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Estimates for Blow-Up Solutions to

Nonlinear Elliptic Equations

with p-Growth in the Gradient

V. Ferone, E. Giarrusso, B. Messano and M. R. Posteraro

Abstract. In this paper we deal with blow-up solutions to p-Laplacian equations with
a nonlinear gradient term. We prove comparison results for the solutions in terms
of the solutions to suitable symmetrized problems defined in a ball. We analyze two
cases where the form of the term which depends on the gradient plays different roles.
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1. Introduction

Problems involving Laplacian or p-Laplacian operators with blow-up boundary
conditions in a bounded domain Ω ⊂ R

n, n ≥ 2, have been studied by many
authors. Namely, the following typical problem:

{

∆pu = f(u) in Ω

u(x) → ∞ as x→ ∂Ω
(1.1)

has been considered under suitable assumptions on f . Here the p-Laplacian
operator is ∆pu = div(|∇u|p−2∇u), p > 1, and it reduces to Laplacian for
p = 2.

A problem of type (1.1) has first been considered by Bieberbach [12] when
n = 2, p = 2 and f(u) = eu. Successively, a long list of papers has been
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dedicated to the study of problems in the form (1.1), addressing various issues
related to it.

Existence, uniqueness and asymptotic results for solutions to problem (1.1)
have been given, for example, in [7, 14, 17, 21, 22, 24, 30]. Also the possibility to
obtain a priori estimates for solutions to (1.1), via symmetrization techniques,
has been investigated (see, for example, [7, 17, 32]). We recall that there exists
a wide bibliography concerning the case of different boundary conditions such
as, for example, homogeneous Dirichlet conditions (see, for instance, [1, 35]).

In the present paper we are interested in the case in which the equation (1.1)
has a lower-order term which depends on the gradient. The presence of such
a term has been considered in [4, 10, 15, 16, 23, 31, 37]. For example, problems
with blow-up boundary condition for an equation involving the Laplacian and
a term which depends on the gradient are connected with a stochastic control
problem when the state of the controlled system is a diffusion process (see [23]).

We are interested in establishing a priori estimates for solutions to problem
in the form

{

∆pu± |∇u|p = f(u) in Ω

u(x) → ∞ as x→ ∂Ω,
(1.2)

under suitable assumptions on f which depend on the sign which appears in
front of the term |∇u|p (see Sections 3 and 4).

In particular, we prove that any solution of (1.2) can be compared with the
solution v of the “symmetrized” problem

{

∆pv ± |∇v|p = f(v) in Ω#

v(x) → ∞ as x→ ∂Ω#,
(1.3)

where Ω# is the ball centered at the origin such that |Ω#| = |Ω| (we denote by
|E| the Lebesgue measure of a set E ⊆ R

n). Namely, we prove that

min
Ω
u(x) ≥ min

Ω#
v(x). (1.4)

By some examples given in Sections 3 and 4,it is possible to show that minΩ#v(x)
can be explicitly written in terms of |Ω| for some particular choices of f . Such
a result states that one can obtain a sharp estimate from below of a solution
to (1.2) in terms of the solution to a problem defined in a set (ball) having the
same measure of Ω. On the other hand, our approach allows us also to estimate
u from above in terms of the solution w to a problem in the form (1.3) defined
in a ball B such that minΩ u(x) = minB w(x) (see Remarks 3.1 and 4.2). From
this point of view one obtains an estimate of |Ω| in terms of minΩ u(x).

We finally remark that we have to treat probems in the form (1.2) in differ-
ent ways depending on the sign of the term containing the gradient, even though
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the comparison results one can state in both cases appear to be essentially the
same. Indeed, a natural way to obtain a comparison result consists in mak-
ing use of a change of the unknown function. When the positive sign appears
in (1.2) such a transformation leads to a suitable blow-up problem, while, if
the negative sign appears in (1.2), then transformation leads to a homogeneous
Dirichlet problem. This means that different arguments have to be used in the
two cases.

