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Abstract. It is known that in certain limiting cases, spaces of Sobolev type modelled
upon Zygmund spaces are embedded in Orlicz spaces of exponential type. Estimates
of the entropy numbers of such embeddings are studied.
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1. Introduction

Let Ω be a bounded domain in R
n with smooth boundary, let p, q ∈ (1,∞)

and suppose that s ∈ N is such that s > n(1
p
− 1

q
)+; denote by W s,p(Ω) the

usual Sobolev space of order s, based on Lp(Ω). Then it is well known (see, for
example, [14, Chapter 3]) that W s,p(Ω) is compactly embedded in Lq(Ω) and
that this embedding Id has entropy numbers ek(Id) that satisfy

ek(Id) ≈ k− s
n (k ∈ N),

by which we mean that ek(Id) k
s
n is bounded above and below by positive

constants independent of k. If s = n(1
p
− 1

q
), then Id is continuous but not

compact. There is no embedding at all of W
n
p

,p(Ω) in L∞(Ω); an embedding
can be obtained if the target space L∞(Ω) is replaced by the slightly larger
Orlicz space LΦν (Ω) with Young function Φν such that for large t, Φν(t) behaves
like exp (tν). In fact, if 0 < ν ≤ p′ (where 1

p′
= 1 − 1

p
), the embedding Idν :

W
n
p

,p(Ω) → LΦν (Ω) exists and is continuous; Idν is compact if 0 < ν < p′. For
results of this type we refer to [20, 21, 23, 25, 26]. The entropy numbers of Idν
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were estimated by Triebel [25], who showed in particular that if 0 < ν < p
2+p

,
then

ek(Idν) ≈ k
− 1

p ;

if p
2+p

≤ ν < 1
p′

, then upper and estimates of power type for ek(Idν) are also

available (see [25] and the later improvements, some involving logarithms, in
[16–18]) but there is a gap between the exponents involved in the upper and
lower bounds. These estimates also hold for spaces of fractional Sobolev and
Besov type; indeed, settings of such generality were used in [25] and [16–18].

Entropy number estimates have also been obtained for embeddings between
spaces of the type W s,p(log W )α(Ω), these being defined in the same way as
W s,p(Ω) but with the underlying space Lp(Ω) replaced by the Zygmund space
Lp(log L)α(Ω). A detailed account of this is given in [14], which also deals with
the case of fractional Sobolev spaces modelled on Zygmund spaces; see also [12].
However, the limiting case in which the embedding is from such a space to an
Orlicz space of exponential type does not seem to have been studied from the
entropy number point of view, even though the existence and compactness of
such an embedding is known from the work of [7]. The object of our paper is
to address this question. We remark that knowledge of the behaviour of the
entropy numbers of embeddings between function spaces may be used to gain
information about the eigenvalues of (possibly degenerate) elliptic operators.
This stems from the observation due to Bernd Carl (see, for example, [14, p. 20])
that links the entropy numbers en(T ) of a compact linear map T from a Banach
space X to itself with its eigenvalues λn(T ), arranged by decreasing modulus
and repeated according to algebraic multiplicity: his result is that

|λn(T )| ≤
√

2en(T ) (n ∈ N).

The process of reduction of an elliptic boundary-value problem to an operator
equation often gives rise to an operator that is the composition of an embedding
map T1 and a continuous map T2, and since the entropy numbers are sub-
multiplicative in the sense that

em+n−1(T1 ◦ T2) ≤ em(T1)en(T2) (m,n ∈ N),

we have en(T1 ◦ T2) ≤ en(T1) ‖T2‖ (n ∈ N). Use of this together with Carl’s
inequality gives upper estimates for the eigenvalues of T1 ◦T2 in terms of the en-
tropy numbers of the embedding map T1; these estimates can then be translated
into lower estimates for the eigenvalues of the elliptic problem. A full discussion
of this procedure and the results obtainable by such means is given in [14, Chap-
ter 5], which also contains an entropy version of the Birman–Schwinger principle
that is useful in the study of the negative spectrum of certain self-adjoint elliptic
operators.
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For simplicity we deal only with the situation in which the domain of the
embeddings is a first-order space of the form W 1,n(log W )α(Ω). The case α = 0
corresponds to the work of Triebel and Kühn and Schonbek already mentioned.
When 0 ≤ α < 1

n′ , W 1,n(log W )α(Ω) is compactly embedded in Eν(Ω), the
Orlicz space with Young function having values behaving like exp (tν) for large t,
provided that 0 < ν < qα, where 1

