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Littlewood-Paley Theory for

the Differential Operator ∂2

∂x1
2
∂2

∂x2
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∂x3
2

Kwok-Pun Ho

Abstract. Littlewood–Paley theory for the differential operator, △D = ∂2
x1

∂2
x2

− ∂2
x3

,
is developed. This study leads to the introduction of a new class of Triebel–Lizorkin
spaces Ḟ

α,q
p (D) associated with the dilation (x1, x2, x3) → (2ν1x1, 2

ν2x2, 2
ν1+ν2x3),

(ν1, ν2) ∈ Z
2. The corresponding atomic and molecular decompositions are obtained.

A frame generated by modulations, dilations and translations is also studied. Using
this result, we show that △D is a linear isomorphism from Ḟ

α,q
p (D) to Ḟ

α−2,q
p (D).
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1. Introduction and motivation

In this paper, we develop a Littlewood–Paley theory for the operator

△D =
∂2

∂x1
2

∂2

∂x2
2
−

∂2

∂x3
2
, (x1, x2, x3) ∈ R

3.

We see that this theory is related to the function spaces associated with the
following dilation group on R

3:

D =
{

(x1, x2, x3) → (2ν1x1, 2
ν2x2, 2

ν1+ν2x3) : (ν1, ν2) ∈ Z
2
}

. (1)

Before introducing the Littlewood–Paley theory for △D and the function
spaces for the above dilation group, let us recall some ideas and notions con-
cerning the function spaces associated with the dilations

(x1, x2, . . . , xn) → (2jx1, 2
jx2, . . . , 2

jxn), where j ∈ Z, (2)
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and its relation with the Laplacian △n =
∑n

i=1
∂2

∂xi
2 . Frazier and Jawerth [3]

established a framework for the study of the function spaces associated with (2).
A fundamental tool for studying these function spaces is the Littlewood–Paley
analysis: if ϕ ∈ S(Rn) satisfies

∑

j∈Z

ϕ̂(2jξ) = 1, ξ 6= 0, (3)

then, for any f ∈ S ′(Rn)/P(Rn) (P(Rn) denotes the set of polynomial),

f =
∑

j∈Z

ϕj ∗ f in S ′(Rn)/P(Rn),

where ϕ̂(ξ) =
∫

e−ix·ξϕ(x)dx denotes the Fourier transform of ϕ and ϕj(x) =
2jnϕ(2jx) (see [8]). Using this identity, we can define the well known Triebel–
Lizorkin spaces Ḟα,q

p (Rn), α ∈ R, 0 < p, q < ∞. They are defined via the

Littlewood–Paley function gα(f)(ξ) = gϕα(f)(ξ) =
(
∑

j∈Z
(2jα|ϕj ∗f |)

q
) 1

q , where
ϕ is a Schwartz function satisfying

supp ϕ̂ ⊂
{

ξ ∈ R
n : 1

2
≤ |ξ| ≤ 2

}

(4)

and |ϕ̂(ξ)| ≥ C > 0 if 3
5
≤ |ξ| ≤ 5

3
. The Triebel–Lizorkin space consists of those

f ∈ S ′(Rn)/P(Rn) such that gα(f) ∈ Lp(R
n). (The definition of Ḟα,q

p (Rn) is
independent of ϕ.) Moreover, celebrated atomic and molecular decompositions
for these function spaces are known. One of the important properties between
the Laplacian △n and the Triebel–Lizorkin spaces Ḟα,q

p (Rn) is the following pair
of inequalities: there exist C1 ≥ C2 > 0 such that

C2‖f‖Ḟα,q
p (Rn) ≤ ‖△nf‖Ḟα−2,q

p
≤ C1‖f‖Ḟα,q

p (Rn), ∀f ∈ Ḟα,q
p (Rn) . (5)

Recall that when q = 2, the Triebel–Lizorkin space Ḟα,2
p is the well-known homo-

geneous Sobolev space and, the analogy of (5) on the inhomogeneous Triebel–
Lizorkin spaces is one of the fundamental properties for the elliptic theory of
differential equation (see [9]).

The proof of (5) is based on the homogeneity properties of the symbol of the
Laplacian, L(ξ) = ξ2

1 + · · · + ξ2
n, ξ = (ξ1, . . . , ξn), under the dilation (2). That

is, L(2jξ) = 22jL(ξ). If ϕ satisfies (4), then on the support of ϕ̂(2−jξ), we have
L(ξ) ∼ 22j. Furthermore, the function φ defined by φ̂ = Lϕ̂ also satisfies (4).
Thus, we have gϕα−2(△nf)(ξ) ∼ gφα(f)(ξ) and (5) follows from this estimation.

On the other hand, there exists a Littlewood–Paley theory for a non-hypo-
elliptic differential operator, namely, the bi-Laplacian on R

n1+n2 , n1, n2 ∈ N,
△p =

(
∑n1

i=1
∂2

∂xi
2

)(
∑n2

i=n1+1
∂2

∂xi
2

)

. We see that the family of function spaces

associated with it are generated by the following dilations on R
n1+n2 :

(x1, x2, . . . , xn) → (2j1x1, . . . , 2
j1xn1 , 2

j2xn1+1, . . . , 2
j2xn2),
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where (j1, j2) ∈ Z
2. In this case, (3) should be modified as follows:

∑

(j1,j2)∈Z2

ϕ̂(2j1ξ1, . . . , 2
j1ξn1 , 2

j2ξn1+1, . . . 2
j2ξn2) = 1,

( n1
∑

i=1

ξ2
i

)( n2
∑

i=n1+1

ξ2
i

)

6= 0.

The multi-parameter Littlewood–Paley analysis can be derived based on the
above identity (see [8]). With the multi-parameter Littlewood-Paly analysis, the
corresponding results for the Triebel–Lizorkin spaces on product domains can
be obtained, see [11]. For a study of bi-Laplacian, the reader may consult [10].

We now consider our differential operator △D. Even though it is not hypo-
elliptic, we can obtain a pair of inequalities similar to (5) for △D. The symbol
of △D is D(ξ) = ξ2

1ξ
2
2 + ξ2

3 , ξ = (ξ1, ξ2, ξ3) ∈ R
3. We see that △D is, in some

extent, a hybrid of the differential operators △n and △p.

The action of the dilation group D on R
3 induces an homogeneity property

on D(ξ). More precisely, we have

D(2ν1ξ1, 2
ν2ξ2, 2

ν1+ν2ξ3) = 22(ν1+ν2)D(ξ1, ξ2, ξ3).

Thus, in order to obtain an analogue of (5) for △D, we have to construct a
family of function spaces associated with the dilation group D.

There exists another dilation group that induces an homogeneity property
on D(ξ). For example, we may consider the family of dilations

(x1, x2, x3) → (2jx1, 2
jx2, 4

jx3), j ∈ Z. (6)

We cannot develop a reasonable theory based on this dilation group since the
function ϕ used to define the function space associated with (6) has to satisfy
the condition

|ϕ̂(ξ)| > C > 0 if 3
5
≤ |ξ| ≤ 5

3
, (7)

and the function φ defined by φ̂ = Dϕ̂ does not satisfies (7). For instance, it is
equal to zero at ξ = (1, 0, 0). Indeed, this is the main reason why we introduce
a two-parameter dilation group D because that type of technical difficulty can
be avoided for the function spaces associated with D.

In order to establish a framework for studying the function spaces asso-
ciated with D, we need the corresponding Littlewood–Paley analysis for the
dilation group D. Thus, the identities (3) must be modified in order to select
an “analyzing” function ϕ to produce the Littlewood–Paley analysis for D. The
straightforward generalization

∑

(ν1,ν2)∈Z2

ϕ̂(2ν1ξ1, 2
ν2ξ2, 2

ν1+ν2ξ3) = 1 (8)
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is not appropriate for D. The easiest way to observe the drawbacks of the
above identity is to take a function ϕ, where supp ϕ̂ = {(x1, x2, x3) : 1

2
≤

|xi| ≤ 2, i = 1, 2, 3}. We see that the union of the support of the families
{ϕ̂(2ν1ξ1, 2

ν2ξ2, 2
ν1+ν2ξ3)}(ν1,ν2)∈Z2 does not cover R

3, thus, the summation on
the left hand side of (8) cannot be equal to one.

There are many ways to modify (3) to make it adaptable to this context.
In this study, the following modification is used:

∑

(ν1,ν2)∈Z2

∑

l∈Z

ϕ̂(2ν1ξ1, 2
ν2ξ2, 2

ν1+ν2ξ3 − l) = 1, ξ1ξ2 6= 0. (9)

There are some remarkable features of using (9). First, it is easy to construct
a function satisfying (9) (see Section 3). Second, it provides a localization
for ξ3, and this extra localization is important in extending the Littlewood–
Paley analysis to functions associated with D. Finally, it is related to the
following frame generated by modulations, translations and dilations:

2ν1+ν2ei(2
ν1+ν2x3−k3)lϕ(2ν1x1 − k1, 2

ν2x2 − k2, 2
ν1+ν2x3 − k3). (10)

For the first and second variables x1 and x2, this is a wavelet-type frame. For the
third variable, it is a Gabor-type frame. Therefore, it is a hybrid wavelet-type
and Gabor-type frame for L2(R3).

We declare some notations which will be used in this paper. For any ν =
(ν1, ν2) ∈ Z

2 and x = (x1, x2, x3) ∈ R
3, define s(ν) = ν1 + ν2 and

2νx = (2ν1x1, 2
ν2x2, 2

ν1+ν2x3) = (2ν1x1, 2
ν2x2, 2

s(ν)x3).

For any ϕ ∈ S(R3) and l ∈ Z, define ϕl(x) by

ϕ̂l(ξ1, ξ2, ξ3) = ϕ̂(ξ1, ξ2, ξ3 − l).

Furthermore, let (Mlϕ)(x1, x2, x3) = eix3lϕ(x1, x2, x3) be the modulation oper-
ator with respect to the third variable. Then, ϕl(x) = (Mlϕ)(x).

Let ν ∈ Z
2, k ∈ Z

3. Define ϕν(x) = 22s(ν)ϕ(2νx), ϕν,k(x) = 2s(ν)ϕ(2νx− k)
and

ϕlν(x) = (ϕl)ν(x) = 22s(ν)ϕl(2νx).

Based on (9), we will present and prove the results for the Littlewood–
Paley analysis of the dilation group (1) in Section 2. The convergence of the
Littlewood–Paley expansion for a class of tempered distributions, Theorem 2.2,
will be proved based on a convergence result for a subspace of the rapidly
decreasing functions, Theorem 2.1.

Once the Littlewood–Paley analysis for the dilation group D has been con-
structed, it can be used to define and study the function spaces associated
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with D using the ideas from [3]. We define a family of function spaces in Defi-
nition 3.1 using the following Littlewood–Paley function for △D,

(

∑

l∈Z

∑

ν∈Z2

(

2(ν1+ν2)α(1 + |l|)α|f ∗ ϕlν |
)q
)1

q

, ν = (ν1, ν2) ∈ Z
2,

and a family of sequence spaces in Definition 3.2. We have an extra term
(1 + |l|)α on the above definition because in our case ϕ̂lν is “located” on the
region

2ν1 ≤ |ξ1| < 2ν1+1, 2ν2 ≤ |ξ2| < 2ν2+1, 2ν1+ν2|l| ≤ |ξ3| < 2ν1+ν2(|l| + 1).

There is a strong connection between these function spaces and sequence spaces,
and this is justified by the boundedness of the corresponding ϕ-ψ transforms
defined in Definition 3.3. Moreover, this boundedness result can be used to
prove that our function spaces are well-defined (see Theorem 3.6).

Section 4 follows ideas from [3] and introduces a class of “almost diagonal”
operators on the sequence spaces. It will be shown that they are bounded on the
sequence spaces in Theorem 4.2, and this will be used to produce decompositions
of the functions. Molecular and atomic decompositions will be performed in
Section 5. Furthermore, Theorem 5.5 will show that if ϕ satisfies the inequality

0 < B <
∑

l∈Z

∑

ν∈Z2

|ϕ̂(2ν1ξ1, 2
ν2ξ2, 2

s(ν)ξ3 − l)|2 < A if ξ1ξ2 6= 0,

then, there exists a dilation of ϕ that generates a frame of the form given by (10).
Thus, the family of function spaces Ḟα,q

p (D) is not only constructed to produce
an analogy of (5) for △D, it also has its own independent interest.