2. The radial case

In this section we give some properties of radial solutions to two boundary value
problems defined in a ball which will be used in the next sections.

We start with the problem with radial symmetric data

{

∆pv = β(v) in BR

v(x) → ∞ as x→ ∂BR,
(2.1)

where BR is the ball centered at the origin with radius R, and β : R+ → R+

satisfies the following conditions:

i) β(s) is a continuous increasing function such that β(0) = 0 and β(s) > 0,
for all s > 0;

ii) (Keller condition)
∫ ∞ 1

( ∫ s

0
β(τ)dτ

)
1
p

ds < +∞.

Under the hypotheses i) and ii) problem (2.1) admits a unique solution (see [14,
Theorem 6.4 and Remark 3.4]) which is radial. Therefore, such a solution
v = v(r) satisfies a Cauchy problem in the form







1

rn−1

(

rn−1 | v′(r) |p−2 v′(r)
)′

= β(v(r)) in (0, R)

v(0) = M, v′(0) = 0,
(2.2)

where M = min[0,R] v(r). Using, for example, results contained in [34] (see
also [27]) one can state the following result.

Proposition 2.1. Let β : R+ → R+ satisfy conditions i) and ii). Let vR1(|x|) =
vR1(r) and vR2(|x|) = vR2(r) be the radial solutions to problem (2.1), resp.,

in the balls BR1 and BR2, with R1, R2 ∈]0,+∞[. Set M1 = minBR1
vR1(x),

M2 = minBR2
vR2(x) and R̄ = min{R1, R2}. If ṽ(s) = v

(

( s
ωn

)
1
n

)

, then the

following statements are true:

I) M1 > M2 =⇒ ṽR1(s) > ṽR2(s), ∀s ∈ [0, ωnR̄
n];
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II) M1 > M2 =⇒ R1 < R2.

III) The function M(R) is a continuous function in ]0,+∞[.

Remark 2.2. Let v be a solution to problem (2.1). The function ṽ(s) defined
in Proposition 2.1 satisfies the equality

ṽ(s) = MR + cn,p

∫ s

0

τ
( 1

n
−1) p

p−1

(
∫ τ

0

β
(

ṽ(σ))dσ

)
1

p−1

dτ, (2.3)

where MR = minBR
v(|x|) = v(0) = ṽ(0) and cn,p =

(

nω
1
n
n

)− p

p−1 .
Indeed, v(r) satisfies the equation in (2.2) and, observing that ṽ(s) is in-

creasing, the equation in (2.2) becomes

d

ds

(

s(1− 1
n

)p(ṽ′(s))p−1
)

=
1

(

nωn

1
n

)pβ(ṽ(s)).

From here, integrating from 0 to s, we have

ṽ′(s) = s
( 1

n
−1) p

p−1

(
∫ s

0

1
(

nωn

1
n

)pβ(ṽ(σ))dσ

)
1

p−1

,

and then a further integration between 0 and s gives (2.3).

Now, let us consider the problem
{ − ∆pv = β(v) in BR

v = 0 on ∂BR,
(2.4)

where BR is the ball centered at the origin with radius R. Assume that the
function β : R+ → R+ satisfies the following conditions:

j) β(r) is decreasing;

jj) lim
r→0+

β(r) < +∞ .

According to [26] problem (2.4) has a unique solution v ∈ W
1,p
0 (Ω) which is

radial. Then setting v(|x|) = v(r) and ṽ(s) = v
(

( s
ωn

)
1
n

)

proceeding as in Re-
mark 2.2, we have

ṽ(s) = MR − cn,p

∫ s

0

τ(
1
n
−1)( p

p−1)
(

∫ τ

0

β(ṽ(σ)) dσ

)
1

p−1

dτ, (2.5)

where MR = maxBR
v(x).