qα
= 1

n′ −α. We give in Theorem 3.2 upper and
lower estimates of power type for the entropy numbers of this embedding. The
upper and lower rates of decay that we obtain coincide when 0 < ν < n

n+2
, but

for other values of ν there is a gap between these rates, as there is in the work of
Triebel and Kühn and Schonbek dealing with the case α = 0. The finer tuning
provided by the index α also enables embeddings into other types of exponential
spaces to be obtained. Thus, corresponding to the limiting case when α = 1

n′ ,

we know from [7] that W 1,n(log W )1/n′
(Ω) is compactly embedded into an Orlicz

space with Young function having values behaving like exp (exp (tν)) for large t,
provided that 0 < ν < n′. We show that the kth entropy number of this

embedding is O
(

(log k)−( 1
ν
− 1

n′ )
)

. We do not know whether or not the rate of
decay of the entropy numbers in this case is really of logarithmic type, for the
only lower bound we are able to prove is of the form k− 1

n . It seems very desirable
to settle this question, and also to eliminate the gap present between the upper
and lower estimates in the single exponential case, when ν ≥ n

n+2
.

2. Notation

2.1. Basic notation. If p ∈ [1,∞], the conjugate number p′ is defined by
1
p

+ 1
p′

= 1, with the understanding that 1′ = ∞ and ∞′ = 1.

For non-negative expressions (i.e., functions or functionals) F1, F2 we use
the symbol F1 . F2 to mean that F1 ≤ CF2 for some constant C ∈ (0,∞)
independent of the variables in the expressions F1, F2. If F1 . F2 and F2 . F1,
we write F1 ≈ F2.

If Ω is a measurable subset of R
n (with respect to n-dimensional Lebesgue

measure), then by |Ω|n we denote its n-volume.
Let q ∈ (0,∞]. By the symbol ‖f‖q;Ω we denote the Lq-(quasi-)norm of a

measurable function f on the measurable set Ω ⊂ R
n.

2.2. Lorentz-Karamata spaces. A nonnegative function b measurable on
(0,∞), 0 6≡ b 6≡ ∞, is said to be slowly varying on (0,∞), written b ∈ SV :=
SV (0,∞), if, for each ε > 0, there are a nondecreasing nonnegative function gε

and a nonincreasing nonnegative function g−ε which are measurable on (0,∞)
and satisfy

tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (0,∞).
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Let p, q ∈ (0,∞], b ∈ SV (0,∞) and let Ω be a measurable subset of R
n

(with respect to n-dimensional Lebesgue measure). The Lorentz–Karamata

space Lp,q;b(Ω) consists of all measurable (real or complex) functions f on Ω
such that the quantity

‖f‖p,q;b;Ω = ‖f‖p,q;b :=
∥

∥

∥
t

1
p
− 1

q b(t) f ∗(t)
∥

∥

∥

q;(0,∞)

is finite. Here f ∗ denotes the non-increasing rearrangement of f given by

f ∗(t) = inf
{

λ > 0;
∣

∣{x ∈ Ω; |f(x)| > λ}|n ≤ t
}

, t ≥ 0.

Particular choices of b give well-known spaces. Obviously, when b is the
function identically equal to 1, the corresponding Lorentz–Karamata space co-
incides with the Lorentz space Lp,q(Ω). Moreover, if m ∈ N and

b(t) =
m
∏

i=1

ℓαi
i (t) for t > 0, where α1, . . . , αm ∈ R,

and, for t > 0,

ℓ1(t) = 1 + | log t|, ℓi(t) = ℓ1(ℓi−1(t)) if i > 1,

then the Lorentz–Karamata space Lp,q;b(Ω) is the generalized Lorentz–Zygmund

spaceLp,q;α1,...,αm(Ω) of [9], which in turn becomes the Lorentz–Zygmund space

Lp,q(log L)α1(Ω) of Bennett and Rudnick [2] when m = 1. If, moreover, p = q,
it becomes the well-known Zygmund space Lp(log L)α1(Ω). We refer to [5] for
more details of Lorentz–Karamata spaces.

2.3. Orlicz spaces. Let Φ be a Young function (that is, a continuous, non-

negative, strictly increasing, convex function on [0,∞) such that limt→0+

Φ(t)
t

=
limt→∞

t
Φ(t)

= 0) and Ω be a measurable subset of R
n. By LΦ(Ω) we shall denote

the corresponding Orlicz space, equipped with the Luxemburg norm ‖ · ‖Φ; for
details of such spaces we refer to [1, 3, 19].

