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Commutativity up to a Factor:
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Abstract. We give more results on the question of commutativity up to a factor for
bounded operators and which has been recently of interest to a number of mathemati-
cians. We also give some generalizations to unbounded operators.
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1. Introduction

The problem of commutativity up to a factor has been of interest recently to
many authors thanks to its direct applications to quantum mechanics. Broadly
speaking, in some situations two operators A and B do not commute, i.e.,
BA 6= AB but instead, they satisfy a relation of the form BA = λAB for some
complex number λ different from zero.

Brooke, Busch and Pearson proved in [1] the following theorem:

Theorem 1.1. Let A, B be bounded operators such that AB 6= 0 and AB =
λBA, λ ∈ C

∗. Then:

1. if A or B is self-adjoint, then λ ∈ R;

2. if both A and B are self-adjoint, then λ ∈ {−1, 1};

3. if A and B are self-adjoint and one of them is positive, then λ = 1.

Yang and Du [13] improved some results in the previous theorem and using
the Fuglede–Putnam theorem they arrived at

Theorem 1.2. Let A, B be bounded operators such that AB = λBA 6= 0,
λ ∈ C

∗. Then:
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1. if A or B is self-adjoint, then λ ∈ R;

2. if either A or B is self-adjoint and the other is normal, then λ ∈ {−1, 1};

3. if A and B are both normal, then |λ| = 1.

The natural generalization to Banach algebras was carried out by Schmoeger
in [12]. The other natural generalization, i.e., to unbounded operators is, in part,
the purpose of this paper. We also note that in the bounded case if A and B

are such that BA = λAB, then setting B = I (the identity operator) we see
that λ = 1 with no extra assumption on A. This observation means that there
is hope of doing more and we in effect can do more, i.e., we can still obtain
the same conclusions with different and/or weaker hypotheses. The main tools
needed to achieve this aim are the following:

Lemma 1.3 (Embry [3]). If H and K are commuting normal operators and
AH = KA, where 0 is not in W (A), then H = K.

Theorem 1.4 (Fuglede–Putnam [4,8]). If A, N and M are bounded operators
such that M and N are normal, then

AN = MA =⇒ AN∗ = M∗A,

and if N and M are unbounded, then “=” is replaced by “⊂” in the last displayed
equation.

Theorem 1.5 (Mortad [6]). Assume that N , H and K are unbounded operators
having the property: N = HK = KH are normal. Also assume that D(H) ⊂
D(K). Assume further that A is a bounded operator for which 0 6∈ W (A) and
such that AH ⊂ KA. Then H = K.

The main results in this present paper are as follows: We improve some
results obtained in Theorems 1.1 & 1.2. We then generalize them to unbounded
operators.

Throughout this paper the numerical range of an operator A defined on a
Hilbert space H, i.e., the set {〈Af, f〉 : f ∈ H}, will be denoted by W (A).

Finally, we assume the reader is familiar with notions and results about
bounded and unbounded linear operators in a Hilbert space. Some general
references are [2, 5, 9].

2. Improving the bounded case

We begin with the following improvement of some parts of Theorem 1.1.

Proposition 2.1. Assume that A and B are two bounded operators such that
AB 6= 0 and AB = λBA, λ ∈ C

∗. If A or B is normal and the other does not
have 0 in its numerical range, then λ = 1.
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Proof. The proof is based on Lemma 1.3. Since B is normal, λB is normal and
it obviously commutes with B. As 0 6∈ W (A), then Lemma 1.3 gives us B = λB

and hence λ = 1. The proof is very similar if one assumes that A is normal and
that 0 6∈ W (B).

We have the following corollary which is yet another improvement of the
third assertion of Theorem 1.1.

Corollary 2.2. Let A and B be two bounded operators such that AB 6= 0 and
AB = λBA, λ ∈ C

∗. If A or B is normal and the other is strictly positive, then
λ = 1.

Proof. Assume that A is strictly positive, i.e., A > 0, and that B is normal.
Hence 0 6∈ W (A). Since B is normal, the foregoing proposition then applies.

Remark 2.3. The previous corollary allows us to give a new proof of (3) of
Theorem 1.2 which goes as follows (it also uses the Fuglede–Putnam theorem):
Assume that A and B are normal, then λB is normal. Whence:

AB=λBA ⇒ AB=(λB)A ⇒ AB∗=λB∗A ⇒ AB∗B=λB∗AB= |λ|2B∗BA.

But B∗B is self-adjoint and positive and A is normal, hence the previous corol-
lary applies and we obtain |λ|2 = 1 or |λ| = 1.

Proposition 2.4. Assume that A, B and C are bounded operators on a Hilbert
space such that AB = λCA 6= 0. If B and C are self-adjoint, then λ ∈ R.

Proof. Since B and C are self-adjoint, B and λC are normal and applying the
Fuglede–Putnam theorem gives us AB = λCA. This, combined with AB =
λCA yields λ = λ, i.e., λ ∈ R.

Remark 2.5. The result does not hold in general if only A is assumed to
be self-adjoint. First, the method of proof uses the Fuglede–Putnam theorem
and we would need in this case a four-operator version of the this well-known
theorem which does not exist (cf. [7]). We may also illustrate this more by the
following example:

Example 2.6. Take λ ∈ C
∗ and consider

A = I =

(

1 0
0 1

)

, B =

(

0 0
λ 0

)

and C =

(

0 0
1 0

)

.

Then A is self-adjoint and AB = λCA (6= 0) but λ is arbitrary.
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3. The unbounded case

Now we pass to the case where one of the operators is unbounded. We have

Theorem 3.1. Let A be an unbounded operator and let B be a bounded one.
Assume that BA ⊂ λAB 6= 0 where λ ∈ C. Then:

1. λ is real if A is self-adjoint;

2. λ = 1 if 0 6∈ W (B) (the numerical range of B) and if A is normal; hence
λ = 1 if B is strictly positive and A is normal;

3. λ ∈ {−1, 1} if A is normal and B is self-adjoint.

Proof. 1. Since BA ⊂ λAB and since A is self-adjoint (and hence A and
λA are normal), the Fuglede–Putnam theorem yields BA ⊂ λAB. Now for
f ∈ D(A) = D(BA) ⊂ D(λAB) = D(λAB), one has

λABf = λABf.

Hence λ is real as AB 6= 0.

2. Let us prove the first part of the assertion. Since A is normal, so is λA.
Besides λAA = AλA = λA2. Since 0 6∈ W (B), Theorem 1.5 yields λ = 1.

Now we prove the second assertion. We note that B cannot have 0 in its
numerical range as B is strictly positive. Since A is self-adjoint, λA is normal
and hence Theorem 1.5 gives A = λA which, in its turn, gives λ = 1.

3. One has

BA ⊂ λAB =⇒ B2A ⊂ λBAB ⊂ λ2AB2.

Since B is self-adjoint, B2 is positive and by 2) of this theorem we obtain that
λ2 = 1. Thus λ = 1 or λ = −1.

Remark 3.2. The question of whether the result in 3) remains valid for normal
B and self-adjoint A is open. Another natural question is whether one can prove
that λ lies on the unit circle if A and B are both normal.

Remark 3.3. The relation AB = λBA, λ 6∈ R, has no bounded self-adjoint
operators A and B verifying AB 6= 0. However, the relation AB = λBA,
with |λ| = 1, has representations by unbounded self-adjoint operators A and B

(see [10, 11]). Such unbounded operators are the “natural” representations of
this relation.
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