Proposition 2.3. Let β : R+ → R+ satisfy conditions j) and jj). Let vR1(r)
and vR2(r) be the solutions to problem (2.4), resp., in the balls BR1 and BR2,

with R1, R2 ∈]0,+∞[. Set M1 = maxBR1
vR1(x),M2 = maxBR2

vR2(x) and R̄ =

min{R1, R2}. If ṽ(s) = v
(

( s
ωn

)
1
n

)

the following statements are true:
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I) M1 > M2 =⇒ ṽR1(s) > vR2(s), ∀s ∈ [0, ωnR̄
n];

II) M1 > M2 =⇒ R1 > R2.

III) The function M(R) is continuous in ]0,+∞[ .

Proof. From (2.5) we have

ṽR1(s) = M1 − cn,p

∫ s

0

τ(
1
n
−1) p

p−1

(
∫ τ

0

β
(

ṽR1(σ))dσ

)
1

p−1

dτ

ṽR2(s) = M2 − cn,p

∫ s

0

τ
( 1

n
−1) p

p−1

(
∫ τ

0

β
(

ṽR2(σ))dσ

)
1

p−1

dτ.

If I) is not satisfied, being M1 = ṽR1(0) > M2 = ṽR2(0), there exists s̄ ∈]0, ωnR̄
n]

such that ṽR1(s̄) = ṽR2(s̄), ṽR1(s) > ṽR2(s), for all s ∈]0, s̄[. Consequently,

0 = ṽR1(s̄) − ṽR2(s̄)

= M1−M2 −cn,p

∫ s̄

0

τ
−

p(n−1)
n(p−1)

[

(
∫ τ

0

β
(

ṽR1(σ))dσ

)
1

p−1

−
(

∫ τ

0

β
(

ṽR2(σ))dσ

)
1

p−1

]

dτ

> 0.

Thus, we have a contradiction and I) is proved.

According to the uniqueness of the solution in the ball with radius R1,
see [26], it is enough to prove that R1 ≥ R2. If R1 < R2, we will have by I)
0 = ṽR1(R1) < vR2(R2) = 0 that is absurdo. Then II) is proved.

Obviously, from II) we derive that the function M(R) is increasing. Now,
arguing by contradiction, suppose that for some R0 the inequality M(R−

0 ) <
M(R+

0 ) holds. Hence M(R−
0 ) ≤ M(R0) ≤ M(R+

0 ), and at least one of these
inequalities is strict. If M(R−

0 ) < M(R0), take Mα ∈]M(R−
0 ),M(R0)[ and

consider the following problem:






1

rn−1

(

rn−1|v′(r)|p−2v′(r)
)′

= β(v(r)) in (0, R)

v(0) = Mα, v′(0) = 0.

Let vα be the unique (classical) solution of such a problem (see [34]). Since
Mα < MR0 by I) vα(r) < vR0(r). Then there exists Rα such that vα(Rα) = 0
and, by II), Rα < R0, that implies Mα < M(R−

0 ) < Mα, that is absurdo. The
proposition is completely proved.

3. First comparison result

Let Ω be a bounded domain in R
n, n ≥ 2. We consider the problem

{

div(a(x, u,∇u)) +H(x, u,∇u) = f(u) in Ω

u(x) → ∞ as x→ ∂Ω,
(3.1)
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where a(x, s, ξ) : Ω × R × R
n → R

n is a Carathéodory function satisfying, for
some p > 1, the following ellipticity condition:

a(x, s, ξ)ξ ≥ |ξ|p, a.e. x ∈ Ω, ∀(s, ξ) ∈ R × R
n. (3.2)

H(x, s, ξ) : Ω × R × R
n → R is a Carathéodory function satisfying, for some

positive constant γ, the inequality

a(x, s, ξ)ξ ≤ H(x, s, ξ) ≤ γ|ξ|p, a.e. x ∈ Ω, ∀(s, ξ) ∈ R × R
n, (3.3)

and f : R → R+ is a continuous function.