2.4. Relationship between Orlicz and Lorentz-Karamata spaces. Orlicz
spaces and Lorentz-Karamata spaces are two different classes of function spaces
having a nontrivial intersection.

We need some particular results.

Lemma 2.1. Let Ω ⊂ R
n be a domain with n-dimensional Lebesgue measure

|Ω|n < ∞.
(i) Suppose that p ∈ (1,∞) and a ∈ R. Then the space Lp(log L)a(Ω) co-

incides with the Orlicz space LΨ(Ω) with the Young function Ψ(t) ≈
tp ℓ1(t)

ap, t > 0, and the corresponding norms are equivalent.
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(ii) Suppose that ν > 0. Then the space L∞,∞;−1/ν(Ω) coincides with the Orlicz

space LΦ(Ω), with Young function Φ(t) = exp(tν) − 1, t ≥ 0, and the

corresponding norms are equivalent.
(iii) Suppose that ν > 0. Then the space L∞,∞;0,−1/ν(Ω) coincides with the

Orlicz space LΦ(Ω), with the Young function Φ(t) = exp exp(tν)−e, t ≥ 0,
and the corresponding norms are equivalent.

Proof. For the proof of (i) see [7, Lemma 2.1 (ii)] and note thatLp(log L)a(Ω)=
Lp(log L)ap(Ω). Statements (ii) and (iii) can be proved much as [2, Theorem D]
(cf. [6, Lemma 3.9]). The assertion about equivalent norms immediately follows
from [3, Chapter 1, Theorem 1.8] and from the fact that all the spaces are
(equivalent to) Banach function spaces.

In the light of the previous lemma we introduce some notation.

Notation 2.2. Let Ω ⊂ R
n be a domain such that |Ω|n < ∞ and let ν > 0.

Then we put

Eν(Ω) := L∞,∞;−1/ν(Ω), ‖ · ‖Eν(Ω) := ‖ · ‖
∞,∞;ℓ

−1/ν
1 ;Ω

EEν(Ω) := L∞,∞;0,−1/ν(Ω), ‖ · ‖EEν(Ω) := ‖ · ‖
∞,∞;ℓ

−1/ν
2 ;Ω

.

2.5. Extrapolation results. For the exponential spaces Eν(Ω) and EEν(Ω)
introduced in Notation 2.2 we have the following extrapolation result.

Lemma 2.3. Let the domain Ω ⊂ R
n satisfy |Ω|n < ∞ and let ν > 0. If j0 ∈ N

and q0 ≥ 1, then
(i) for all f ∈ Eν(Ω),

‖f‖Eν(Ω) ≈ sup
j∈N,j≥j0

j−
1
ν ‖f‖j;Ω ≈ sup

q≥q0

q−
1
ν ‖f‖q;Ω;

(ii) for all f ∈ EEν(Ω),

‖f‖EEν(Ω) ≈ sup
j∈N,j≥j0

(log j)−
1
ν ‖f‖j;Ω ≈ sup

q≥q0

(log q)−
1
ν ‖f‖q;Ω.

Proof. See [10, Corollary 3.2].

2.6. Sobolev-type spaces. Let Ω be a domain in R
n. Let k ∈ N and let X(Ω)

be a Banach function space. We define the Sobolev space modelled on X(Ω) to
be the set

W kX(Ω) := {u; Dβu ∈ X(Ω) if |β| ≤ k}
(where Dβ = ∂|β|

∂x
β1
1 ...∂xβn

n

, β = (β1, . . . , βn) with β1, . . . , βn nonnegative integers

and |β| = β1 + · · · + βn), equipped with the norm

‖u‖W kX(Ω) :=
∑

|β|≤k

‖Dβu‖X(Ω).
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We denote ‖ · ‖k;p,q;b;Ω := ‖ · ‖W kLp,q;b(Ω) and, for the special case X(Ω) =

Lp(log L)α(Ω), we put W k,p(log W )α(Ω) := W kLp(log L)α(Ω) and ‖ · ‖k;p;α;Ω :=
‖ · ‖W k,p(log W )α(Ω). When α = 0 we write W k,p(Ω) instead of W k,p(log W )0(Ω).

