
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 29 (2010), 275–302
DOI: 10.4171/ZAA/1409

Trace Operators in Besov and
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Abstract. We determine the trace of Besov spaces Bs
p,q(R

n) and Triebel–Lizorkin
spaces Fs

p,q(R
n) – characterized via atomic decompositions – on hyperplanes R

m, n >

m ∈ N, for parameters 0 < p, q ≤ ∞ and s > n−m
p . The limiting case s = n−m

p is
investigated as well. Our results remain valid considering the classical spaces B

s
p,q,

F
s
p,q – defined via differences. Finally, we include some density assertions, which imply

that the trace does not exist when s < n−m
p .

Keywords. Besov spaces, Triebel–Lizorkin spaces, traces, dichotomy

Mathematics Subject Classification (2000). 46E35

1. Introduction

In this article we investigate traces of Besov and Triebel–Lizorkin spaces of
positive smoothness – sometimes briefly denoted as B- and F-spaces in the
sequel. A clarification of this problem is of crucial interest for boundary value
problems of elliptic differential operators.

Besov spaces have been studied for many decades already, resulting, for
instance, from the study of partial differential equations, interpolation theory,
approximation theory, harmonic analysis. Triebel–Lizorkin spaces were intro-
duced independently by Triebel and Lizorkin in the early 1970s. For a detailed
treatment together with historical remarks we refer to Triebel [7, 8]. If

0 < p, q <∞ and s > 1
p

+ max
(

0, (n− 1)
(

1
p
− 1
)

)

the trace of these spaces – on hyperplanes R
n−1 – has been known to be a

Besov space for a long time, cf. [7, Section 2.7.2]. Since modern subatomic
characterizations admit new insights into the nature of these spaces, we are
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now able to extend these results to s > 1
p
. We deal with the most recent

definition Bs
p,q(R

n) and Fs
p,q(R

n) relying on atomic decompositions containing
those f ∈ Lp(R

n) which can be represented as

f(x) =
∞
∑

j=0

∑

m∈Zn

λj,maj,m(x), x ∈ R
n, (1.1)

with coefficients λ = {λj,m ∈ C : j ∈ N0,m ∈ Z
n} belonging to some appropri-

ate sequence spaces bsp,q and f s
p,q, respectively. In particular, s > 0, 0 < p ≤ ∞

(p < ∞ for the F-spaces), 0 < q ≤ ∞, and aj,m(x) are normalized atoms.
Furthermore,

‖f |Bs
p,q(R

n)‖ := inf ‖λ|bsp,q‖ and ‖f |Fs
p,q(R

n)‖ := inf ‖λ|f s
p,q‖,

where the infimum is taken over all admissible representations (1.1).

Our results naturally extend the ones previously known, i.e., concerning
traces on the hyperplane R

n−1 we prove for s > 1
p
,

Tr Bs
p,q(R

n) = B
s− 1

p
p,q (Rn−1) and Tr Fs

p,q(R
n) = B

s− 1
p

p,p (Rn−1).

In the limiting case s = 1
p

we obtain

Tr B1/p
p,q (Rn) = Lp(R

n−1), 0 < q ≤ min(p, 1)

and
Tr F1/p

p,q (Rn) = Lp(R
n−1), 0 < p < 1.

Our results may be extended to more general hyperplanes R
m, n > m ∈ N.

In particular, all our trace results for Besov spaces Bs
p,q remain valid for the

classical Besov spaces Bs
p,q as well. With some restrictions on the parameters

this is also true for Triebel–Lizorkin spaces Fs
p,q.

We conclude with the observation that the spaces Bs
p,q(R

n) and Fs
p,q(R

n)
either have a trace in Lp(R

n−1) or the collection of all C∞ functions in R
n with

compact support in R
n \ R

n−1 is dense in them. Related dichotomy numbers
are introduced and calculated.

The paper is organized as follows. In Section 2 we present two different
approaches to Besov and Triebel–Lizorkin spaces of positive smoothness and
briefly discuss their connection. In Section 3 we recall the concept of how to
understand traces on hyperplanes R

m in these function spaces defined on R
n.