We say that u ∈W
1,p
loc (Ω) is a weak solution to problem (3.1) if a(x, u,∇u) ∈

(

Lp′(Ω)
)n

, f(u) ∈ L
p′

loc(Ω) and

−
∫

Ω′

a(x, u,∇u)∇ψ dx+

∫

Ω′

H(x, u,∇u)ψ dx =

∫

Ω′

f(u)ψ dx, (3.4)

for every ψ ∈ W
1,p
0 (Ω′) ∩ L∞(Ω′), with Ω′ ⊂⊂ Ω and limx→∂Ω u(x) = +∞.

Let us consider the problem

{

∆pv + |∇v|p = f(v) in Ω#

v(x) → ∞ as x→ ∂Ω#,
(3.5)

where Ω# is the ball such that |Ω#| = |Ω|.
Our aim is to prove a comparison result between the solutions to problems

(3.1) and (3.5).

Theorem 3.1. Let u ∈ W
1,p
loc (Ω) be a weak solution to problem (3.1). If β(s) =

(p− 1)1−psp−1f((p − 1) log s), s > 0, satisfies i) and ii) in Section 2 and v ∈
W

1,p
loc (Ω#) is the radial solution to problem (3.5), then

ess inf
x∈Ω

u(x) ≥ ess inf
x∈Ω#

v(x). (3.6)

Before giving the proof of the above theorem we briefly recall the definition
of increasing rearrangement of a measurable function. For a measurable function
u : Ω ⊂ R

n → R one can define the distribution function µu of u as follows:

µu(t) =
∣

∣{x ∈ Ω : u(x) < t}
∣

∣, t ∈ R.

The function µu is increasing; moreover, its generalized inverse function is the
increasing rearrangement u∗ of u

u∗(s) = inf{t ∈ R : µu(t) > s}, s ∈ [0, |Ω|].
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The spherically symmetric increasing rearrangement of u is defined by

u#(x) = u∗(ωn|x|n), x ∈ Ω#,

where Ω# is the ball centered at the origin having the same measure as Ω and
ωn is the measure of the unit ball in R

n. For an exhaustive treatment of the
properties of rearrangements we refer to [2, 19,20,29].

We finally recall that for a measurable set E ⊂ R of finite measure, the
following well known isoperimetric inequality holds true (see [13]):

P (E) ≥ nω
1
n |E|1− 1

n ,

where P (E) denotes the perimeter of E.

Proof of Theorem 3.1. Let u ∈ W
1,p
loc (Ω) be a weak solution of problem (3.1).

Let us consider, for t > 0, the following function belonging toW 1,p
0 (Ω′)∩L∞(Ω′),

for some Ω′ ⊂⊂ Ω:

ϕ(x) =











euh, ū < t− h

eu(t− ū), t− h ≤ ū < t

0, ū ≥ t,

where h > 0 and ū = e
u

p−1 . If we use ϕ(x) as test function in (3.4), using the
ellipticity condition (3.2) and inequality (3.3), we have

(p− 1)p−1

∫

t−h≤ū<t

|∇ū|p dx ≤ 1

p− 1

∫

t−h≤ū<t

a(x, u,∇u)∇u e
pu

p−1 dx

≤
∫

ū<t−h

f(u) euh dx+

∫

t−h≤ū<t

f(u) eu(t− ū) dx.

Passing to the limit in h, in a standard way (see, for example, [1,35]) we obtain

d

dt

∫

ū<t

|∇ū|pdx ≤
∫

ū<t

β(ū) dx. (3.7)

It is well known that, from the Hölder inequality, the Fleming–Rishel coarea

formula and the isoperimetric inequality, for a.e. t>M= ess infx∈Ω ū(x) = e
u∗(0)
p−1 ,

it holds
(

nω
1
n
n (µū(t))

1− 1
n

)p

(µ′
ū(t))p−1

≤ d

dt

∫

ū<t

|∇ū|pdx.