2.7. Finite sequence spaces. Let m ∈ N and let X be a Banach function
space on R. Then we define the sequence space ℓm

X to be C
m furnished with the

norm
∥

∥{ai}m
i=1

∥

∥

ℓm
X

=

∥

∥

∥

∥

m
∑

i=1

ai χ[i−1,i)

∥

∥

∥

∥

X

.

If X = Lp(R) we use the notation ℓm
p instead of ℓm

Lp(R) and

∥

∥{ai}m
i=1

∥

∥

p
:=
∥

∥{ai}m
i=1

∥

∥

ℓm
p

=

( m
∑

i=1

|ai|p
)

1
p

(with obvious modification when p = ∞).

2.8. Entropy numbers, embeddings. For a (quasi-) Banach space X denote
by the symbol UX its closed unit ball, that is, UX = {x ∈ X; ‖x‖X ≤ 1}, where
‖ · ‖X denotes the (quasi-)norm in the space X.

Let T ∈ L(X,Y ), the space of all bounded linear maps from X to Y . Then
we define the norm of T ,

‖T‖X→Y = sup
f∈UX

‖Tf‖Y ,

and for each k ∈ N the kth entropy number ek(T ) is defined by

ek(T ) = inf

{

ε > 0; T (UX) ⊂
2k−1
⋃

j=1

(yj + εUY ) for some y1, . . . , y2k−1 ∈ Y

}

.

It is easy to verify (cf. [4, pp. 47–48]) that if X, Y , Z are Banach spaces,
R,S ∈ L(X,Y ) and T ∈ L(Y, Z), then

‖T‖X→Y = e1(T ) ≥ e2(T )≥ · · · ≥ 0 (1)

ek+l−1(T ◦ S) ≤ ek(T ) el(S) for all k, l ∈ N (2)

ek+l−1(R + S) ≤ ek(R) + el(S) for all k, l ∈ N

(similar properties also hold in quasi-Banach spaces, see [14, pp. 7–8] for the
details).

Given two (quasi-) Banach spaces X and Y , we write X →֒ Y or X →֒→֒ Y

if X ⊂ Y and the natural embedding Id : X → Y is bounded or compact,
respectively.

If X →֒→֒ Y , then ek(Id : X → Y ) → 0 when k → ∞.
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Lemma 2.4. Let 1 ≤ p < q ≤ ∞ and for each k ∈ N let ek be the kth entropy

number of the natural embedding ℓm
p → ℓm

q . If 2k ≤ m, then

ek ≈ 1,

where constants in this equivalence are independent of k, m, p and q.

Proof. For the proof see [22].

3. Entropy numbers of the single-exponential embedding

Throughout this section let us suppose that Ω is a bounded domain in R
n with

Lipschitz boundary. Together with B. Opic we have proved the following result
(cf. [11] and the references therein).

Lemma 3.1. Let n ∈ N, n > 1, α < 1
n′ and 0 < ν < qα, where 1

qα
= 1

n′ − α.

Then

W 1,n(log W )α(Ω) →֒ Eqα(Ω) (3)

and

W 1,n(log W )α(Ω) →֒→֒ Eν(Ω). (4)

Recall that the embedding (3) is not compact.

In this section we derive upper and lower asymptotic estimates of entropy
numbers of the embedding (4). We formulate the main result whose proof will
be given in the following subsections.

Theorem 3.2. Let n ∈ N, n ≥ 2, 0 ≤ α < 1
n′ and 0 < ν < qα, where

1
qα

= 1
n′ − α. Denote by ek the kth entropy number of the natural embedding

Id : W 1,n(log W )α(Ω) → Eν(Ω). Put D := 1 + nα ∈ [1, n).
(i) If 0 < ν < n

n+2
, then ek ≈ k− 1

n .
(ii) If n

n+2
≤ ν < 1, then k− 1

n . ek . k− 1
n (log k)

1
n .

(iii) If ν = 1, then k− 1
n . ek . k− 1

n (log k)
2
n .

(iv) If 1 < ν ≤ 1
1−α

, then k− 1
n . ek . k

− 1
D

( 1
ν
− 1

qα
)(log k)

1
D

( 1
ν
− 1

qα
)
.

