl ) \ M2/ \ ]2

JEA3,2;3

~ ~ -1

s <|J|2)ﬁ<|f<|2>ﬁ(|J|3>2<B—M—”(uls)” W
s, N2/ N2 ) N s K3

=Wl

=
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Analyze Vi using the fact that k1 < gy < vy and ps < vy < Ko, This yields

= ke Nz
b= i (3 i $° i)

] vi=p1 va=ps
3 ]

<4(Wl )ﬁ<\KV2)2 .

— \IK| 1112

For Vs, po < 1o < kg and Ky + Ko < g + pe < vy + 1o, hence

1
_8 B - - K2 } 00 o 1
‘/2 = |[’2 2 ‘K|22 ’[‘;B‘FM-Q-l ‘K‘gﬁ ( Z 21/2(5—5) Z 2—2V3(ﬂ+ﬂ—M_1)>

Vo=[12 v3=p1+p2

5 ~
ORI >6
=\l /) \IKls)
This produces the desired result for Zs, 3. The estimates for the other twenty
five terms follow in the same manner. O

Iterating the result in Theorem 7.4 leads to the following theorem.

Theorem 7.5. Let 5, M > 0. Suppose A;, 1 < i < m, are almost diagonal
matrices with order 3, M. Then, for any ', M’ > 0 satisfying 3 > 3, M > M’,
and B+ (' > M', the composition of A;, AjoAy---0 A, is an almost diagonal
matriz with order ', M' and

A1 0 Ay -+ 0 Aplluaary < C™ AL lw@an | Azllw@an - - - [ Amllw@,mn

for a constant C > 0 depending only on M, M'.
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