Consequently, by the properties of rearrangements, from (3.7) we derive the
following inequality, a.e. in [0, |Ω|]:

(U ′(s))p−1
(

nω
1
n
n s

1− 1
n

)p

≤
∫ s

0

β(U(σ)) dσ, (3.8)
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where we have put U(s) = ū∗(s) = e
u∗(s)
p−1 . After an integration, from (3.8) it is

immediate to obtain

U(s) ≤M + cn,p

∫ s

0

τ(
1
n
−1) p

p−1

[
∫ τ

0

β(U(σ))dσ

]
1

p−1

dτ, ∀s ∈ [0, |Ω|[.

where cn,p =
(

nω
1
n
n

)− p

p−1 .

For ε > 0, because of Proposition 2.1, there exists a ball Dε such that the
radial solution wε to problem

{

∆pwε = β(wε) in Dε

wε(x) → ∞ as x→ ∂Dε,

is such that minDε
wε(x) = M+ε. Set wε(x) = Wε(ωn|x|n), Wε(s) is the solution

to problem

Wε(s) = M + ε+ cn,p

∫ s

0

τ
( 1

n
−1) p

p−1

[
∫ τ

0

β(Wε(σ))dσ

]
1

p−1

dτ, (3.9)

in [0, sε], where sε = |Dε| < |Ω|. Being

M = min
s∈[0,sε]

U(s) < M + ε = min
s∈[0,sε]

Wε(s),

let us prove that
U(s) < Wε(s), ∀s ∈ [0, sε]. (3.10)

On the contrary, there exists s̄ ∈ [0, sε], clearly s̄ < |Ω|, such that U(s̄) = Wε(s̄)
and U(s) < Wε(s), for all s ∈ [0, s̄]. Then, from (3.8) and (3.9) it follows

0 = U(s̄) −Wε(s̄)

≤ −ε+ cn,p

∫ s̄

0

τ(
1
n
−1) p

p−1

[

(
∫ τ

0

β(U(σ)) dσ

)
1

p−1

−
(

∫ τ

0

β(Wε(σ)) dσ

)
1

p−1

]

dτ

< 0,

so we have a contradiction. Condition (3.10) is thus proved.

Let us observe that Wε(s) is monotonically convergent to a function W (s),
with respect to ε. Letting ε→ 0 in (3.10), it follows

U(s) ≤ W (s), ∀s ∈ [0, s0[, (3.11)

where s0 = limε→0 sε ≤| Ω | and W (s) is the solution of

W (s) = M + cn,p

∫ s

0

τ(
1
n
−1) p

p−1

[
∫ τ

0

β(W (σ))dσ

]
1

p−1

dτ, (3.12)
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in [0, s0[. Actually it holds that, for every s̃ < s0, Wε(s) → W (s), s ∈ [0, s̃],
hence W (s) satisfies (3.12) in [0, s0[.

Set w(x) = W (ωn|x|n), w(x) is the solution of problem

{

∆pw = β(w) in B

w(x) → ∞ as x→ ∂B,
(3.13)

where B is the ball such that |B| = s0.
Set ν(x) = log(wp−1(x)), x ∈ B, ν(x) is the unique solution of problem

{

∆pν + |∇ν|p = f(ν) in B

ν(x) → ∞ as x→ ∂B.
(3.14)

Let us observe that W (x) = e
ν(x)
p−1 so W (s) = e

ν∗(s)
p−1 . Then, being U(s) =

e
u∗(s)
p−1 , from (3.11) it follows u∗(s)≤ ν∗(s), for all s∈ [0,|B|], where |B| = s0 ≤ |Ω|.

Finally, considering the radial solution v(x) to problem (3.5), the inequality
(3.6) follows from condition |B| ≤ |Ω| because of II) of Proposition 2.1. The
theorem is thus proved.

Remark 3.2. Let us observe that in the proof of Theorem 3.1 it is contained
the comparison result

u∗(s) ≤ ν∗(s), ∀s ∈ [0, |B|],

where ν is the solution to the problem (3.14) in a ball B, such that

ess inf
x∈Ω

u = ess inf
x∈B

ν.