(v) If 1
1−α

< ν < qα, then k
−( 1

ν
− 1

qα
) . ek . k

− 1
D

( 1
ν
− 1

qα
)(log k)

1
D

( 1
ν
− 1

qα
)
.
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Remark 3.3. When α = 0 so that D = 1, qα = n′, 0 < ν < n′, and Id

is the natural embedding W 1,n(Ω) in Eν(Ω) (note that in this case (iv) is no
longer relevant), the two-sided estimate (i) and the lower estimates in (ii),(iii)
and (v) follow from the paper of Triebel [25] together with the upper estimate

ek . k− 1
3
( 1

ν
− 1

n′ ))+ε if n
n+2

≤ ν < n′. This upper estimate was improved by Kühn

in [16] by the estimates ek . k− 1
n (log k)

1
n

+1 if n
n+2

≤ ν ≤ n
n+1

and ek . k− 1
2
( 1

ν
− 1

n′ )

if n
n+1

< ν < n′. Further improvements of upper estimates in (ii),(iii) and (v)
were obtained by Kühn and Schonbek in [18].

3.1. Upper estimates. We shall need some auxiliary results.

Proposition 3.4. Let n ≥ 2 and α ≥ 0. Then there is a positive constant C

such that, for any q ∈ (1,∞) and all k ∈ N,

ek

(

Id : W 1,n(log W )α(Ω) → Lq(Ω)
)

≤ C min

{

q

(

k

log k

)− 1
n

, q1+ 2
n k− 1

n

}

. (5)

Proof. As |Ω|n < ∞ and α ≥ 0 we have Ln(log L)α(Ω) →֒ Ln(Ω), and so the
identity mapping Id : W 1,n(log W )α(Ω) → W 1,n(Ω) is bounded. Together with
(2) and the estimate

ek

(

Id : W 1,n(Ω) → Lq(Ω)
)

. q1+ 2
n k− 1

n , k ∈ N, q ∈ (1,∞),

of Triebel [25, Section 4.3.4] this gives the second estimate of (5).

The first estimate in (5) we obtain by the same argument using the embed-
ding W 1,n(Ω) = F 1

n,2(Ω) →֒ B1
n,n(Ω) and the estimate

ek

(

Id : B1
n,n(Ω) → Lq(Ω)

)

. q

(

k

log k

)− 1
n

, n ≥ 2, k ∈ N, q ∈ (1,∞),

of Kühn and Schonbek [18, Theorem 3.3]. (Here F 1
n,2(Ω) denotes a Triebel–

Lizorkin space and B1
n,n(Ω) denotes a Besov space. More details about such

spaces and their properties can be found in [24].)

We recall an extrapolation result of Kühn and Schonbek [18]. Let X be a
Banach space and Yθ, θ ∈ (0, 1), be a family of Banach spaces such that

Yθ →֒ Yθ′ , if 0 < θ ≤ θ′ < 1,

with uniformly bounded inclusion operators. Let η be a positive real number.
Following [15] we consider the space Y := ∆

(

θηYθ

)

,

f ∈ Y ⇐⇒ f ∈
⋂

θ∈(0,1)

Yθ and ‖f‖Y := sup
θ∈(0,1)

θ η‖f‖Yθ
< ∞.
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Suppose that for a linear operator T : X →
⋂

θ∈(0,1) Yθ there is a constant C > 0

and parameters σ1, σ2 > 0 such that, for all θ ∈ (0, 1) and all k ∈ N,

‖T‖X→Yθ
≤ Cθ−σ1 (6)

ek

(

T : X → Yθ

)

≤ Cθ−σ2 ϕ(k), (7)

where ϕ : [1,∞) → (0,∞) is a decreasing function such that limx→∞ ϕ(x) = 0
and, with some constant C0 > 1, ϕ(x) ≤ C0ϕ(2x) for all x ≥ 1.

Proposition 3.5 ([18, Theorem 2.1]). Let T , X and Yθ, θ ∈ (0, 1), have the

same meaning as above and conditions (6) and (7) be satisfied. Suppose that

σ1 < min
(

η, σ2

)

. Then

ek

(

T : X → Y
)

.











ϕ(k), if η > σ2

ϕ
(

k
log k

)

, if η = σ2

ϕ(k)λ, if σ1 < η < σ2,

where λ := η−σ1

σ2−σ1
.

The main result of this subsection is the following lemma.

Lemma 3.6. Let the assumptions of Theorem 3.2 be satisfied.
(i) If 0 < ν < n

n+2
, then ek . k− 1

n (k ∈ N).
(ii) If n

n+2
≤ ν < 1, then ek . k− 1

n (log k)
1
n (k ∈ N).

(iii) If ν = 1, then ek . k− 1
n (log k)

2
n (k ∈ N).