In Section 6, the main result for the differential operator △D is obtained.
We prove an analogy of (5) for the differential operator △D and the family of
function spaces Ḟα,q

p (D).

This paper thus, on the one hand, introduces a new class of function spaces
associated with △D that, in some ways, resemble Triebel–Lizorkin spaces. These
function spaces are induced by a family of dilations given by (1). On the other
hand, the results also provide a framework for studying frames generated by
modulations, dilations and translations (10).

Finally, note that, for the sake of simplicity, most results reported here are
not the best results under the minimal assumptions. The main purpose of this
paper is to present the framework for the study of function spaces associated
with the dilation group D and the differential operator △D. There is no attempt
to search for the optimal conditions for which this framework holds.
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2. A Littlewood–Paley type identity

This section will establish a Littlewood–Paley type identity for the dilation
group, D. It will first show that a Littlewood–Paley type expansion is valid for
a class of smooth functions. This will then be extended to the distributions by
duality.

For τ ≥ 0 and N > 3, define

‖ϕ‖τ,N = sup
x∈R3, |γ|≤τ

(1 + |x|)N |(∂γϕ)(x)|. (11)

Let Sv(R
3) =

{

ϕ ∈ S(R3) :
∫

R
xλjϕ(x1, x2, x3)dxj = 0, j = 1, 2, ∀λ ∈ N

}

.

Theorem 2.1. Let ϕ ∈ Sv(R
3) satisfy

∑

l∈Z

∑

ν∈Z2

ϕ̂l(2νξ) = 1, ξ = (ξ1, ξ2, ξ3), ξ1ξ2 6= 0. (12)

Then, for any ψ ∈ Sv(R
3),

ψ =
∑

l∈Z

∑

ν∈Z2

ψ ∗ ϕlν in S(R3).

Proof. By Lemma 7.1 with m = 0, µ = (0, 0) and k = h = (0, 0, 0), we find that
for any L > 1 there exists a constant C(L) > 0 depending only on L such that

|ψ ∗ ϕlν(x1, x2, x3)| ≤ C(L)Ων,l
L ,

where

Ων,l
L =

(

∏

i=1,2

min
(

2νi(4L+ 1
2
), 2−νi(4L−

1
2
)
)

)(

1 +
|2s(ν)l|

max(2s(ν), 1)

)−L

×

[(

1 +
|x1|

max(2−ν1 , 1)

)(

1 +
|x2|

max(2−ν2 , 1)

)(

1 +
|x3|

max(2−s(ν), 1)

)]−L

.

We assert that

∑

ν∈Z2,l∈Z

|ψ ∗ ϕlν(x1, x2, x3)|

≤ C(L)
∑

l∈Z

[

(

∑

ν1,ν2≥0

+
∑

ν1≥0,ν2<0
s(ν)≥0

+
∑

ν1≥0,ν2<0
s(ν)<0

+
∑

ν1<0,ν2≥0
s(ν)≥0

+
∑

ν1<0,ν2≥0
s(ν)<0

+
∑

ν1,ν2<0

)

Ων,l
L

]

= C(L)(I + II + III + IV + V + V I).
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For V I,

V I ≤
∑

l∈Z

−1
∑

ν2=−∞

−1
∑

ν1=−∞

2(ν1+ν2)(4L+ 1
2
)

(1 + 2ν1 |x1|)L(1 + 2ν2|x2|)L(1 + 2s(ν)|x3|)L(1 + 2s(ν)|l|)L
.

Notice that (1 + 2j|z|)−L ≤ 2−jL(2−j + |z|)−L ≤ 2−jL(1 + |z|)−L if j ≤ 0. Thus,

V I ≤
∑

l∈Z

−1
∑

ν2=−∞

−1
∑

ν1=−∞

2(ν1+ν2)(4L−3L+ 1
2
)

[(1 + |l|)
∏3

j=1(1 + |xj|)]L
≤ C(L)

1

[
∏3

j=1(1 + |xj|)]L
.

Similarly, for V ,

V ≤
∑

l∈Z

∞
∑

ν2=0

−ν2
∑

ν1=−∞

2(ν1−ν2)(4L−
1
2
)

[(1 + 2ν1 |x1|)(1 + |x2|)(1 + 2s(ν)|x3|)(1 + 2s(ν)|l|)]L

≤
∑

l∈Z

∞
∑

ν2=0

−ν2
∑

ν1=−∞

2ν1(L− 1
2
)2−ν2(6L− 1

2
)

[(1 + |l|)
∏3

j=1(1 + |xj|)]L
.

For IV ,

IV ≤
∑

l∈Z

∞
∑

ν2=0

−1
∑

ν1=−ν2

2(ν1−ν2)(4L− 1
2
)

[(1 + 2ν1|x1|)(1 + |x2|)(1 + |x3|)(1 + |l|)]L

≤
∑

l∈Z

∞
∑

ν2=0

−1
∑

ν1=−ν2

2ν1(3L− 1
2
)2−ν2(4L− 1

2
)

[(1 + |l|)
∏3

j=1(1 + |xj|)]L
.

The estimates for III and II are similar to the estimates of V and IV , respec-
tively. The estimate for I is easier. In conclusion, we have

I + II + III + IV + V + V I ≤ C(L)
1

∏3
j=1(1 + |xj|)L

.

Since for any ψ ∈ S(R3), ∂γ(
∑

l∈Z

∑

ν∈Z2 ψ ∗ ϕlν) =
∑

l∈Z

∑

ν∈Z2(∂γψ) ∗ ϕlν , for

all γ ∈ N
3, by the above results,

∥

∥

∑

l∈Z

∑

ν∈Z2 ψ ∗ ϕlν
∥

∥

τ,L
< ∞, for all τ > 0,

and L > 2. Hence,
∑

l∈Z

∑

ν∈Z2 ψ ∗ ϕlν converges in S(R3). By (12), it is trivial

that for any ψ ∈ L2(R3),
∑

l∈Z

∑

ν∈Z2 ψ ∗ ϕlν = ψ in L2(R3). Therefore, for any

ψ ∈ S(R3), the series
∑

l∈Z

∑

ν∈Z2 ψ ∗ ϕlν converges to ψ in S(R3).

Denote the set {f ∈ S ′(R3) : suppf̂ ⊆ {ξ = (ξ1, ξ2, ξ3) ∈ R
3 : ξ1ξ2 = 0}}

by G(R3). By duality and the fact that the dual space of the function space
Sv(R

3) is S ′(R3)/G(R3), we establish the following theorem, which is a Little-
wood–Paley type identity associated with the group D.
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Theorem 2.2. Let ϕ ∈ Sv(R
3) satisfy (12). Then, for any f ∈ S ′(R3)/G(R3),

f =
∑

l∈Z

∑

ν∈Z2

f ∗ ϕlν in S ′(R3)/G(R3).

Note that it has not be assumed that the analyzing function ϕ in Theo-
rem 2.2 is a band-limited function. Therefore, Bernstein’s inequality cannot
be used to conclude our result. Furthermore, our method provides a new ap-
proach to the original Littlewood–Paley analysis without the compact support
assumption for the analyzing function. The reader is referred to [8] for detail.

3. Function spaces and sequence spaces

In this section, we will define and study some basic properties of the function
spaces and sequence spaces associated with D. These function and sequence
spaces will be defined in Section 3.1. The ϕ-ψ transforms for D will be intro-
duced along with a proof that they are bounded in Section 3.2.

3.1. Some definitions. Let ϕd, ψd, ϕt, ψt ∈ S(R) satisfy

supp ϕ̂d, supp ψ̂d, supp ϕ̂t, supp ψ̂t ⊆
{

η ∈ R : 1
2
≤ |η| ≤ 2

}

; (13)

∑

j∈Z

ϕ̂d(2jη)ψ̂d(2
jη) = 1, η 6= 0; (14)

∑

l∈Z

ϕ̂t(η − l)ψ̂t(η − l) = 1, ∀η ∈ R. (15)

The functions

ϕ(x1, x2, x3) = ϕd(x1)ϕd(x2)ϕt(x3) , ψ(x1, x2, x3) = ψd(x1)ψd(x2)ψt(x3) (16)

then satisfy

∑

ν1,ν2,l∈Z

ϕ̂(2ν1ξ1, 2ν2ξ2, 2ν1+ν2ξ3−l)ψ̂(2ν1ξ1, 2
ν2ξ2, 2

ν1+ν2ξ3− l)=1, if ξ1ξ2 6=0. (17)

Identity (17) can be rewritten as

∑

l∈Z

∑

ν∈Z2

ϕ̂l(2νξ)ψ̂l(2νξ) = 1, ξ = (ξ1, ξ2, ξ3), ξ1ξ2 6= 0.

Let ϕ̃(x) = ϕ(−x). Theorem 2.2 ensures that if f ∈ S ′(R3)/G(R3), then

f =
∑

l∈Z

∑

ν∈Z2

f ∗ ϕ̃lν ∗ ψ
l
ν in S ′(R3)/G(R3). (18)
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Let I = Q × Z, where Q = {Qν,k}ν∈Z2,k∈Z3 , and the dyadic box Qν,k, is
defined by

{(x1, x2, x3) ∈ R
3 :kj ≤ 2νjxj ≤ kj + 1, j = 1, 2, k3 ≤ 2ν1+ν2x3 ≤ k3 + 1}.

Given I = (Qν,k, l) ∈ I, where ν = (ν1, ν2) ∈ Z
2 and k = (k1, k2, k3) ∈ Z

3,
define the measures of I by |I| = |Qν,k| = 2−2s(ν), |I|1 = 2−ν1 , |I|2 = 2−ν2 and
|I|3 = 2−s(ν). The Fourier translation of I is defined by t(I) = l and

ϕI(x) = ϕlν,k(x) = 2s(ν)ϕl(2νx− k), ψI(x) = ψlν,k(x) = 2s(ν)ψl(2νx− k).

Moreover, for any I = (Qν,k, l) ∈ I, let cQν,k
= cI = (cI,1, cI,2, cI,3), where

cI,1 = 2−ν1k1, cI,2 = 2−ν2k2, cI,3 = 2−s(ν)k3, fI = 2s(ν)l, and χI(x) is the
characteristic function of Qν,k.

Using Shannon’s formula on each term on the right hand side of (18) yields

f =
∑

l∈Z

∑

ν∈Z2,k∈Z3

〈f, ϕlν,k〉ψ
l
ν,k =

∑

I∈I

〈f, ϕI〉ψI , (19)

for f ∈ S ′(R3)/G(R3).

The function spaces and sequences spaces associated with the dilation group
D can now be defined. Let α ∈ R, 0 < q < ∞ and ϕ satisfy (13)-(17). For any
f ∈ S ′(R3)/G(R3), define the Littlewood–Paley function associated with △D by

dqα(f) =

(

∑

l∈Z

∑

ν∈Z2

(

2s(ν)α(1 + |l|)α|f ∗ ϕlν |
)q
)1

q

.

Definition 3.1. Let α ∈ R and 0 < p, q < ∞. The function space Ḟα,q
p (D)

consists of those distributions f ∈ S ′(R3)/G(R3) which satisfy

‖f‖Ḟα,q
p (D) = ‖dqα(f)‖Lp(R3) <∞, (20)

where ϕ satisfies (17) for some ψ ∈ S(R3) and

supp ϕ̂, supp ψ̂ ⊆
{

ξ = (ξ1, ξ2, ξ3) ∈ R
3 : 3

8
≤ |ξj| ≤

8
3
, j = 1, 2, 3

}

.

Definition 3.2. Let α ∈ R and 0 < p, q < ∞. The sequence space ḟα,qp (D)
consists of those sequences s = {sI}I∈I which satisfy

‖s‖ḟα,q
p (D) =

∥

∥

∥

∥

(

∑

I∈I

(

|I|−
α
2 (1 + |t(I)|)α|sI χ̃I |

)q
)1

q
∥

∥

∥

∥

Lp(R3)

<∞,

where χ̃I(x) = |I|−
1
2χI(x).