Remark 3.3. We observe that, in order to prove the comparison result in
Theorem 3.1 it is necessary to know that for problem (3.13) there is a unique
solution and the properties established in Proposition 2.1 hold true. Every time
f is such that the above properties are satisfied one can prove Theorem 3.1. The
assumptions we have made on f are an example of a sufficient condition.

Example 3.4. In some cases it is possible to write the solution to problem (3.5)
and then to make explicit the lower bound in (3.6). For example, for 1 < p < n,
one can choose

f(s) = (p− 1)p−1e
pp′

n−p
s
, (3.15)

where, as usual, p′ = p

p−1
. We then consider the problem (3.5) in the form

{

∆pv + |∇v|p = (p− 1)p−1e
pp′

n−p
v in BR

v(x) → ∞ as x→ ∂BR,
(3.16)
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where BR is the ball centered at the origin with radius R. Clearly β(s) =

(p− 1)1−psp−1f((p−1) log s) = s
np

n−p
−1 and the assumptions of Theorem 3.1 are

satisfied. The function

v(x) = (n− p) log

(

[(n− p

p− 1

)p−1

n
]

1
pp′

R
1
p

( 1

Rp′ − |x|p′
)

1
p′

)

,

is the radial solution of problem (3.16). Hence, for a solution u to problem
(3.1), with f(u) as in (3.15), in any domain Ω with |Ω| = |BR|, the following
inequality holds:

ess inf
x∈Ω

u ≥ n− p

p′
log

(

[(n− p

p− 1

)p−1

n
]

1
p 1

R

)

.

4. Second comparison result

We consider the problem

{

div(a(x, u,∇u)) = G(x, u,∇u) + f(u) in Ω

u(x) → ∞ as x→ ∂Ω,
(4.1)

where Ω is a bounded subset of R
n, n ≥ 2, p is a real number with p > 1, and

a(x, s, ξ) : Ω×R×R
n → R

n is a Carathéodory function satisfying the ellipticity
condition (3.2), G(x, s, ξ) : Ω×R×R

n → R is a Carathéodory function satisfying
the inequality

|G(x, s, ξ)| ≤ |ξ|p, a.e. x ∈ Ω, ∀(s, ξ) ∈ R × R
n,

and f : R → R+ is a continuous function.

Let us consider the problem
{

∆pv − |∇v|p = f(v) in Ω#

v(x) → ∞ as x→ ∂Ω#.
(4.2)

Theorem 4.1. Let u ∈ W
1,p
loc (Ω) be a weak solution to problem (4.1) and let

F (r) = (p − 1)1−p rp−1 f(log r1−p), r > 0, be a decreasing function such that

limr→0+ F (r) < +∞. If v ∈ W
1,p
loc (Ω#) is a solution to problem (4.2), then

ess inf
x∈Ω

u(x) ≥ ess inf
x∈Ω#

v(x). (4.3)

Moreover if F (r) ∈ C2(]0,+∞[), then

∫ s

0

f(u∗(r)) e
−u∗(r) dr ≥

∫ s

0

f(v∗(r)) e
−v∗(r) dr, r ∈ [0, |Ω|[. (4.4)
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Remark 4.2. We observe explicitly that problem (4.2) has a unique radial
solution. Indeed, by a suitable change of unknown function (see also problems
(4.10) and (4.11) in the proof below) it is possible to write problem (4.2) in the
form (2.4). The hypotheses made in Theorem 4.1 are such that conditions j)
and jj) in Section 2 are satisfied and, taking into account the results in [26], the
uniqueness of the solution follows.

Proof of Theorem 4.1. We use, for t > 0, the following test function in the weak
formulation of problem (4.1),

ϕ(x) =











e−uh, ũ > t+ h

e−u(ũ− t), t < ũ ≤ t+ h

0, ũ ≤ t,

where h > 0 and ũ = e
− u

p−1 . Proceeding as in the proof of Theorem 3.1 we
obtain, instead of (3.8),

(−U ′(s))p−1
(

nω
1
n
n s

1− 1
n

)p

≤
∫ s

0

F (U(σ)) dσ, (4.5)

where we have used the definition of F (r) and we have put U(s) = e
−

u∗(s)
p−1 .