With the help of the atomic approach we derive our main results for B- and F-
spaces, when s > n−m

p
as well as for the limiting case s = n−m

p
. Finally, Section 4

contains some density assertions in form of dichotomy numbers, which imply
the non-existence of a trace when s < n−m

p
.
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2. Besov and Triebel-Lizorkin spaces with positive smooth-
ness on R

n

We use standard notation. Let N be the collection of all natural numbers and
let N0 = N ∪ {0}. Let R

n be Euclidean n-space, n ∈ N, C the complex plane.
The set of multi-indices β = (β1, . . . , βn), βi ∈ N0, i = 1, . . . , n, is denoted by
N

n
0 , with |β| = β1 + · · · + βn, as usual. Moreover, if x = (x1, . . . , xn) ∈ R

n and
β = (β1, . . . , βn) ∈ N

n
0 we put xβ = x

β1

1 · · ·xβn
n .

We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x,
where {ak}k, {bk}k are non-negative sequences and ϕ, ψ are non-negative func-
tions. If a ∈ R, then a+ := max(a, 0) and [a] denotes the integer part of a.

Given two (quasi-) Banach spaces X and Y , we write X →֒ Y if X ⊂ Y

and the natural embedding of X in Y is continuous. All unimportant positive
constants will be denoted by c, occasionally with subscripts. For convenience,
let both dx and | · | stand for the (n-dimensional) Lebesgue measure in the
sequel.

Let Qj,m with j ∈ N0 and m ∈ Z
n denote a cube in R

n with sides parallel
to the axes of coordinates, centered at 2−jm, and with side length 2−j+1. For
a cube Q in R

n and r > 0, we denote by rQ the cube in R
n concentric with Q

and with side length r times the side length of Q. Furthermore, χj,m stands for
the characteristic function of Qj,m.

2.1. Definitions and basic properties. We give an atomic characterization
of Besov and Triebel–Lizorkin spaces Bs

p,q(R
n) and Fs

p,q(R
n). This provides a

constructive definition expanding functions f via atoms – excluding any mo-
ment conditions – and suitable coefficients, where the latter belong to certain
sequence spaces denoted by bsp,q and f s

p,q. According to [10, Prop. 9.14] based
on [3], it turns out that these spaces essentially coincide with the well-known
classical Besov and Triebel–Lizorkin spaces Bs

p,q(R
n) and Fs

p,q(R
n) – defined via

differences.

First we introduce the relevant sequence spaces.

Definition 2.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, and λ = {λj,m ∈ C : j ∈
N0,m ∈ Z

n}.
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(i) Then

bsp,q =

{

λ : ‖λ|bsp,q‖ =

(

∞
∑

j=0

2j(s−n
p
)q

(

∑

m∈Zn

|λj,m|
p

)
q
p
)

1
q

<∞

}

(with the usual modification if p = ∞ and/or q = ∞).

(ii) Furthermore

f s
p,q =

{

λ : ‖λ|f s
p,q‖ =

∥

∥

∥

∥

∥

(

∞
∑

j=0

∑

m∈Zn

2jsq|λj,m|
qχj,m(·)

)
1
q

|Lp

∥

∥

∥

∥

∥

<∞

}

.

Now we define the atoms.

Definition 2.2. Let K ∈ N0 and d > 1. A K-times differentiable complex-
valued function a on R

n (continuous if K = 0) is called a K-atom if for some
j ∈ N0

supp a ⊂ dQj,m for some m ∈ Z
n, (2.1)

and
|Dαa(x)| ≤ 2|α|j for |α| ≤ K. (2.2)

It is convenient to write aj,m(x) instead of a(x) if this atom is located
at Qj,m according to (2.1). Furthermore, K denotes the smoothness of the
atom, cf. (2.2). We take the atomic characterization of function spaces of type
Bs

p,q(R
n), Fs

p,q(R
n) as a definition.

Definition 2.3. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s > 0. Let d > 1 and K ∈ N0

with K ≥ (1 + [s]) be fixed.