Comparing these formulations with the original Triebel–Lizorkin spaces (for
example, the one in [3]), note the extra term 2(ν1+ν2)α(1 + |l|)α in the definition
of Ḟα,q

p (D). It comes from the derivatives of the function ϕlν . This can be better
illustrated by using the expression

ϕlν(xx, x2, x3) = 22ν1+2ν2ei2
(ν1+ν2)lx3ϕ

(

2ν1x1, 2
ν2x2, 2

ν1+ν2x3

)

.
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3.2. The ϕ-ψ transforms. Based on the identity (19), we can introduce the
ϕ-ψ transforms for Ḟα,q

p (D) and ḟα,qp (D). The “original” ϕ-ψ transforms for
the Triebel–Lizorkin spaces were first introduced by Frazier and Jawerth in [3].
Using their ideas, the corresponding ϕ-ψ transforms for Ḟα,q

p (D) and ḟα,qp (D)
can be defined as follows.

Definition 3.3. Let ϕ, ψ be the Schwartz functions given by (16). Define the
operators Sϕ and Tψ by

Sϕ(f) = {〈f, ϕI〉}I∈I and Tψ(s) =
∑

I∈I

sIψI ,

where f ∈ S ′(R3) and s = {sI} is a sequence indexed by I.

We will show that Sϕ is a bounded linear operator from Ḟα,q
p (D) to ḟα,qp (D),

and that Tψ is a bounded linear operator from ḟα,qp (D) to Ḟα,q
p (D). From (19),

the composition Tψ ◦ Sϕ is the identity operator in Ḟα,q
p (D). Call Sϕ and Tψ

the ϕ-ψ transforms for D. Some notation and theorems will now presented for
proving of the boundedness of Sϕ and Tψ.

Let MS be the strong maximal operator on R
3. It is obvious that MS(f) ≤

(Mx1 ◦ Mx2 ◦ Mx3)(f) for any locally integrable function f , where Mxi
is the

(ordinary) maximal operator corresponding to the variable xi, i = 1, 2, 3, x =
(x1, x2, x3) ∈ R

3. So, an iteration of the Fefferman–Stein vector-valued maximal
inequalities produces the following theorem for the strong maximal operator.

Theorem 3.4. Suppose 1 < p, q <∞. Then,
∥

∥

∥

∥

(

∑

i∈Z

|MSfi|
q

)1
q
∥

∥

∥

∥

Lp(R3)

≤ Cp,q

∥

∥

∥

∥

(

∑

i∈Z

|fi|
q

)1
q
∥

∥

∥

∥

Lp(R3)

.

A simple modification of Lemma A.2 and Remark A.3 of [3] establishes the
following lemma.

Lemma 3.5. Suppose l ∈ Z, 0 < a ≤ r <∞ and λ > r
a
. There exists a constant

C > 0 which depends on λ − r
a

only, such that for each I = (Qν,k, h) ∈ I and

each x ∈ Qν,k,









∑

|J|1=2−µ1 ,|J|2=2−µ2

t(J)=l

|βJ |
r

3
∏

σ=1

(

1 +
|cI,σ − cJ,σ|

max(|I|σ, |J |σ)

)−λ









1
r

≤ C2(µ1−ν1)+
2
a 2(µ2−ν2)+

2
a









MS

(

∑

|J|1=2−µ1 ,|J|2=2−µ2

t(J)=l

|βJ |
aχJ

)

(x)









1
a

,

where µ+ = max(µ, 0).
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This leads to an analogue of [3, Lemma 2.3] for our setting. Let r > 0 and
λ > 1. For any s = {sI}I∈I , define s∗r,λ by

(s∗r,λ)I =
∑

|J|1=|I|1,|J|2=|I|2
t(J)=t(I)

|sJ |
r

3
∏

σ=1

(

1 + |I|−1
σ |cI,σ − cJ,σ|

)−λ
.

Using Lemma 3.5 with r = min(p, q), a = 2r
1+λ

and µ = ν, Theorem 3.4 with
indices p

a
and q

a
yields ‖s∗r,λ‖ḟα,q

p (D) ≤ C‖s‖ḟα,q
p (D) for some constant C > 0

independent of s ∈ ḟα,qp (D). Notice that the above inequality still holds if
(cI,1, cI,2, cI,3) in the definition of (s∗r,λ)I is replaced by any (x1, x2, x3) ∈ Q
where I = (Q, l).

The proof of the following theorem is based on ideas from [3]. Thus, for
simplicity, only an outline of the proof is provided.

Theorem 3.6. Let α ∈ R and 0 < p, q < ∞. The definition for the function

space Ḟα,q
p (D) is independent of the function ϕ in (20). The operator Sϕ is a

bounded linear operator from Ḟα,q
p (D) to ḟα,qp (D). The operator Tψ is bounded

from ḟα,qp (D) to Ḟα,q
p (D).

Proof. We use ‖f‖Ḟα,q
p (D,ϕ) to denote the norm for Ḟα,q

p (D) by using the func-
tion ϕ. It will now be shown that if ϕ and θ both satisfy the conditions in
Theorem 3.1, then ‖ · ‖Ḟα,q

p (D,ϕ) and ‖ · ‖Ḟα,q
p (D,θ) are equivalent quasi-norms.

Prove first the boundedness of Tψ. It will be shown that for any ϕ sat-
isfying the conditions in Definition 3.1, there is a constant C > 0 such that
‖Tψ(s)‖Ḟα,q

p (D,ϕ) ≤ C‖s‖ḟα,q
p (D).

Let f = Tψ(s) =
∑

I∈I sIψI . Taking the convolution on both sides with ϕlν ,
by the compactness of the support of ϕ̂, we assert that

ϕlν ∗ f =
∑

(µ,l)∈P

∑

|J |1=2−µ1 ,|J |2=2−µ2

sJ(ψJ ∗ ϕ
l
ν),

where P = {(µ, l) ∈ Z
3 : νj − 2 ≤ µj ≤ νj + 2, j = 1, 2, l − 4 ≤ t(J) ≤ l + 4}.

Similar to [3, Theorem 2.2], for any I ∈ I with t(I) = l, we find that there
exists a collection {Iγ}γ∈P ⊂ I such that I ⊆ Iγ, |I|1 ≤ |Iγ|1 ≤ 4|I|1, |I|2 ≤
|Iγ|2 ≤ 4|I|2 and l − 4 ≤ t(Iγ) ≤ l + 4. Moreover,

|(ϕlν ∗ f)(x)| ≤ C
∑

γ∈P

∑

|I|1=2−ν1 ,|I|2=2−ν2

(s∗r,λ)Iγ χ̃I(x), (21)

where r = min(p, q) and λ > 1. Multiply |I|−
α
2 (1 + |t(I)|)α = 2s(ν)α(1 + |l|)α on

both sides of (21); then, take the lq norm and apply the Lp(R3) norm. Taking
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the summation for ν and l, by Minkowski’s inequality,

‖Tψ(s)‖Ḟα,q
p (D,ϕ) ≤ C

∑

γ∈P

∥

∥

∥

∥

(

∑

I∈I

(

|Iγ|
−α

2 (1 + |t(Iγ)|)
α|(s∗r,λ)Iγ χ̃Iγ |

)q
)1

q
∥

∥

∥

∥

Lp(R3)

≤ 225C‖s‖ḟα,q
p (D),

because χI ≤ χIγ and card(P ) ≤ 225.

The boundedness of Sϕ will now be established. Let I = (Q, l) ∈ I. Recall
that r = min(p, q). Using Peetre’s inequality,

∑

|I|1=2−ν1 ,|I|2=2−ν2

[|(Sϕf)I |χ̃I(x)]
q ≤

[

2s(ν)α[MS(ϕ̃
l
ν ∗ f)r]

1
r

]q
.

Multiplying |I|−
α
2 (1 + t(I))α = 2s(ν)α(1 + |l|)α, summing over ν and l, taking

the 1
q

power and applying the Lp/r norm on both sides; then using Theorem 3.4

with indices p
r

and q
r

yields ‖Sϕ(f)‖ḟα,q
p (D) ≤ ‖f‖Ḟα,q

p (D,ϕ̃).

The independence of ϕ of the definition of Ḟα,q
p (D) can now be demon-

strated. Once this is proved, the boundedness of Sϕ follows. Suppose ϕ, ψ and
θ, ζ are two pairs of functions satisfying the conditions in Theorem 3.1. Then,

‖f‖Ḟα,q
p (D,ϕ) =

∥

∥

∥

∥

∑

I∈I

(Sθ(f))IζI

∥

∥

∥

∥

Ḟα,q
p (D,ϕ)

= ‖Tζ(Sθ(f))‖Ḟα,q
p (D,ϕ)

≤ C‖(Sθ(f))‖ḟα,q
p (D)

≤ C‖f‖Ḟα,q
p (D,θ̃).

The results then follow obviously from the above inequalities.

Let ϕ satisfy the conditions of Definition 3.1 with

B ≤
∑

l∈Z,ν∈Z2

|ϕ̂l(2νξ)|2 ≤ A, if ξ = (ξ1, ξ2, ξ3) ∈ R
3, ξ1ξ2 6= 0,

for some constants A ≥ B > 0. Theorem 3.6 then allows using ϕ to define
Ḟα,q
p (D). By using this function to define Ḟα,q

p (D), it is easy to see that Ḟ 0,2
2 (D) =

L2(R3).

4. Almost diagonal matrices

In [3], there is an important class of operators acting on the little Triebel–
Lizorkin spaces. This section presents the corresponding class of operators on
ḟα,qp (D) and proves that they are bounded operators. Begin with the definition
of this class of operators.
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Definition 4.1. Let β > 0 and L > 1. The class of almost diagonal matrices
ω(β, L) associated with D consists of those sequence A = {aIJ}I,J∈I which
satisfies

|aIJ | ≤ CωIJ(β, L), (22)

where

ωIJ(β, L) =

[

3
∏

σ=1

min

(

|I|σ
|J |σ

,
|J |σ
|I|σ

)

]β
(

1 +
|fI − fJ |

max(|I|−1
3 , |J |−1

3 )

)−L

×

[

3
∏

σ=1

(

1 +
|cI,σ − cJ,σ|

max(|I|σ, |J |σ)

)

]−L

,

and C > 0 is a constant independent of I, J ∈ I. The norm ‖{aIJ}‖ω(β,L) is the
infimum of the constant C > 0 for which (22) holds.

Compared to the almost diagonal matrices in [3], the one used in this paper
has an extra decay for the Fourier translation. This extra decay is used to assert
the boundedness of these operators on the sequence spaces ḟα,qp (D).

The main purpose of this section is to show the boundedness of the almost
diagonal matrix in the sequence spaces ḟα,qp (D). The precise statement of this
result is given in Theorem 4.2.

Again note, however, that for the sake of brevity, no attempt has been
made to present the best result under the minimal assumptions for the following
theorem.

Theorem 4.2. Suppose α ∈ R and 0 < p, q < ∞. Let J = 1
min(1,p,q)

. If β, L

satisfy β > 5J + 4|α| and L > 2|α| + 2J , then an almost diagonal matrix,

A = {aIJ} ∈ ω(β, L) is a bounded operator on ḟα,qp (D) and ‖A(s)‖ḟα,q
p (D) ≤

C‖{aIJ}‖ω(β,L)‖s‖ḟα,q
p (D) for some C > 0.

Proof. Without loss of generality, assume that ‖{aIJ}‖ω(β,L) = 1. We deal first
with the case where α ≥ 0, r = min(p, q) > 1. The case α < 0 will follow
similarly. It will be shown that, in this case, it is sufficient to assume that
β > 4 + 4α.

Take A =
∑6

j=1Aj where

(A1s)I =
∑

|I|1≥|J |1,|I|2≥|J |2

aIJsJ , (A2s)I =
∑

|I|1≥|J|1,|I|2<|J|2
|I|3≥|J|3

aIJsJ

(A3s)I =
∑

|I|1≥|J|1,|I|2<|J|2
|I|3<|J|3

aIJsJ , (A4s)I =
∑

|I|1<|J|1,|I|2≥|J|2
|I|3≥|J|3

aIJsJ

(A5s)I =
∑

|I|1<|J|1,|I|2≥|J|2
|I|3<|J|3

aIJsJ , (A6s)I =
∑

|I|1<|J |1,|I|2<|J |2

aIJsJ .
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We will estimate A2 and A3. The others follow similarly. Let |I|1 = 2−ν1 ,
|I|2 = 2−ν2 , |J |1 = 2−µ1 and |J |2 = 2−µ2 . Moreover, let fI = 2s(ν)k and
fJ = 2s(µ)l.