After an integration one immediately obtains

U(s) ≥M − cn,p

∫ s

0

τ(
1
n
−1)( p

p−1)
(

∫ τ

0

F (U(σ)) dσ

)
1

p−1

dτ, (4.6)

where M = U(0) = e
−

u∗(0)
p−1 and cn,p =

(

nω
1
n
n

)− p

p−1 .

For ε > 0, because of Proposition 2.3, there exists sε > 0 and a function
wε(x) such that supx∈Dε

wε(x) = M − ε and wε(x) is solution to problem

{ − ∆pwε = F (wε) in Dε

wε = 0 on ∂Dε,

where Dε is the ball centered at the origin such that |Dε| = sε. The function
wε(x) is radial and Wε(ωn|x|n) = wε(x) satisfies, for s ∈ [0, sε],

Wε(s) = M − ε−cn,p

∫ s

0

τ(
1
n
−1)( p

p−1)
(

∫ τ

0

F (Wε(σ)) dσ

)
1

p−1

dτ. (4.7)

Being U(0) = sups∈[0,|Ω|[ U(s) > Wε(0) = sups∈[0,sε[Wε(s), there exists δ > 0
such that U(s) > Wε(s) in [0, δ[. We claim that

U(s) > Wε(s) ∀s ∈
[

0,min{sε, |Ω|}
[

. (4.8)
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Otherwise there exists s̄ > 0 such that U(s) > Wε(s) in [0, s̄[ and U(s̄) = Wε(s̄).
Then by (4.6) and (4.7) we have

0 = U(s̄) −Wε(s̄)

= ε−cn,p

∫ s̄

0

1

τ p′(1− 1
n)

[

(
∫ τ

0

F (U(σ)) dσ

)
1

p−1

−
(

∫ τ

0

F (Wε(σ)) dσ

)
1

p−1

]

dτ > 0,

that is a contradiction.

Let us observe that (4.8) implies also sε ≤ |Ω|; otherwise we would have
Wε(|Ω|) > lims→|Ω| U(s) = 0 against (4.8). Letting ε go to 0 in (4.7) we have

U(s) ≥ W (s), ∀s ∈ [0, s0[, (4.9)

where s0 = limε→0 sε ≤ |Ω| and W (s) is solution of

W (s) = M − cn,p

∫ s

0

τ(
1
n
−1)( p

p−1)
(

∫ τ

0

F (W (σ)) dσ

)
1

p−1

dτ.

Set w(x) = W (ωn|x|n), w(x) is a solution of

{ − ∆pw = F (w) in B

lim
|x|→∂B

w(x) = 0 on ∂B, (4.10)

where B is the ball centered at the origin such that |B| = s0.

If we consider the function ν(x) such that w(x) = e
−

ν(x)
p−1 , x ∈ B, ν(x) is the

unique solution of

{

∆pν − |∇ν|p = f(ν) in B

ν(x) → ∞ as x→ ∂B.
(4.11)

Let us observe that W (s) = e
−

ν∗(s)
p−1 . Then being U(s) = e

−
u∗(s)
p−1 from (4.9)

we have u∗(s) ≤ ν∗(s), for all s ∈ [0, |B|[, that implies ess infx∈Ω u(x) =
ess infx∈B ν(x) and

|B| ≤ |Ω|. (4.12)

To prove (4.3)we argue bycontradiction. If ess infx∈Ω u(x)=ess infx∈B ν(x)<
ess infx∈B v(x), then by Proposition 2.3 it would follow |B| ≥ |Ω#|. By unique-
ness equality sign cannot occur and this contradicts (4.12). This means

ess inf
x∈Ω

u(x) ≥ ess inf
x∈B

ν(x).
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To prove (4.4) we consider (4.5) and we set U1(s) =
∫ s

0
F

(

e
−

u∗(τ)
p−1

)

dτ ob-
taining



















U ′′
1 +

F ′
(

F−1(U ′
1)

)

U
1

p−1

1
(

nω
1
n
n s

1− 1
n

)
p

p−1

≥ 0

U1(0) = 0, U ′
1(0) = F

(

e
−

u∗(0)
p−1

)

.