(iv) If 1 < ν < qα, then ek . k
− 1

D
( 1

ν
− 1

qα
)(log k)

1
D

( 1
ν
− 1

qα
) (k ∈ N),

where D = 1 + nα.

Proof. Put X = W 1,n(log W )α(Ω), Yθ = L
1
θ (Ω), η = 1

ν
and T = Id . Then, by

Lemma 2.3 (i), we have Y = Eν(Ω). The estimate (i) follows by Proposition 3.5

on putting σ1 = 1
qα

, σ2 = 1 + 2
n

and ϕ(k) = k− 1
n and using Proposition 3.4. To

obtain estimates (ii)–(iv) we put σ1 = 1
qα

, σ2 = 1 and ϕ(k) = ( k
log k

)−
1
n and use

again Propositions 3.5 and 3.4.

3.2. Lower estimate. In this subsection we prove the following lemma.

Lemma 3.7. Let the assumptions of Theorem 3.2 be satisfied. Then

ek & max
{

k− 1
n , k

−( 1
ν
− 1

qα
)
}

.

Proof. At first we prove that
ek & k− 1

n . (8)

Since Ω is bounded we have the embeddings

W 1,p(Ω) →֒ W 1,n(log W )α(Ω) →֒ Eν(Ω) →֒ Lq(Ω), (9)
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where p > n and q > 1 are fixed numbers. By the result of Edmunds and
Triebel [13],

ek

(

Id : W 1,p(Ω) → Lq(Ω)
)

≈ k− 1
n . (10)

Together with (9), (2) and (1), the last estimate immediately implies (8).

Observe that for proving the estimate

ek & k
−( 1

ν
− 1

qα
) (11)

we can assume, without loss of generality, that Ω = Q, where Q is a cube. We
shall prove (11) in three steps.

STEP 1. First we shall do some preliminary work. Let the cube Q = (−1
2
, 1

2
)n

(centered at the origin) be subdivided into 2nk, k ∈ N, congruent (mutually
disjoint and open) subcubes Qi with centres x[i], i = 1, . . . , 2nk.

Let g ∈ W 1,n(log W )α(Q) be a fixed nonegative function which is positive
on a subset of Q of positive measure and supported in Q. Fix the number j ∈ N.
We introduce the mappings

A : ℓ2nk

1 → W 1,n(log W )α(Q), B : Lj(Q) → ℓ2nk

j ,

in the following way:

A :
{

ai

}2nk

i=1
7→

2nk
∑

i=1

ai g
(

2k(x − x[i])
)

and

B : f 7→
{

2nk

‖g‖j
j;Q

∫

Qi

f(x)
∣

∣g
(

2k(x − x[i])
)∣

∣

j−1
dx

}2nk

i=1

(note that g ∈ Lj(Q) due to the embedding W 1,n(log W )α(Q) →֒ Lj(Q) for any
j ∈ N).

Let us verify that (B ◦ A) is the identity mapping ℓ2nk

1 → ℓ2nk

j . Having in

mind that the cubes Qi are mutually disjoint, g ≥ 0 and supp g
(

2k(·−x[i])
)

⊂ Qi,
i = 1, . . . , 2nk, we obtain

B
(

A {ai}2nk

i=1

)

=

{

2nk

‖g‖j
j;Q

∫

Qi

[ 2nk
∑

l=1

al g
(

2k(x − x[l])
)

]

∣

∣g
(

2k(x − x[i])
)∣

∣

j−1
dx

}2nk

i=1

=

{

2nk

‖g‖j
j;Q

∫

Qi

ai

∣

∣g
(

2k(x − x[i])
)∣

∣

j
dx

}2nk

i=1

=

{

2nk

‖g‖j
j;Q

ai

∫

Q

2−nk
∣

∣g(y)|j dy

}2nk

i=1

=
{

ai

}2nk

i=1
.
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We have the following commutative diagram:

ℓ2nk

1
Id1−−−−−→ ℓ2nk

j




y

x




B

A





y
Lj(Q)





y

x





Id2

W 1,n(log W )α(Q)
Id−−−−−→ Eν(Q)

Using the properties of entropy numbers given by (2) and (1) we have ek(Id1) ≤
‖A‖ ‖B‖ ‖ Id2 ‖ ek(Id), which implies that

ek(Id) ≥ ek(Id1)

‖A‖ ‖B‖ ‖ Id2 ‖
. (12)

STEP 2. We estimate the entropy number ek(Id1) from below and norms of the
mappings A, B and Id2 from above.