By the Hölder inequality,
∑

i |aibi| ≤
(
∑

i |ai|
q|bi|

q
2

) 1
q
(
∑

i |bi|
q′

2

) 1
q′ , with

indices q, q′ satisfying 1
q

+ 1
q′

= 1 and Definition 4.1, there is a constant C > 0
independent of I, J ∈ I such that

|(A3s)I | ≤ C





∑

|I|1≥|J|1,|I|2<|J|2
|I|3<|J|3,l∈Z

|sJ |
q

(

2ν12µ22s(µ)

2µ12ν22s(ν)

)

qβ
2
(

1 + 2−s(ν)|2s(ν)k − 2s(µ)l|
)− qL

2

×

[

3
∏

σ=1

(

1 +
|cI,σ − cJ,σ|

max(|I|σ, |J |σ)

)

]− qL
2





1
q

,

because L > 2, β > 2 and

∞
∑

µ1=ν1

∑

|J |1=2−µ1

(

|J |1
|I|1

)
q′β
2
(

1 + |I1|
−1|cI,1 − cJ,1|

)− q′L
2 ≤ C

∞
∑

µ1=ν1

2( q′β
2

−1)(ν1−µ1),

for some constants C > 0 independent of µ1 and ν1.

It is now permitted to apply Lemma 3.5 with βJ = |sJ |
q, a = 1

q
and r = 1,

since L > 2. This gives

|(A3s)I |
q ≤ C

∑

l∈Z

∞
∑

µ1=ν1

ν2
∑

µ2=−∞

[

(

2ν12µ22s(µ)

2µ12ν22s(ν)

)

qβ
2
(

1 + 2−s(ν)|2s(ν)k − 2s(µ)l|
)− qL

2

×
22qµ1

22qν1

(

MS

(

∑

|J|1=2−µ1 ,|J|2=2−µ2

t(J)=l

|sJχJ |

)

(x)

)q ]

for x∈Q, where I=(Q, k). Let M(x)=MS

(
∑

|J |1=2−µ1 ,|J |2=2−µ2 ,t(J)=l |sJ χ̃J |
)

(x),
so that

‖A3s‖ḟα,q
p (D) ≤ C

∥

∥

∥

∥

∥

∥

∥

[

∑

ν∈Z2

k∈Z

∑

l∈Z

∞
∑

µ1=ν1

ν2
∑

µ2=−∞

(

2ν12µ2

2µ12ν2

)q(β
2
−2)(2s(µ)

2s(ν)

)q(β
2
−1)

× (M(x))q
2s(ν)qα(1 + |k|)qα

(1 + 2−s(ν)|2s(ν)k − 2s(µ)l|)
qL
2

] 1
q

∥

∥

∥

∥

∥

∥

Lp

,

(23)

because |I|−
1
2 = 2s(ν)−s(µ)|J |−

1
2 and |I| = 2−2s(ν).
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We have

2s(ν)(1 + |k|)

(1 + 2−s(ν)|2s(ν)k − 2s(µ)l|)
≤

(

2s(ν)

2s(µ)

)2
2s(µ)(1 + |k|)

(1 + 2−s(µ)|2s(ν)k − 2s(µ)l|)

≤
22s(ν)

2s(µ)
(1 + |l|)

(24)

when s(ν) ≥ s(µ). Using q > 1 and β > 4α+ 2, yields

‖A3s‖ḟα,q
p (D) ≤ C

∥

∥

∥

∥

∥

∥

[

∑

ν∈Z2, k∈Z

∑

l∈Z

∞
∑

µ1=ν1

ν2
∑

µ2=−∞

(

2ν12µ2

2µ12ν2

)q(β
2
−2)

× (M(x))q
2s(µ)qα(1 + |l|)qα

(1 + 2−s(ν)|2s(ν)k − 2s(µ)l|)q(
L
2
−α)

] 1
q

∥

∥

∥

∥

∥

∥

Lp

.

Interchanging the order of summations of ν, k and µ, l, we assert that

‖A3s‖ḟα,q
p (D) ≤ C

∥

∥

∥

∥

∥

∥

[

∑

µ∈Z2, l∈Z

µ1
∑

ν1=−∞

∞
∑

ν2=µ2

∑

k∈Z

((

2ν12µ2

2µ12ν2

)
β
2
−2

× M(x)
2s(µ)α(1 + |l|)α

(1 + 2−s(ν)|2s(ν)k − 2s(µ)l|)
L
2
−α

)q
] 1

q

∥

∥

∥

∥

∥

∥

Lp

≤ C

∥

∥

∥

∥

∥

∥

[

∑

µ∈Z2, l∈Z

[

MS

(

2s(µ)α(1 + |l|)α
∑

|J|1=2−µ1 ,|J|2=2−µ2

t(J)=l

|sJ χ̃J |

)

(x)

]q
]1

q

∥

∥

∥

∥

∥

∥

Lp

,

because β > 4 and L > 2α + 2. Using Theorem 3.4, we obtain ‖A3s‖ḟα,q
p (D) ≤

C‖s‖ḟα,q
p (D).

The estimate for A2 is similar. Instead of (23), the formulation is

‖A2s‖ḟα,q
p (D) ≤ C

∥

∥

∥

∥

∥

∥

[

∑

I∈I

∑

l∈Z

∞
∑

µ1=ν1

ν2
∑

µ2=−∞

(

2ν12µ2

2µ12ν2

)q(β
2
−2)(2s(ν)

2s(µ)

)

qβ
2

× (M(x))q
2s(ν)qα(1 + |k|)qα

(1 + 2−s(µ)|2s(ν)k − 2s(µ)l|)
qL
2

] 1
q

∥

∥

∥

∥

∥

∥

Lp

.

In this case,
2s(ν)(1 + |k|)

(1 + 2−s(µ)|2s(ν)k − 2s(µ)l|)
≤ 2s(µ)(1 + |l|) (25)
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can be used when s(ν) < s(µ). This leads to

‖A2s‖ḟα,q
p (D) ≤ C

∥

∥

∥

∥

∥

∥

[

∑

µ∈Z2, l∈Z

µ1
∑

ν1=−∞

∞
∑

ν2=µ2

∑

k∈Z

((

2ν12µ2

2µ12ν2

)
β
2
−2(

2s(ν)

2s(µ)

)

β
2

× M(x)
2s(µ)α(1 + |l|)α

(1 + 2−s(µ)|2s(ν)k − 2s(µ)l|)
L
2
−α

)q
] 1

q

∥

∥

∥

∥

∥

∥

Lp

,

since
∑

k∈Z

1

(1 + 2−s(µ)|2s(ν)k − 2s(µ)l|)N
≤ CN2s(µ)−s(ν) (26)

for some constant CN depending only on N > 1. This yields the desired result,
because β > 4α+ 4. The estimates for the other operators, A1, A4, A5 and A6,
follow similarly.

The case for r ≤ 1 can be proved through an argument similar to the
one presented in [3, p. 55]. According to the definition of an almost diagonal
matrix, for any {aIJ} ∈ ω(β, L), there exists r̃ < r = min(p, q) such that r̃
satisfies {|aIJ |

r̃} ∈ ω(r̃β, r̃L), r̃β > 5 + 4r̃α and r̃L > 2αr̃ + 2. Thus, Ã =

{|aIJ |
r̃(|I|/|J |)

1
2
− r̃

2} ∈ ω
(

r̃β − 1
2

+ r̃
2
, r̃L
)

. Furthermore, for any s = {sI}I∈I ,

define t = {tI}I∈I by tI = |I|
1
2
− r̃

2 |sI |
r̃. Then, ‖s‖ḟα,q

p (D) = ‖t‖
1
r̃

ḟ
αr̃,q/r̃
p/r̃

(D)
. We have

‖As‖ḟα,q
p (D) ≤

∥

∥Ãt
∥

∥

1
r̃

ḟ
αr̃,q/r̃
p/r̃

(D)

by the r̃-triangle inequality, since r̃β− 1
2
+ r̃

2
> r̃β− 1

2
> 4+4αr̃ and r̃L > 2αr̃+2.

The boundedness of Ã follows from the boundedness of A.

5. The main results for the function spaces

The atomic, molecular and frame decompositions are some of the important
results for the Triebel–Lizorkin spaces Ḟα,q

p (Rn). This section presents the

corresponding decompositions for Ḟα,q
p (D).

5.1. Molecular estimate. We begin with the definition of molecules.

Definition 5.1. Let β > 0. The space of molecules of order β for Ḟα,q
p (D), Mβ,

consists of {mI}I∈I that satisfy, for some constant C > 0,

|(∂γmI)(x1, x2, x3)| ≤ C|I|−
1
2 (1 + |t(I)|)γ3

3
∏

σ=1

|I|−γσ
σ

(1 + |I|−1
σ |xσ − cI,σ|)β

(27)

|m̂I(ξ1, ξ2, ξ3)| ≤
C|I|

1
2

[(1 + |I|1|ξ1|)(1 + |I|2|ξ2|)(1 + |I|3|ξ3 − fI |)]β
, (28)
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where γ = (γ1, γ2, γ3) ∈ N
3 and 0 ≤ γi ≤ [β]; i = 1, 2, 3; and mI satisfies the

vanishing moment conditions
∫

R

mI(x1, x2, x3)x
λ
1dx1 = 0 and

∫

R

mI(x1, x2, x3)x
λ
2dx2 = 0,

where λ ∈ N and λ ≤ [β]. Define ‖{mI}‖Mβ
to be the infimum of constant C

satisfying (27) and (28).

The molecules in Mβ have a decay in the third variable of the Fourier
domain. This is introduced on purpose because it is essential on the molecular
decompositions for Ḟα,q

p (D). The utility of this decay cannot be seen explicitly
in the following theorem. The use of this decay is absorbed in Lemma 7.1.

Theorem 5.2. Let α ∈ R, 0 < p, q < ∞ and β > 20J + 16|α| + 6. Suppose

that s = {sI}I∈I ∈ ḟα,qp (D) and let {mI}I∈I be a family of molecules of order β

for Ḟα,q
p (D).

1. If f =
∑

I∈I sImI , then f ∈ Ḟα,q
p (D) and ‖f‖Ḟα,q

p (D) ≤ C‖s‖ḟα,q
p (D) for

some constant C > 0 independent of s.

2. For any f ∈ Ḟα,q
p (D), ‖{〈f,mI〉}‖ḟα,q

p (D) ≤ C‖f‖Ḟα,q
p (D) for some constant

C > 0 independent of f .

Proof. Using the ϕ-ψ transforms for D to mI , we have

f =
∑

I∈I

sImI =
∑

I∈I

sI
∑

J∈I

aIJψJ =
∑

J∈J

(As)JψJ = (Tψ ◦ A)(s),

where aIJ = 〈mI , ψJ〉 and A = {aIJ}. From the assumption for β, Lemma 7.1
and the inequality

min

(

2µ1

2ν1
,
2ν1

2µ1

)

min

(

2µ2

2ν2
,
2ν2

2µ2

)

≤ min

(

2s(ν)

2s(µ)
,
2s(µ)

2s(ν)

)

, (29)

A is an almost diagonal matrix for ḟα,qp (D), hence ‖f‖Ḟα,q
p (D) ≤ C‖s‖ḟα,q

p (D),
where C is the product of the operator norms of Tψ and A.

The second part is straightforward. The pairing 〈f,mI〉 is interpreted by
〈f,mI〉 =

∑

J∈I Sϕ(f)〈ψJ ,mI〉. This is the desired result, because {〈ψJ ,mI〉}

is an almost diagonal matrix for ḟα,qp (D) and Sϕ is bounded.

5.2. The generalized ϕ-ψ transforms. Observe that the functions ϕ and ψ
for the ϕ-ψ transforms are band-limited. This section will show that, in some
ways, this condition can be relaxed. Furthermore, we generalize the results of
the ϕ-ψ transforms to the functions ϕ and ψ that also depend on l. That type
of generalization seems unnecessary, but it is crucial on the estimate for the
differential operator △D in Section 6. The following theorem asserts that if a
family {ϕ[l]}l∈Z of Schwartz functions parameterized by l, l ∈ Z, satisfies (30)
and (31), then a dilation of {ϕ[l]}l∈Z can generate an identity similar to (19).
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Theorem 5.3. Let {ϕ[l]}l∈Z ⊂ Sv(R
3) satisfy the discrete Littlewood–Paley

inequality:

0 < B <
∑

ν∈Z2, l∈Z

∣

∣ϕ̂[l](2
ν1ξ1, 2

ν2ξ2, 2
s(ν)ξ3 − l)

∣

∣

2
< A if ξ1ξ2 6= 0, (30)

where A and B are constants and

‖ϕ[l]‖τ,N ≤ Cτ,N , (31)

where Cτ,N > 0 is a constant depending on τ and N only and ‖ · ‖τ,N is the

semi-norm of the Schwartz functions defined in (11). For any η ∈ Z
2, let

ϕl,ην,k(x) = 2s(ν)+2s(η)ϕl[l](2
η(2νx− k)), l ∈ Z, ν ∈ Z

2, k ∈ Z
3.