If v(x) is a solution of (4.2), then setting V1(s) =
∫ s

0
F

(

e
−

v∗(τ)
p−1

)

dτ we have


















V ′′
1 +

F ′
(

F−1(V ′
1)

)

V
1

p−1

1
(

nω
1
n
n s

1− 1
n

)
p

p−1

= 0

V1(0) = 0, V ′
1(0) = F

(

e
−

v∗(0)
p−1

)

.

Since F ′(r) ≤ 0, a maximum principle gives U1(s) ≥ V1(s), that is (4.4).

Remark 4.3. Let us observe that in the proof of Theorem 4.1 it is contained
the comparison result

u∗(s) ≤ ν∗(s), ∀s ∈ [0, |B|],
where ν is the solution to the problem (4.11) in B, such that

ess inf
x∈Ω

u = ess inf
x∈B

ν.

Example 4.4. As in the previous section, in some cases, it is possible to write
the solution to problem (4.2) and then to make explicit the lower bound in (4.3).
We will limit ourself to the simple case n = p = 2, and we choose

f(s) = es−e−s

. (4.13)

We then consider the problem (4.2) in the form
{

∆v − |∇v|2 = ev−e−v

in BR

v(x) → ∞ as x→ ∂BR,
(4.14)

where BR is the ball centered at the origin with radius R. Clearly F (r) =
r f(− log r) = e−r and the assumptions of Theorem 4.1 are satisfied. If we put
LR = 4 + 2

√
4 + 2R2, the function

v(x) = − log

(

2 log
L2

R − 8|x|2
8LR

)

,

is the radial solution of problem (4.14). Hence, for a solution u to problem (4.1)
with f(u) as in (4.13), in any domain Ω with |Ω| = |BR|, the following inequality
holds:

ess inf
x∈Ω

u ≥ − log

(

2 log
LR

8

)

.
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bridge Univ. Press 1952.

[20] Kawohl, B., Rearrangements and Convexity of Level Sets in PDE. Lect. Notes
Math. 1150. Berlin: Springer 1985.

[21] Keller, J. B., On solutions of ∆u = f(u). Comm. Pure Appl. Math. 10 (1957),
503 – 510.

[22] Kondrat’ev, V. A. and Nikishkin, V. A., On the asymptotic behavior near the
boundary of the solution of a singular boundary value problem for a semilinear
elliptic equation (in Russian). Diff. Uravneniya 26 (1990), 465 – 468; transl. in
Diff. Equ. 26 (1990), 345 – 348.

[23] Lasry, J. M. and Lions, P.-L., Nonlinear elliptic equations with singular bound-
ary conditions and stocastic control with state constraints. I. The model prob-
lem. Math. Ann. 283 (1989), 583 – 630.

[24] Lazer, A. C. and McKenna, P. J., On a problem of Bieberbach and Rademacher.
Nonlinear Anal. 21 (1993), 327 – 335.

[25] Lazer, A. C. and McKenna, P. J., Asymptotic behaviour of solutions of bound-
ary blow-up problems. Diff. Int. Equ. 7 (1994), 1001 – 1019.

[26] Maderna, C., Optimal problems for a certain class of nonlinear Dirichlet prob-
lems. Boll. Un. Mat. Ital. Suppl. 1980, 31 – 43.

[27] McKenna, P. J., Reichel, W. and Walter, W., Symmetry and multiplicity
for nonlinear elliptic differential equations with boundary blow-up. Nonlinear

Anal. 28 (1997), 1213 – 1225.

[28] Mohammed, A., Porcu, G. and Porru, G., Large solutions to some non-linear
O.D.E. with singular coefficients. Nonlinear Anal. 47 (2001), 513 – 524.
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