(i) Then f ∈ Lp(R
n) belongs to Bs

p,q(R
n) if, and only if, it can be represented

as

f =
∞
∑

j=0

∑

m∈Zn

λj,maj,m(x), (2.3)

where the aj,m are K-atoms (j ∈ N0) with supp aj,m ⊂ dQj,m, j ∈ N0,
m ∈ Z

n, and λ ∈ bsp,q, convergence being in Lp(R
n). Furthermore,

‖f |Bs
p,q(R

n)‖ = inf ‖λ|bsp,q‖, (2.4)

where the infimum is taken over all admissible representations (2.3).

(ii) Then f ∈ Lp(R
n) belongs to Fs

p,q(R
n) if, and only if, it can be represented

as

f =
∞
∑

j=0

∑

m∈Zn

λj,maj,m(x), (2.5)
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where the aj,m are K-atoms (j ∈ N0) with supp aj,m ⊂ dQj,m, j ∈ N0,
m ∈ Z

n, and λ ∈ f s
p,q, convergence being in Lp(R

n). Furthermore,

‖f |Fs
p,q(R

n)‖ = inf ‖λ|f s
p,q‖, (2.6)

where the infimum is taken over all admissible representations (2.5).

Remark 2.4. According to [10], based on [3], the spaces Bs
p,q(R

n) and Fs
p,q(R

n)
are independent of d and K. This may justify our omission of K and d in (2.4)
and (2.6).

Moreover, the atomic approaches for B- and F-spaces are strongly linked
with the classical approaches which introduce Bs

p,q(R
n) and Fs

p,q as those sub-
spaces of Lp(R

n) such that

‖f |Bs
p,q(R

n)‖r = ‖f |Lp(R
n)‖ +

(
∫ 1

0

t−sqωr(f, t)
q
p

dt

t

)

1
q

and

‖f |Fs
p,q(R

n)‖r = ‖f |Lp(R
n)‖ +

∥

∥

∥

∥

∥

(
∫ 1

0

t−sqdr
t,pf(·)q dt

t

)

1
q

|Lp(R
n)

∥

∥

∥

∥

∥

are finite, respectively, where 0 < p ≤ ∞, (p < ∞ for F-spaces), 0 < q ≤ ∞
(with the usual modification if q = ∞), s > 0, r ∈ N with r > s. Here ωr(f, t)p

stands for the usual r-th modulus of smoothness of a function f ∈ Lp(R
n),

ωr(f, t)p = sup
|h|≤t

‖∆r
hf | Lp(R

n)‖, t > 0,

and dr
t,pf(·) denotes the ball means of f ∈ Lp(R

n),

dr
t,pf(x) =

(

t−n

∫

|h|≤t

|(∆r
hf)(x)|pdh

)
1
p

, x ∈ R
n, t > 0,

where

(∆1
hf)(x) = f(x+ h) − f(x) and (∆r+1

h f)(x) = ∆1
h(∆

r
hf)(x), h ∈ R

n.

Recent results by Hedberg, Netrusov [3] on atomic decompositions and by
Triebel [10, Section 9.2] on the reproducing formula prove coincidences

Bs
p,q(R

n) = Bs
p,q(R

n), s > 0, 0 < p, q ≤ ∞,

and

Fs
p,q(R

n) = Fs
p,q(R

n), s > n

(

1

min(p, q)
−

1

p

)

, 0 < p <∞, 0 < q ≤ ∞,
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(in terms of equivalent quasi-norms). In particular, this implies that all our
results for Besov spaces Bs

p,q(R
n) could as well be stated in terms of the classical

spaces Bs
p,q(R

n). The same is true for the F-spaces with the above restriction
on the parameter s.

The following result will be needed later on.

Proposition 2.5. Let 0 < p, q ≤ ∞, s > 0, k ∈ N with k > s.

(i) (Diffeomorphisms)
Let ψ be a k-diffeomorphism. Then f −→ f ◦ ψ is a linear and bounded

operator from Bs
p,q(R

n) onto itself.

(ii) (Pointwise multipliers)
Let h ∈ Ck(Rn). Then f −→ hf is a linear and bounded operator from

Bs
p,q(R

n) into itself.