Lower estimate of ek(Id1). By Lemma 2.4 we have

ek(Id1) ≈ 1. (13)

Norm of A. Let
∥

∥{ai}2nk

i=1

∥

∥

ℓ2
nk

1

≤ 1. Using the triangle inequality and the

translation invariance of the norm in W 1,n(log W )α(Q) we have

∥

∥A{ai}2nk

i=1

∥

∥

1;n;α;Q
≤ sup

i∈{1,...,2nk}

∥

∥g
(

2k(· − x[i])
)∥

∥

1;n;α;Qi

( 2nk
∑

i=1

|ai|
)

≤
∥

∥g
(

2k ·
)∥

∥

1;n;α;Q

(observe that supp g
(

2k ·
)

⊂ 2−kQ), and consequently,

‖A‖
W 1,n(log W )α(Q)→ℓ2

nk
1

≤
∥

∥g
(

2k ·
)
∥

∥

1;n;α;Q
. (14)

Norm of B. Let f ∈ Lj(Q) be such that ‖f‖j;Q ≤ 1. Using the Hölder
inequality, change of variables and the fact that the cubes Qi, i = 1, . . . , 2nk,
are mutually disjoint, we arrive at

‖B(f)‖
ℓ2

nk
j

=
2nk

‖g‖j
j;Q

(

2nk
∑

i=1

∣

∣

∣

∣

∫

Qi

f(x)
∣

∣g
(

2k(x − x[i])
)
∣

∣

j−1
dx

∣

∣

∣

∣

j
)

1
j

≤ 2nk

‖g‖j
j;Q

(

2nk
∑

i=1

∫

Qi

|f(x)|j dx

[
∫

Qi

∣

∣g
(

2k(x − x[i])
)∣

∣

j
dx

]j−1
)

1
j

≤ 2nk

‖g‖j
j;Q

(

2−nk

∫

Q

|g(y)|j dy

)
j−1

j

= 2
nk
j ‖g‖−1

j;Q,
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and so
‖B‖

Lj(Q)→ℓ2
nk

j
≤ 2n k

j ‖g‖−1
j;Q. (15)

Norm of Id2. From Lemma 2.3 we immediately obtain

‖ Id2 ‖Eν(Q)→Lj(Q) . j
1
ν . (16)

Putting j = k, we get from (12)–(16) that

ek(Id) & k− 1
ν

‖g‖k;Q

‖g(2k·)‖1;n;α;Q

. (17)

STEP 3. We choose a suitable function g to obtain the desired estimate
from (17). For a sufficiently small τ belonging to (0, 1

4
) we put

hτ (t) = ℓ
− 1

n
−α

1 (τ) χ[τ, 1
4
)(t) t−1, t ≥ 0 (18)

Hτ (t) =

∫ ∞

t

hτ (y) dy, t > 0. (19)

We immediately see that suppHτ ⊂ [0, 1
4
] and

Hτ (t) ≈ ℓ
1

n′−α

1 (τ) = ℓ
1

qα
1 (τ), for all t ∈ [0, τ ]. (20)

Set g(x) = Hτ

(

|x|
)

, x ∈ R
n, with τ = e−k and k ∈ N. Obviously, supp g ⊂ Q,

and due to (20) we have, for large k ∈ N,

‖g‖k;Q & ℓ
1

qα
1 (τ) τ

n
k ≈ k

1
qα . (21)

With respect to (17) and (21) it is sufficient to show that this function g satisfies
the estimate

‖g(2k·)‖1;n;α;Q ≤ C (22)

with a positive constant independent of k.

By (19) we have

∣

∣∇
(

g(2kx)
)∣

∣ = 2k |∇g|(2kx) = 2k hτ (2
k|x|), for a.e. x ∈ R

n,

which together with (18) gives

∣

∣∇
(

g(2kx)
)∣

∣ = ℓ
− 1

n
−α

1 (τ) χ[τ, 1
4
)(2

k|x|) |x|−1 . hη(|x|) for a.e. x ∈ R
n, (23)

where η = (e + 2)−k. We can easily compute (cf. [8, (4.8)]) that

h∗
η(s) = hη

(

[ s

κn

+ ηn
]

1
n

)

, 0 ≤ s ≤ κn(1 − ηn), (24)
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where κn denotes the volume of the unit ball in R
n. Let us estimate from above

the norm of the function g in the logarithmic Sobolev space. By the assumption,
α ≥ 0 > − 1

n
. With the aid of (23), (24), (18) and the substitution s

κn
+ ηn = tn

this condition implies
∥

∥∇
(

g(2k·)
)

‖n;α;Q

.