There exist an η ∈ Z
2 and a family {ψl,ην,k} ∈

⋂

β>0 Mβ such that for any

f ∈ Sv(R
3),

f =
∑

ν∈Z2, l∈Z

〈

f, ψl,ην,k
〉

ϕl,ην,k =
∑

ν∈Z2, l∈Z

〈

f, ϕl,ην,k
〉

ψl,ην,k in Sv(R
3). (32)

In addition, for any f ∈ S ′(R3)/G(R3), we also have

f =
∑

ν∈Z2, l∈Z

〈

f, ψl,ην,k
〉

ϕl,ην,k =
∑

ν∈Z2, l∈Z

〈

f, ϕl,ην,k
〉

ψl,ην,k in S ′(R3)/G(R3), (33)

where S ′(R3)/G(R3) is endowed with the weak topology induced from Sv(R
3).

Proving Theorem 5.3 requires some preparation. For any {ϕ[l]}l∈Z ⊂ Sv(R
3)

satisfying (30) and (31), define the function Φ(ξ) by

Φ(ξ) =
∑

ν∈Z2, l∈Z

∣

∣ϕ̂[l](2
ν1ξ1, 2

ν2ξ2, 2
s(ν)ξ3 − l)

∣

∣

2
when ξ1ξ2 6= 0.

It is obvious that Φ(ξ) satisfies B < Φ(ξ) < A. We define φ[l](x) by

φ̂[l](ξ) =
ϕ̂[l](ξ)

Φ(ξ1, ξ2, ξ3 + l)
when ξ = (ξ1, ξ2, ξ3) ∈ R

3 and ξ1ξ2 6= 0,

and φ̂[l](ξ1, 0, ξ3) = φ̂[l](0, ξ2, ξ3) = 0. Then, the function φ[l](x) is well defined,
and φ[l](x), ϕ[l](x) satisfy

∑

ν∈Z2, l∈Z

ϕ̂[l](2
ν1ξ1,2

ν2ξ2,2
s(ν)ξ3−l)φ̂[l](2ν1ξ1,2ν2ξ2,2s(ν)ξ3−l)=1 if ξ1ξ2 6=0, (34)

because Φ(2νξ) = Φ(ξ) for any ν ∈ Z
2.
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It will now be shown that φ[l] belongs to Sv(R
3). Estimate first the partial

derivatives of Φ(ξ). Since ϕ̂[l] ∈ S(R3),

|(∂γΦ)(ξ1, ξ2, ξ3)| ≤ Cγ,N
∑

ν∈Z2

l∈Z

2(γ1+γ3)ν12(γ2+γ3)ν2

[(1 + 2ν1|ξ1|)(1 + 2ν2 |ξ2|)(1 + |2ν1+ν2ξ3 − l|)]N

for all γ = (γ1, γ2, γ3) ∈ N
3 and N > 0. As

∑

j∈Z

2jλ

(1 + 2j|y|)M
≤

−[log2 |y|]
∑

j=−∞

2jλ +
∞
∑

j=−[log2 |y|]

2jλ

(2j|y|)M
≤ C|y|−λ,

when M > λ. Thus, if we take N > γ1 + γ2 + γ3 + 2, we have

|(∂γΦ)(ξ1, ξ2, ξ3)| ≤ Cγ|ξ1|
−γ1−γ3|ξ2|

−γ2−γ3 .

By the product rule and the fact that 0 < B < Φ(ξ),

|(∂γΦ−1)(ξ1, ξ2, ξ3 + l)| ≤ Cγ|ξ1|
−γ1−γ3|ξ2|

−γ2−γ3 . (35)

Since ϕ[l] ∈ Sv(R
3), for any λ,N > 0 and γ ∈ N

3, there exists a constant
Cλ,γ,N > 0 independent of l, such that

|(∂γϕ̂[l])(ξ1, ξ2, ξ3)| ≤ Cλ,γ,N
|ξ1|

λ|ξ2|
λ

[(1 + |ξ1|)(1 + |ξ2|)(1 + |ξ3|)]N
. (36)

By (35) and (36), we assert that φ̂[l](ξ) belongs to S(R3) and, hence, {φ[l]}l∈Z ⊂
Sv(R

3) and satisfies (31). With the family {φ[l]}, we are now ready to prove
Theorem 5.3.

Proof of Theorem 5.3. Ideas from [3, Theorem 4.2 and Theorem 4.4] will be
used to prove this theorem. For brevity, for the families {ϕ[l]}l∈Z ⊂ Sv(R

3) and
{φ[l]}l∈Z ⊂ Sv(R

3), we write (ϕ[l])
l
ν = ϕlν and (φ[l])

l
ν = φlν . For any fixed η ∈

Z̃
2 = {(κ, κ) : κ∈Z, κ < 0} and any {mJ} ∈

⋂

Mβ, by (34) and Theorem 2.1,
we have

mJ =
∑

ν∈Z2, l∈Z

ϕlν+η ∗ φ̃
l
ν+η ∗mJ ,

where

ϕlν+η∗ φ̃
l
ν+η∗mJ =

∑

k

{∫

Qν,k

[

ϕlν+η(x−y) − ϕlν+η(x−cQν,k
)
]

(φ̃lν+η∗mJ)(y) dy

+ ϕlν+η(x−cQν,k
)

[ ∫

Qν,k

(φ̃lν+η∗mJ)(y) − (φ̃lν+η∗mJ)(cQν ,k) dy

]

+ 2−2s(ν)ϕlν+η(x− cQν,k
)(φ̃lν+η∗mJ)(cQν ,k)

}

.
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For any η ∈ Z̃
2 and f ∈ Sv(R

3), define

Fη(f) =
∑

ν∈Z2, l∈Z

∑

k∈Z3

2−2s(ν)ϕlν+η(x− cQν,k
)(φ̃lν+η ∗ f)(cQν ,k)

=
∑

ν∈Z2, l∈Z

∑

k∈Z3

〈

f, φl,ην,k
〉

ϕl,ην,k .

Since (φ̃lν+η ∗mJ)(cQν,k
) =

∫

mJ(y)φlν+η(y − cQν,k
)dy = 2s(ν)〈mJ , φ

l,η
ν,k〉, we assert

that

(I −Fη)(mJ)

=
∑

l,ν,k

∑

Qν−η,h⊂Qν,k

{∫

Qν−η,h

[

(ϕlν)(x− y) − ϕlν(x− cQν−η,h
)
]

(φ̃lν∗mJ)(y) dy

+ϕlν(x−cQν−η,h
)

[∫

Qν−η,h

(φ̃lν∗mJ)(y)dy−2−2s(ν)+2s(η)(φ̃lν∗mJ)(cQν−η,h
)

]}

=
∑

I∈I

(sIJuI + tIJvI),

(37)

where, for I = (Qν,k, l), sIJ = |Qν,k|
− 1

2

∑

Qν−η,h⊂Qν,k

∫

Qν−η,h
|φ̃lν ∗mJ(y)|dy, when

sIJ 6= 0,

uI(x) = s−1
IJ

(

∑

Qν−η,h⊂Qν,k

∫

Qν−η,h

[

(ϕlν)(x− y) − ϕlν(x− cQν−η,h
)
]

(φ̃lν ∗mJ)(y)dy

)

;

tIJ = |Qν,k|
− 1

2

∑

Qν−η,h⊂Qν,k

[ ∫

Qν−η,h

∣

∣(φ̃lν∗mJ)(y) − (φ̃lν∗mJ)(cQν−η,h
)
∣

∣dy

]

;

and when tIJ 6= 0,

vI(x) = t−1
IJ

∑

Qν−η,h⊂Qν,k

ϕlν(x−cQν−η,h
)

[∫

Qν−η,h

((φ̃lν∗mJ)(y)− (φ̃lν∗mJ)(cQν−η,h
))dy

]

.

Since {mJ} ∈
⋂

Mβ, using arguments from [3, Theorem 4.2 and Theorem 4.4]
(especially, inequalities [3, (4.19) and (4.26)]), for any β, L > 0 there exists a

constant C > 0 such that ‖{uI}‖Mβ
≤ C2

s(η)
2 and ‖{vI}‖Mβ

≤ C. Moreover,

by Lemma 7.1, ‖{sIJ}‖ω(β̃,L) ≤ C and ‖{tIJ}‖ω(β̃,L) ≤ C2
s(η)
2 , where β̃ > 6β+4,

L > β + 1. Thus, for any β > 0, by Theorem 7.3, there exists a β̃ such that

‖{(I −Fη)(mJ)}‖Mβ
≤ C2

s(η)
2 ‖{mJ}‖Mβ̃

for some constant C > 0 independent of η. Let θ, ζ satisfy the condition of
the ϕ-ψ transforms. As the ϕ-ψ transforms are bounded on L2(R3) and l2 and
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Tζ◦Sθ is the identity operator in L2(R3), for any f ∈ L2(R3), f =
∑

I∈I〈f, θI〉ζI .
Hence, by the molecular estimate,

‖(I −Fη)(f)‖L2(R3) =

∥

∥

∥

∥

∑

I∈I

〈f, θI〉(I −Fη)(ζI)

∥

∥

∥

∥

L2(R3)

≤ C2
s(η)
2 ‖f‖L2(R3)

for some constant C > 0 independent of f and η.

Since s(η) goes to minus infinity as κ → −∞, η = (κ, κ). This guarantees
that Fη is an invertible operator on L2(R3) for some η. Our results follow by
taking

ψl,ην,k = F−1
η

(

φl,ην,k
)

=
∞
∑

j=0

(I −Fη)
j
(

φl,ην,k
)

.

The family {ψl,ην,k} belongs to Mβ because

∥

∥

∥

{

(I −Fη)
j
(

φl,ην,k
)

}∥

∥

∥

Mβ

≤
(

C2
s(η)
2

)j ∥
∥

∥

{

φl,ην,k
}

∥

∥

∥

Mβ̃

, j ∈ N , (38)

for some sufficiently large β̃, and Mβ is a Banach space.

Inequality (38) is valid because, for instance when j = 2, we find that
by (37) there exist almost diagonal matrices {sIJ} and {tIJ}, and families of
molecules {uI} and {vI} such that

(I −Fη)
2(φl,ην,k) =

∑

I∈I

sIJ(I −Fη)uI + tIJ(I −Fη)vI , J = (Qν,k, l).

Applying (37) to (I−Fη)uI and (I−Fη)vI yields almost diagonal matrices {s
[m]
IK}

and {t
[m]
IK}, m = 1, 2, and families of molecules {u

[m]
K } and {v

[m]
K }, m = 1, 2, such

that

(I −Fη)
2(φl,ην,k) =

∑

I∈I

sIJ

(

∑

K∈I

s
[1]
IKu

[1]
K + s

[2]
IKu

[2]
K

)

+ tIJ

(

∑

K∈I

t
[1]
IKv

[1]
K + t

[2]
IKv

[2]
K

)

=
∑

K∈I

{(

∑

I∈I

sIJs
[1]
IK

)

u
[1]
K +

(

∑

I∈I

sIJs
[2]
IK

)

u
[2]
K

+

(

∑

I∈I

tIJt
[1]
IK

)

v
[1]
K +

(

∑

I∈I

tIJt
[2]
IK

)

v
[2]
K

}

.

By Theorem 7.4, the matrices {
∑

I∈I sIJs
[1]
IK}, {

∑

I∈I sIJs
[2]
IK}, {

∑

I∈I tIJt
[1]
IK}

and {
∑

I∈I tIJt
[2]
IK} are almost diagonal matrices of order β̃, L. Therefore, the

desired result follows for j = 2 by using Theorem 7.3. The general result for
j ∈ N is concluded by using Theorem 7.5. The convergence of the expansion
in (32) is guaranteed by Theorem 7.3 again. The identities (33) follow from the
duality of Sv(R

3) and S ′(R3)/G(R3).
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5.3. Atomic decomposition and frames. The atomic decompositions of
Ḟα,q
p (D) will now be presented using Theorem 5.3. Say that the family {aI}I∈I

is a family of smooth atoms for Ḟα,q
p (D) if, for each I = (Q, l), there exist

constants K,CL, Cγ > 0 such that

supp aI ⊆ KQ;
∫

R

aI(x1, x2, x3)x
λ
1dx1 = 0,

∫

R

aI(x1, x2, x3)x
λ
2dx2 = 0, ∀λ ∈ N;

|âI(ξ1, ξ2, ξ3)| ≤ CL
|I|

1
2

[(1+|I|1|ξ1|)(1+|I|2|ξ2|)(1+|I|3|ξ3−fI |)]
L

∀L > 0;

and
|(∂γaI)(x)| ≤ Cγ|I|

− 1
2 |I|−γ11 |I|−γ22 |I|−γ33 (1+|t(I)|)γ3 ,

where γ = (γ1, γ2, γ3) ∈ N
3.

As with the molecules for Ḟα,q
p (D), there is an extra decay for the atoms for

Ḟα,q
p (D) in the third variable of the Fourier domain. With this definition, we

can establish the atomic decomposition for Ḟα,q
p (D).

Theorem 5.4. Let α ∈ R, 0 < p, q <∞. There exists a family of smooth atoms

{aI}I∈I such that, for each f ∈ Ḟα,q
p (D), we have the atomic decomposition

f =
∑

I∈I sIaI , where s = {sI} ∈ ḟα,qp (D) and ‖s‖ḟα,q
p (D) ≤ C‖f‖Ḟα,q

p (D) for

some constant C > 0 independent of f .

Proof. It is obvious that there exists a function ϕ ∈ Sv(R
3) satisfying (30) and

suppϕ ⊂ [1
2
, 2]3. According to Theorem 5.3, there exist an η ∈ Z̃

2 and a family

of molecules {ψl,ην,k} ∈ ∩β>0Mβ such that f =
∑

ν∈Z2, l∈Z,k∈Z3〈f, ψ
l,η
ν,k〉ϕ

l,η
ν,k. Let

aI = ϕl,ην,k and sI = 〈f, ψl,ην,k〉 when I = (Qν,k, l). The desired decomposition
then resorts and {aI} satisfies the requirement for being a family of smooth
atoms. Furthermore, ‖{sI}‖ḟα,q

p (D) = ‖{〈f, ψl,ην,k〉}‖ḟα,q
p (D) ≤ C‖f‖Ḟα,q

p (D), because

the family {ψl,ην,k} satisfies the condition in Theorem 5.2.

Recall that the family of functions {ϕγ}γ∈Γ is a frame for L2(R3) if and only
if there exist constants A > B > 0 such that

B‖f‖2
L2(R3) ≤

∑

γ∈Γ

|〈f, ϕγ〉|
2 ≤ A‖f‖2

L2(R3).

The frame used should reflect the translation on the Fourier domain. Therefore,
we study the following family of functions:

2ν1+ν2ei(2
ν1+ν2x3−k3)lϕ

(

2ν1x1 − k1, 2
ν2x2 − k2, 2

ν1+ν2x3 − k3

)

,

where l ∈ Z, ν = (ν1, ν2) ∈ Z
2 and k = (k1, k2, k3) ∈ Z

3. If the above family is
a frame, call it a Wavelet–Gabor type frame for L2(R3). Theorem 5.3 provides
a condition for a ϕ that generates a Wavelet–Gabor type frame for L2(R3).
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Theorem 5.5. If ϕ ∈ Sv(R
3) satisfies

0 < B <
∑

ν∈Z2, l∈Z

∣

∣ϕ̂(2ν1ξ1, 2
ν2ξ2, 2

s(ν)ξ3 − l)
∣

∣

2
< A if ξ1ξ2 6= 0, (39)

for some constants A > B > 0, then there exists an η0 ∈ Z such that for any

η = (κ, κ), κ ≤ η0, the family

2ν1+ν2ei2
2η(2ν1+ν2x3−k3)lϕ

(

2η(2ν1x1 − k1), 2
η(2ν2x2 − k2), 2

2η(2ν1+ν2x3 − k3)
)

,

where l ∈ Z, ν = (ν1, ν2) ∈ Z
2 and k = (k1, k2, k3) ∈ Z

3, is a frame for L2(R3).

Theorem 5.6. Let {ϕ[l]}l∈Z ⊂ Sv(R
3) satisfy (30). For any α ∈ R, 0 < p, q <

∞, there exist an η0 ∈ Z and constants C1, C2 > 0 such that for any η = (κ, κ),
κ ≤ η0 and f ∈ Ḟα,q

p (D),

C1‖f‖Ḟα,q
p (D) ≤

∥

∥

∥

{

〈

f, ϕl,ην,k
〉

}∥

∥

∥

ḟα,q
p (D)

≤ C2‖f‖Ḟα,q
p (D).

Furthermore, for any β > 0 there exists a family of molecules of order β, {ψl,ην,k},
such that

f =
∑

l,ν,k

〈

f, ψl,ην,k
〉

ϕl,ην,k =
∑

l,ν,k

〈

f, ϕl,ην,k
〉

ψl,ην,k, ∀f ∈ Ḟα,q
p (D).

The proofs of Theorem 5.5 and Theorem 5.6 are straightforward and, thus,
omitted here.

6. The main result for the differential operator △D

In this section, we prove the analogy of (5) for the differential operator △D.

Theorem 6.1. Let 0 < p, q < ∞, α ∈ R and m ∈ Z. There exist constants

C1 > C2 > 0 such that for any f ∈ Ḟα,q
p (D),

C2‖f‖Ḟα,q
p (D) ≤ ‖△m

D
f‖Ḟα−2m,q

p (D) ≤ C1‖f‖Ḟα,q
p (D). (40)

In particular, △D : Ḟα,q
p (D) → Ḟα−2,q

p (D) has both trivial kernel and closed

range. Moreover, the operator △D is a linear topological isomorphism.

Proof. For brevity, we just prove inequalities (40) for m = 1 as the other cases
follow similarly and the conclusion follows easily from this special case.

Let ϕ ∈ Sv(R
3) satisfy suppϕ̂ ⊂ [1

2
, 2]2 × [−2

3
, 2

3
] and (39). For brevity, we

assume that the η0 associated with ϕ in Theorem 5.6 equals to zero. For any
f ∈ Ḟα,q

p (D), we have
〈

△Df, ϕ
l
ν,k

〉

=
〈

f,△Dϕ
l
ν,k

〉

(41)
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by the duality of Schwartz function and Schwartz distribution. We find that

△Dϕ
l
ν,k = 22s(ν)

(

(∂2
x1
∂2
x2
ϕ)lν,k + l2ϕlν,k − 2il(∂x3ϕ)lν,k − (∂2

x3
ϕ)lν,k

)

.

Let

Φ[l] =
1

1 + l2
(

(∂2
x1
∂2
x2
ϕ) + l2ϕ− 2il(∂x3ϕ) − (∂2

x3
ϕ)
)

,

therefore, Φ[l] ∈ Sv(R
3) satisfies condition (31) and

22s(ν)(1 + l2)(Φ[l])
l
ν,k = △Dϕ

l
ν,k. (42)

Moreover, we find that Φ̂[l](ξ1, ξ2, ξ3) =
ξ21ξ

2
2+(ξ3+l)2

1+l2
ϕ̂(ξ1, ξ2, ξ3), and hence

Φ̂[l](2
ν1ξ1, 2

ν2ξ2, 2
s(ν)ξ3 − l) =

ξ2
1ξ

2
2 + ξ2

3

2−2s(ν)(1 + l2)
ϕ̂(2ν1ξ1, 2

ν2ξ2, 2
s(ν)ξ3 − l).

We assert that on the support of ϕ̂(2ν1ξ1, 2
ν2ξ2, 2

s(ν)ξ3−l), there exist constants,

C1 > C2 > 0 that are independent of ν and l, such that C2 <
∣

∣

ξ21ξ
2
2+ξ23

2−2s(ν)(1+l2)

∣

∣ < C1.

Thus, Φ[l] also satisfies (30). Without loss of generality, we assume that the
η0 associated with the family {Φ[l]} is equal to zero. By (41) and applying
Theorem 5.6 to the family {ϕlν,k} we have a constant C > 0 such that

C
∥

∥

{〈

f,△Dϕ
l
ν,k

〉}∥

∥

ḟα−2,q
p (D)

= C
∥

∥

{〈

△Df, ϕ
l
ν,k

〉}∥

∥

ḟα−2,q
p (D)

≤ ‖△Df‖Ḟα−2,q
p (D).

By (42) and applying Theorem 5.6 to the family {(Φ[l])
l
ν,k} there exists C > 0

such that

C‖f‖Ḟα,q
p (D) ≤ C

∥

∥

{〈

f, (Φ[l])
l
ν,k

〉}∥

∥

ḟα,q
p (D)

≤ ‖△Df‖Ḟα−2,q
p (D).

The proof of the second inequality in (40) follows similarly.

7. Technical results

The first lemma of this section asserts that the “inner product” of two families
of molecules generates an almost diagonal operator. It comes from iterating the
result from [3, Lemma B.1] but with some major modifications.

Lemma 7.1. Let 2N> 2M+3, l ∈ Z, ν = (ν1, ν2)∈Z
2 and k = (k1, k2, k3)∈Z

3.

Suppose that g(x) satisfies

|(∂γg)(x1, x2, x3)|≤
C2γ1ν1+γ2ν2+s(ν)

[(1+|2ν1x1−k1|)(1+|2ν2x2−k2|)(1+|2s(ν)x3−k3|)]2N
, (43)
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for γ = (γ1, γ2, 0) ∈ N
3 and γi ≤ [2M ] + 2, i = 1, 2;

∫

R

g(x1, x2, x3)x
λ
1dx1 = 0,

∫

R

g(x1, x2, x3)x
λ
2dx2 = 0, (44)

for any λ ∈ N, and λ ≤ [2M ] + 1 and

|ĝ(ξ1, ξ2, ξ3)| ≤ C2−s(ν)
(

(1+|2−ν1ξ1|)(1+|2−ν2ξ2|)(1+|2−s(ν)ξ3 − l|)
)−2N

(45)

for some constant C > 0. Suppose that h(x) satisfies (43)–(45) with l, ν
and k replaced by m ∈ Z, µ = (µ1, µ2) ∈ Z

2 and h = (h1, h2, h3) ∈ Z
3, re-

spectively. Then, there is a constant C̃ > 0 independent of l,m, ν, µ, k, h and

x = (x1, x2, x3) ∈ R
3 such that

|(g ∗ h)(x1, x2, x3)|

≤ C̃

2
∏

j=1

min

(

2νj

2µj
,
2µj

2νj

)M(

1 +
|2s(ν)l − 2s(µ)m|

max(2s(ν), 2s(µ))

)−N

×

[

2
∏

j=1

(

1 +
|2−νjkj−2−µjhj−xj|

max(2−νj , 2−µj)

)(

1 +
|2−s(ν)k3−2−s(µ)h3−x3|

max(2−s(ν), 2−s(µ))

)

]−N

.

(46)

Proof. Without loss of generality, assume that m = 0, µ = (µ1, µ2) = (0, 0) and
h = (h1, h2, h3) = (0, 0, 0).

If ν1 ≥ 0, ν2 ≤ 0 and s(ν) = ν1 + ν2 < 0, then

|(g ∗ h)(x1, x2, x3)| =
1

2ν2

∣

∣

∣

∣

∫

R3

g(x1 − y1 + 2−ν1k1, 2
−ν2y2, y3)

× h(y1 − 2−ν1k1, x2 − 2−ν2y2, x3 − y3) dy1dy2dy3

∣

∣

∣

∣

.

For any fixed but arbitrary y1, x1 and x3, let ğ(y2) = g(x1−y1+2−ν1k1, 2
−ν2y2, y3)

be a function of y2. Similarly, for any fixed but arbitrary y2, x2 and x3, define
h̆(y1) = h(y1 − 2−ν1k1, x2 − 2−ν2y2, x3 − y3).