(
∫ 1

0

(

h∗
η(s) ℓα

1 (s)
)n

ds

)
1
n

≈
(
∫ 1

η

[

hη(t) ℓα
1

(

κn(tn − ηn)
)]n

tn−1 dt

)
1
n

≈
(
∫ 1

2η

[

hη(t) ℓα
1 (t)

]n
tn−1 dt

)
1
n

+ hη(η)

(
∫ 2η

η

ℓnα
1

(

κn(tn − ηn)
)

tn−1 dt

)
1
n

≈ 1, when k → ∞

(cf. [8, the proof of Lemma 4.1]), verifying (22) for the gradient part of the
norm of g(2k·). The estimate of the remaining part is even simpler. Since

supp g(2k·) ⊂ 2−kQ and by monotonicity of Hτ plus (20), Hτ (t) . ℓ
1

n′−α

1 (τ) for
all t ≥ 0, we have

‖g(2k·)‖n;α;Q . ℓ
1

n′−α

1 (τ)

(
∫ 2−nk

0

ℓnα
1 (s) ds

)
1
n

. ℓ
1

n′−α

1 (e−k) ℓα
1 (2−nk) 2−k

≈ 2−k k
1

n′ . 1.

The lemma is proved.

3.3. Proof of Theorem 3.2. The estimates follow from Lemma 3.6 and
Lemma 3.7 observing that k− 1

n & k
−( 1

ν
− 1

qα
), k ∈ N, if and only if ν ≤ 1

1−α
.

4. Concluding remarks

It is a natural question whether it would be possible to obtain asymptotic
estimates of entropy numbers of other extremal embeddings in the sense of [6–
11]. Let us look at the model case

W 1,n(log W )1/n′

(Ω) →֒→֒ EEν(Ω), 0 < ν < n′.

Using a method of extrapolation (either a modification of the method of Kühn
and Schonbek [18] similar to that employed in the proof of Lemma 3.6 or the
method of Triebel [25, Paragraph 4.5.2]) together with Lemma 2.3 (ii) and
Proposition 3.4 we obtain the following upper estimate.
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Claim 4.1. Let n ∈ N, n ≥ 2, Ω be a bounded domain in R
n with Lipschitz

boundary and let 0 < ν < n′. Denote by ek the kth entropy number of the natural

embedding Id : W 1,n(log W )1/n′
(Ω) → EEν(Ω). Then

ek .
(

log k
)−( 1

ν
− 1

n′ ). (25)

Unfortunately, the best lower asymptotic estimate of ek (under the assump-
tions of Claim 4.1) which we can obtain is

ek & k− 1
n . (26)

To see this, we use the chain of embeddings

W 1,p(Ω) →֒ W 1,n(log W )
1

n′ (Ω) →֒ EEν(Ω) →֒ Lq(Ω),

(where p > n and q > 1 are fixed numbers) and (10). It is surprising that using
a method analogous to deriving (11) (with a suitable extremal function hτ ) we

obtain a lower estimate ek & k− 1
n (log k)−( 1

ν
− 1

n′ ) which is worse than (26).

It seems likely that the upper estimate (25) is not optimal and the rea-
son why it is so probably lies in the estimate (5) where the dependence on
q on the right hand side is not precise (we have used the rough estimate
‖ Id ‖W 1,n(log W )1/n′

(Ω)→W 1,n(Ω) . 1). At this moment, it is not clear how to
improve this estimate. Both estimates (from the proof of Proposition 3.4) are
based on the upper estimates of entropy numbers of embeddings of the type

Id : B → Lq,

where B is a Besov space, and we are not aware of any suitable analogue of it in
our case. This question is also interesting in the single-exponential case, since
better estimates can improve the constant D in Theorem 3.2.

Acknowledgement. The research was supported by grant no. 201/08/0383 of
the Grant Agency of the Czech Republic and by the INTAS Project 05-1000008-
8157.

We are grateful to Professor Thomas Kühn for directing our attention to
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[16] Kühn, T., Compact embeddings of Besov spaces in exponential Orlicz spaces.
J. London Math. Soc. (2) 67 (2003), 235 – 244.
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