Let ğ(r) and h̆(s), r, s ∈ N, denote the ordinary derivatives of the single
variable functions ğ and h̆, respectively. We assert that

|(g ∗ h)(x1, x2, x3)| = 2−ν2
∣

∣

∣

∣

∫

R3

[

ğ(y2) −
∑

0≤r≤[2M ]+1

ğ(r)(2ν2x2)

r!
(y2 − 2ν2x2)

r

]

×

[

h̆(y1) −
∑

0≤s≤[2M ]+1

h̆(s)(x1)

s!
(y1 − x1)

s

]

dy1dy2dy3

∣

∣

∣

∣

.

The above identity is valid because of the vanishing moment conditions (44).
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Let δ1 = 1 and δ2 = 2ν2 . Decompose R into three regions:

Dj,1 = {yj ∈ R : |yj − δjxj| ≤ 3}

Dj,2 = {y1 ∈ R : |yj − δjxj| > 3 and |yj| ≤
1
2
|δjxj|}

Dj,3 = {yj ∈ R : |yj − δjxj| > 3 and |yj| >
1
2
|δjxj|}.

We have |(g ∗ h)(x1, x2, x3)| ≤
∑

u,v=1,2,3 Iu,v, where

Iu,v = 2−ν2
∣

∣

∣

∣

∫

D1,u×D2,v×R

[

ğ(y2) −
∑

0≤r≤[2M ]+1

ğ(r)(2ν2x2)

r!
(y2 − 2ν2x2)

r

]

×

[

h̆(y1) −
∑

0≤s≤[2M ]+1

h̆(s)(x1)

s!
(y1 − x1)

s

]

dy1dy2dy3

∣

∣

∣

∣

.

When y1 ∈ D1,1 and y2 ∈ D2,1, (43) yields

∣

∣

∣

∣

ğ(y2) −
∑

0≤r≤[2M ]+1

ğ(r)(2ν2x2)(y2 − 2ν2x2)
r

r!

∣

∣

∣

∣

≤ C2s(ν)
|2ν2x2 − y2|

[2M ]+2

[(1 + |2ν1(x1 − y1)|)(1 + |2ν2x2 − k2|)(1 + |2s(ν)y3 − k3|)]2N
.

Similarly,

∣

∣

∣

∣

h̆(y1) −
∑

0≤s≤[2M ]+1

h̆(s)(x1)

s!
(y1 − x1)

s

∣

∣

∣

∣

≤ C
|x1 − y1|

[2M ]+2

[(1 + |x1 − 2−ν1k1|)(1 + |x2 − 2−ν2y2|)(1 + |x3 − y3|)]2N
.

Therefore, I1,1 can be estimated as

I1,1 ≤ C

(

2ν2

2ν1

)2M+ 1
2

(

1

(1 + |x1 − 2−ν1k1|)(1 + |2ν2x2 − k2|)
(

1 + |x3−k3|

max(2−s(ν),1)

)

)2N

.

The estimate for x3 comes from [3, Lemma B.2].

Notice that I1,1 was estimated by iterating the estimate for
∫

A
in [3, Lemma

B.1]. Similarly, if (y1, y2) belongs to the other domains D1,u × D2,v, use the
corresponding results for

∫

A
,
∫

B
and

∫

C
in [3, Lemma B.1] (

∫

A
,
∫

B
and

∫

C
are

notations in [3, Lemma B.1]). Thus, when ν1 ≥ 0 and ν2 ≤ 0, we obtain our
desired result.



Littlewood-Paley Theory 209

Similarly, when ν1 ≤ 0 and ν2 ≥ 0, we have

|(g ∗ h)(x1, x2, x3)|

≤ C

(

2ν1

2ν2

)2M+ 1
2

(

1

(1 + |2ν1x1 − k1|)(1 + |x2 − 2−ν2k2|)
(

1 + |x3−k3|

max(2−s(ν),1)

)

)2N

.

For ν1 ≤ 0 and ν2 ≤ 0, by the vanishing moment conditions,

|(g ∗ h)(x1, x2, x3)| = 2−ν1−ν2
∣

∣

∣

∣

∫

R2

g(2−ν1y1, 2
−ν2y2, y3)

× h(x1 − 2−ν1y1, x2 − 2−ν2y2, x3 − y3)dy1dy2dy3

∣

∣

∣

∣

.

In this case, let ğ(y1, y2, y3) = 2−ν1−ν2g(2−ν1y1, 2
−ν2y2, y3), we have

|(g ∗ h)(x1, x2, x3)|

=

∣

∣

∣

∣

∫

R2

[

ğ(y1, y2, y3) −
∑

0≤r≤[2M ]+1

(∂rx1
ğ)(2ν1x1, y2, y3)

r!
(y1 − 2ν1x1)

r

]

× h(x1 − 2−ν1y1, x2 − 2−ν2y2, x3 − y3)dy1dy2dy3

∣

∣

∣

∣

.

For any fixed but arbitrary x1, let

R(y1, y2, y3) =
1

([2M ] + 1)!

∫ y1

2ν1x1

(y1 − t)[2M ]+1
(

∂[2M ]+2
x1

ğ
)

(t, y2, y3) dt.

The right-hand side of the above identity is the remainder term of Taylor’s
expansion of ğ(y1, y2, y3) on the first variable y1 in integral form. Use the integral
form of the remainder term to define R(y1, y2, y3) instead of using the differential
form:

R̃(y1, y2, y3) =

(

∂
[2M ]+2
x1 ğ

)

(w, y2, y3)

([2M ] + 2)!
(y1 − 2ν1x1)

[2M ]+2

for some |w − y1| ≤ |2ν1x1 − y1| because, in general, w depends on y2. The
existence of ∂sx2

R̃ relies on the differentiability of w as a function of y2. Since w

is not necessarily a smooth function of y2, the Taylor expansion of R̃(y1, y2, y3)
cannot be used to establish the following identity (47). We have

|(g ∗ h)(x1, x2, x3)|

=

∣

∣

∣

∣

∫

R2

R(y1, y2, y3)h(x1 − 2−ν1y1, x2 − 2−ν2y2, y3) dy1dy2dy3

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R2

[

R(y1, y2, y3) −
∑

0≤s≤[2M ]+1

(∂sx2
R)(y1, 2

ν2x2, y3)

s!
(y2 − 2ν2x2)

s

]

× h(x1 − 2−ν1y1, x2 − 2−ν2y2, x3 − y3) dy1dy2dy3

∣

∣

∣

∣

(47)
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because of Fubini’s Theorem and the vanishing moment conditions. Applying
the differential form of the remainder term for Taylor’s expansion and the mean-
value theorem for integrals shows that there exists a constant C > 0 such that

∣

∣

∣

∣

R(y1, y2, y3) −
∑

0≤s≤[2M ]+1

(∂sx2
R)(y1, 2

ν2x2, y3)

s!
(y2 − 2ν2x2)

s

∣

∣

∣

∣

≤ C
|y1 − 2ν1x1|

[2M ]+2|y2 − 2ν2x2|
[2M ]+2

[(1 + |2ν1x1 − k1|)(1 + |2s(ν)x3 − k3|)(1 + |2ν2x2 − k2|)]2N
.

(48)

By using (47), (48) and the argument from [3, Lemma B.1],

|(g ∗ h)(x1, x2, x3)|

≤ C 2(ν1+ν2)(2M+ 1
2
)

(

(1+|2ν1x1−k1|)(1+|2ν2x2−k2|)

(

1+
|x3−k3|

max(2−s(ν), 1)

))−2N

.

The estimate for the case ν1 ≥ 0 and ν2 ≥ 0 follows similarly. As a conclu-
sion, there is a constant C > 0 independent of ν, µ, k, h and x = (x1, x2, x3) ∈
R

3 such that

|(g ∗ h)(x1, x2, x3)|

≤ C

(

2
∏

j=1

min

(

2νj

2µj
,
2µj

2νj

)

)2M+ 1
2

×

[

2
∏

j=1

(

1 +
|2−νjkj−2−µjhj−xj|

max(2−νj , 2−µj)

)(

1 +
|2−s(ν)k3−2−s(µ)h3−x3|

max(2−s(ν), 2−s(µ))

)

]−2N

.

(49)

Finally, estimate g ∗ h by using (45) and [3, Lemma B.2] on the variable ξ. We
assert that

|(g ∗ h)(x)| ≤ C

∫

R3

|ĝ(ξ)ĥ(ξ)|dξ ≤ C

(

1 +
|2s(ν)l − 2s(µ)m|

max(2s(ν), 2s(µ))

)−2N

. (50)

Multiplying inequality (49) with inequality (50) and taking the square root
yields (46).

A second result is that, roughly speaking, the family of molecules is “invari-
ant” under the mapping of the almost diagonal operator. The precise statement
is given in Theorem 7.3. Some notation and basic results will be introduced
before presenting Theorem 7.3.

Let Q = {2−j[0, 1] + k : j, k ∈ Z} be the set of dyadic intervals in R and
Qj,k = 2j[0, 1] + k. For each Q = Qj,k ∈ Q, let xQ = 2−jk and l(Q) = 2−j.
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Let M > 1. This leads to the following inequalities which are extensions
of [3, Lemma D.1]:

∑

l(P )=2−j

(

1 +
|xP − xQ|

max(l(P ), l(Q))

)−M(

1 +
|x− xP |

max(l(R), l(P ))

)−M

≤ C

(

1 +
|x− xQ|

max(l(P ), l(Q), l(R))

)−M

max

(

1,
min(l(R), l(Q))

l(P )

)

(51)

≤ C

(

1 +
|x− xQ|

max(l(Q), l(R))

)−M

max

(

1,
l(P )

max(l(Q), l(R))

)M

× max

(

1,
min(l(R), l(Q))

l(P )

)
(52)

for a constant C > 0 dependent on M > 1 only. The last inequality re-
sults because 1 + |x−xR|

max(l(Q),l(R))
≤ l(P )

max(l(Q),l(R))

(

1 + |x−xR|
l(P )

)

, provided that l(P ) >

max(l(Q), l(R)).

Lemma 7.2. If τ > γ and 1 + τ > N , then

∑

P∈Q

(

1 +
|xQ − xP |

max(l(Q), l(P ))

)−N(

min

((

l(Q)

l(P )

)

,

(

l(P )

l(Q)

)))τ+ 1
2

× l(P )−γ−
1
2

(

1 +
|x− xP |

l(P )

)−N

≤ Cl(Q)−γ−
1
2

(

1 +
|x− xQ|

l(Q)

)−N

.

Proof. Let l(Q) = 2−i and l(P ) = 2−j. Then,

∑

l(P )≤l(Q)

(

1 +
|xQ − xP |

l(Q)

)−N(
l(P )

l(Q)

)τ+ 1
2

l(P )−γ−
1
2

(

1 +
|x− xP |

l(P )

)−N

≤ C|Q|−
1
2
−γ

(

1 +
|x− xQ|

l(Q)

)−N

by (51). Moreover,

∑

l(P )>l(Q)

(

1 +
|xQ − xP |

l(P )

)−N(
l(Q)

l(P )

)τ+ 1
2

l(P )−γ−
1
2

(

1 +
|x− xP |

l(P )

)−N

≤ C2
i
2
+iγ

i−1
∑

j=−∞

2(j−i)(1+|γ|+τ−N)

(

l(Q)

l(Q) + |x− xQ|

)N

= C2
i
2
+iγ

(

1

1 + l(Q)−1|x− xQ|

)N
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by using l(P ) > l(Q) and 1 + τ > N .

The technical result used in the proof of Theorem 5.3 can now be stated
and proved. In order to simplify the notation, we write

minσI,J = min

(

|I|σ
|J |σ

,
|J |σ
|I|σ

)

, σ = 1, 2, 3,

where I, J ∈ I. The proof of the following theorem is inspired by the ideas
in [7, Theorem 6.4].

Theorem 7.3. Let τ > 1, L > τ + 1 and β > max(1 + 2τ, L). Suppose

that {mJ} ∈ Mτ and {aIJ} ∈ ω(β, L). Then, the family {nI}, where nI =
∑

J aIJmJ belongs to Mτ . Moreover, there is a constant C > 0 such that

‖{nI}‖Mτ ≤ C‖{aIJ}‖ω(β,L)‖{mI}‖Mτ .

Proof. Without loss of generality, assume ‖{mI}‖Mτ = 1 and ‖{aIJ}‖ω(β,L) = 1.
For any γ = (γ1, γ2, γ3) ∈ N

3 and |γi| ≤ τ , i = 1, 2, 3,

|∂γnI | ≤
∑

|J |3≤|I|3

aIJ |∂
γmJ | +

∑

|J |3>|I|3

aIJ |∂
γmJ | = X + Y.

The reasoning for estimating X and Y are similar, so, for brevity, only Y will be
treated in detail. According to Definition 4.1, inequality (29) and Definition 5.1,
for any β > max(1 + 2τ, L) and L > τ + 1,

Y ≤
∑

|J |3≤|I|3

[

3
∏

σ=1

minσI,J

]β
(

1 +
|fI − fJ |

max(|I|−1
3 , |J |−1

3 )

)−L

×

[

3
∏

σ=1

(

1 +
|cI,σ − cJ,σ|

max(|I|σ, |J |σ)

)

]−L
|J |−γ1−γ3−1

1 |J |−γ2−γ3−1
2 (1 + |t(J)|)γ3

[
∏3

σ=1(1 + |J |−1
σ |xσ − cJ,σ|)

]τ

=
∑

j∈Z

∑

|J |1=2−j

(

1 +
|cI,1 − cJ,1|

max(|I|1, |J |1)

)−L
(

min1
I,J

)β |J |−γ1−γ3−1
1

(1 + |J |−1
1 |x1 − cJ,1|)τ

Y2,

because |J |−1
2 = |J |1|J |

−1
3 , where

Y2 =
∑

j∈Z

∑

|J |2=2−j

(

1 +
|cI,2 − cJ,2|

max(|I|2, |J |2)

)−L
(

min2
I,J

)β |J |−γ2−γ3−1
2

(1 + |J |−1
2 |x2 − cJ,2|)τ

Y3,

and

Y3 =
∑

|J |3=2−j

(

1

1 + |I|−1
3 |cI,3 − cJ,3|

)L(
1

1 + |J |−1
3 |x3 − cJ,3|

)τ

Y4.
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Recall also that fJ = |J |−1
3 t(J), by (25) and (26), we assert that

Y4 =
∑

fJ

(

min3
I,J

)β (1 + |J |3|fJ |)
γ3

(1 + |J |3|fI − fJ |)L
≤ C(1 + |t(I)|)γ3 .

Estimate Y3 using inequality (51), and then estimate Y and Y2 with Lemma 7.2
(because β > 2τ + 1 and β > L), we find that

Y ≤C|I|−1−γ1−γ3
1 |I|−1−γ2−γ3

2 (1 + |t(I)|)γ3

[

3
∏

σ=1

(

1 +
|x− cI,σ|

|I|σ

)

]−τ

.

For the estimate for X, we also have

X ≤
∑

j∈Z

∑

|J |1=2−j

(

1 +
|cI,1 − cJ,1|

max(|I|1, |J |1)

)−L
(

min1
I,J

)β−τ |J |−γ1−γ3−1
1

(1 + |J |−1
1 |x1 − cJ,1|)τ

X2.

X2 is defined by

X2 =
∑

j∈Z

∑

|J |2=2−j

(

1 +
|cI,2 − cJ,2|

max(|I|2, |J |2)

)−L
(

min2
I,J

)β−τ |J |−γ2−γ3−1
2

(1 + |J |−1
2 |x2 − cJ,2|)τ

X3.

The estimate for X2 is thus the same as for Y2. For X3,

X3 =
(

min3
I,J

)τ
∑

|J |3=2−j

(

1

1 + |J |−1
3 |cI,3 − cJ,3|

)L(
1

1 + |J |−1
3 |x3 − cJ,3|

)τ

X4

≤ C
(

min3
I,J

)τ
(

|J |3
|J |3 + |cI,3 − x|

)τ

X4

≤ C

(

|I|3
|I|3 + |cI,3 − x|

)τ

X4.

Finally, using (24), we find that

X4 =
∑

fJ

(

min3
I,J

)β (1 + |J |3|fJ |)
γ3

(1 + |I|3|fI − fJ |)L
≤ C(1 + |t(I)|)γ3 .

Since |I|3 = |I|1|I|2, we have

|∂γnI | ≤C
3
∏

j=1

|I|
− 1

2
−γj

j (1 + |t(I)|)γ3

[

3
∏

σ=1

(

1 +
|x− cI,σ|

|I|σ

)

]−τ

.

To check (28), observe that |n̂I(ξ)| ≤
∑

J∈I aIJ |m̂J(ξ)|. Demonstrating the
result follows the same reasoning as the estimate of nI . Therefore, for the sake
of brevity, the estimate for |n̂I(ξ)| is left to the reader. Finally, the vanishing
moment conditions for the family {nI}I∈I are inherited from the corresponding
conditions for {mJ}J∈I .
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By some modifications of the method used in [7, Theorem 6.2], we show that
the composition of the almost diagonal matrices A ∈ ω(β,M) and B ∈ ω(β̃, M̃)
is an almost diagonal matrix belonging to ω(min(β, β̃),min(M, M̃)).

Theorem 7.4. Let β, β̃,M, M̃ > 0 satisfy β 6= β̃ and β + β̃ > min(M, M̃).
Suppose that A = {aIJ} ∈ ω(β,M) and B = {bJK} ∈ ω(β̃, M̃) are almost

diagonal matrices. Then, the matrix A ◦ B = C = {cIK}, where

cIK =
∑

J

aIJbJK (53)

is an almost diagonal matrix and C = {cIK} ∈ ω(min(β, β̃),min(M, M̃)). More-

over, there is a constant C > 0, depending continuously on M, M̃ only, such

that ‖C‖ω(min(β,β̃),min(M,M̃)) ≤ C‖A‖ω(β,M)‖B‖ω(β̃,M̃).

Proof. We only provide the estimate for the case where |I|1 < |K|1, |I|2 >
|K|2 and |I|3 < |K|3 since the estimates for the other cases follow similarly.
Without loss of generality, assume that β > β̃, M ≥ M̃ , ‖{aIJ}‖ω(β,M) = 1 and
‖{bJK}‖ω(β̃,M̃) = 1. Let |I| = 2−2s(µ), |J | = 2−2s(ν), |K| = 2−2s(κ),

W =

(

1 +
|fI − fJ |

max(|I|−1
3 , |J |−1

3 )

)−M̃
[

3
∏

σ=1

(

1 +
|cI,σ − cJ,σ|

max(|I|σ, |J |σ)

)

]−M̃

.

Decompose the summation in (53) into twenty seven summations,

|cIK | =
∑

k=(k1,k2,k3)∈N3

1≤k1,k2,k3≤3

∑

J∈Ak

aIJbJK =
∑

k=(k1,k2,k3)∈N3

1≤k1,k2,k3≤3

Zk,

where Ak = Ak1,k2,k3 = Uk1,1 ∩ Uk2,2 ∩ Uk3,3, U1,m = {J : |K|m ≤ |J |m}, U2,m =
{J : |I|m ≤ |J |m ≤ |K|m} and U3,m = {J : |J |m < |I|m}, for m = 1, 3; and
U1,2 = {J : |I|2 ≤ |J |2}, U2,2 = {J : |K|2 ≤ |J |2 ≤ |I|2} and U3,2 = {J : |J |2 <
|K|2}.

Set Zk = 0 when Ak = ∅. We illustrate the estimates by considering the
terms Z1,1,1 and Z3,2,3. For Z1,1,1, by inequality (52) and the Cauchy-Schwartz
inequality,

|Z1,1,1| ≤
∑

J∈A1,1,1

(

|I|1
|J |1

)β( |I|2
|J |2

)β−M̃( |I|3
|J |3

)β( |K|1
|J |1

)β̃−M̃( |K|2
|J |2

)̃β( |K|3
|J |3

)̃β−M̃−1

W

≤

(

∑

J∈A1,1,1

(

|I|1
|J |1

)2β( |K|1
|J |1

)2β̃−2M̃( |I|2
|J |2

)β−M̃( |K|2
|J |2

)̃β
)1

2

×

(

∑

J∈A1,1,1

(

|I|2
|J |2

)β−M̃( |K|2
|J |2

)̃β( |I|3
|J |3

)2β( |K|3
|J |3

)2β̃−2M̃−2
)1

2

W

= U1U2W.
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For U1, note that ν1 ≤ κ1 ≤ µ1 and ν2 ≤ µ2 ≤ κ2, hence,

U1 = |I|β1 |K|β̃−M̃1 |I|
β−M̃

2
2 |K|

β̃
2
2

(

κ1
∑

ν1=−∞

2ν1(2β+2β̃−2M̃)

µ2
∑

ν2=−∞

2ν2(β+β̃−M̃)

)1
2

= 4

(

|I|1
|K|1

)β( |K|2
|I|2

)
β̃
2

≤ 4

(

|I|1
|K|1

)̃β( |K|2
|I|2

)
β̃
2

,

because β > β̃ and |I|1 < |K|1. For U2, use the following range for ν1 and ν2:
ν2 ≤ µ2 ≤ κ2 and ν1 + ν2 ≤ κ1 + κ2 ≤ µ1 + µ2. Introduce the substitution,
ν3 = ν1 + ν2 to obtain

U2 = |I|
β−M̃

2
2 |K|

β̃
2
2 |I|

β
3 |K|β̃−M̃−1

3

(

µ2
∑

ν2=−∞

2ν2(β+β̃−M̃)

κ1+κ2
∑

ν3=−∞

22ν3(β+β̃−M̃−1)

)
1
2

= 4

(

|K|2
|I|2

)
β̃
2
(

|I|3
|K|3

)β

≤ 4

(

|K|2
|I|2

)
β̃
2
(

|I|3
|K|3

)β̃

.

Hence, we assert that |Z1,1,1| ≤ U1U2W = 16
( |I|1
|K|1

)β̃( |K|2
|I|2

)β̃( |I|3
|K|3

)β̃
W .

For Z3,2,3, by inequality (52),

|Z3,2,3| ≤
∑

J∈A3,2,3

(

|J |1
|I|1

)β−1( |J |2
|I|2

)β( |J |3
|I|3

)β−M̃−1( |J |1
|K|1

)β̃( |K|2
|J |2

)β̃( |J |3
|K|3

)β̃

W

and then, by the Cauchy-Schwartz inequality, we obtain

|Z3,2,3| ≤

(

∑

J∈A3,2,3

(

|J |1
|I|1

)2(β−1)( |J |1
|K|1

)2β̃( |J |2
|I|2

)β( |K|2
|J |2

)̃β
)1

2

×

(

∑

J∈A3,2,3

(

|J |2
|I|2

)β( |K|2
|J |2

)̃β( |J |3
|I|3

)2(β−M̃−1)( |J |3
|K|3

)2β̃
)1

2

W

= V1V2W.
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Analyze V1 using the fact that κ1 ≤ µ1 ≤ ν1 and µ2 ≤ ν2 ≤ κ2. This yields

V1 = |I|−β+1
1 |K|−β̃1 |I|

−β
2

2 |K|
β̃
2
2

(

∞
∑

ν1=µ1

2−2ν1(β+β̃−1)

κ2
∑

ν2=µ2

2ν2(β̃−β)

)1
2

≤ 4

(

|I|1
|K|1

)β̃( |K|2
|I|2

)
β̃
2

.

For V2, µ2 ≤ ν2 ≤ κ2 and κ1 + κ2 ≤ µ1 + µ2 ≤ ν1 + ν2, hence

V2 = |I|
−β

2
2 |K|

β̃
2
2 |I|−β+M̃+1

3 |K|−β̃3

(

κ2
∑

ν2=µ2

2ν2(β̃−β)

∞
∑

ν3=µ1+µ2

2−2ν3(β+β̃−M̃−1)

)1
2

≤ 4

(

|K|2
|I|2

)
β̃
2
(

|I|3
|K|3

)β̃

.

This produces the desired result for Z3,2,3. The estimates for the other twenty
five terms follow in the same manner.

Iterating the result in Theorem 7.4 leads to the following theorem.

Theorem 7.5. Let β,M > 0. Suppose Ai, 1 ≤ i ≤ m, are almost diagonal

matrices with order β,M . Then, for any β′,M ′ > 0 satisfying β > β′, M > M ′,

and β+ β′ > M ′, the composition of Ai, A1 ◦A2 · · · ◦Am is an almost diagonal

matrix with order β′,M ′ and

‖A1 ◦ A2 · · · ◦ Am‖ω(β′,M ′) ≤ Cm−1‖A1‖ω(β,M)‖A2‖ω(β,M) · · · ‖Am‖ω(β,M)

for a constant C > 0 depending only on M,M ′.
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