Proof. We make use of the atomic decomposition according to Definition 2.3
with K = k. Concerning (i), if a is a K-atom in the sense of Definition 2.2, then
a ◦ ψ is also a K-atom based on a new cube, and multiplied with a constant
depending on ψ. But this is just what we need and we arrive at the desired
assertion.

Similar for (ii). The atomic decomposition (2.3) multiplied with h ∈ Ck

gives an atomic decomposition of hf , which completes the proof. In particular,

‖hf |Bs
p,q(R

n)‖ ≤
∑

|α|≤k

sup
x∈Rn

|Dαh(x)| · ‖f |Bs
p,q(R

n)‖.

2.2. Embeddings. We recall some embeddings for the spaces Bs
p,q(R

n),
Fs

p,q(R
n) that were proven in [4, 6] and which will subsequently be needed. Let

A ∈ {B,F}.

Proposition 2.6. Let s > 0, 0 < p ≤ ∞ (p <∞ for F-spaces), 0 < q ≤ ∞.

(i) Let ε > 0, 0 < u ≤ ∞, and q ≤ v ≤ ∞. Then

As+ε
p,u (Rn) →֒ As

p,q(R
n) and As

p,q(R
n) →֒ As

p,v(R
n). (2.7)

(ii) Let 0 < p0 < p < p1 ≤ ∞, s0, s1 > 0 such that

s0 −
n

p0

= s−
n

p
= s1 −

n

p1

,

and 0 < q, u, v ≤ ∞. If 0 < u ≤ p ≤ v ≤ ∞, then

Bs0
p0,u(R

n) →֒ Fs
p,q(R

n) →֒ Bs1
p1,v(R

n). (2.8)

In terms of boundedness we have the following results which may be also
be found in [4, 6].
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Proposition 2.7. Let 0 < p ≤ ∞ (with p < ∞ for F-spaces), and 0 < q ≤ ∞.

Then

Fn/p
p,q (Rn) →֒ L∞(Rn) if, and only if, 0 < p ≤ 1, 0 < q ≤ ∞, (2.9)

and

Bn/p
p,q (Rn) →֒ L∞(Rn) if, and only if, 0 < p <∞, 0 < q ≤ 1, (2.10)

where L∞ in (2.9) and (2.10) can be replaced by C.

Moreover, by (2.7) and (2.8) we obtain

As
p,q(R

n) →֒ L∞(Rn), s >
n

p
, 0 < p, q ≤ ∞, (2.11)

(with p <∞ if A = F), where L∞ can be replaced by C, too.

3. Traces on hyperplanes in R
n

Let As
p,q denote one of the spaces Bs

p,q or Fs
p,q. We briefly explain our un-

derstanding of the trace operator on hyperplanes, since when dealing with Lp

functions the pointwise trace has no obvious meaning. If x = (x1, . . . , xn) put
x′ = (x1, . . . , xn−1). We ask for the trace of f ∈ As

p,q(R
n) on the hyperplane

R
n−1 = {x ∈ R

n : x = (x′, 0)}.

Obviously, any ϕ ∈ S(Rn) has a pointwise trace

(Trϕ)(x) := (Tr Rn−1ϕ)(x) = ϕ(x′, 0) on R
n−1.

Let Y (Rn−1) be either some space Aσ
u,v(R

n−1) or Lu(R
n−1). Then the trace

operator
Tr : As

p,q(R
n) →֒ Y (Rn−1)

is to be understood in the following sense. One asks, whether there is a constant
c > 0 such that

‖ϕ(·, 0)|Y (Rn−1)‖ ≤ c‖ϕ|As
p,q(R

n)‖, for all ϕ ∈ S(Rn). (3.1)

Since the embedding S(Rn) →֒ As
p,q(R

n) is dense for 0 < p, q < ∞ one ap-
proximates f ∈ As

p,q(R
n) by ϕj ∈ S(Rn), where j ∈ N. If one has (3.1), then

{ϕj(x
′, 0)}∞j=1 is a Cauchy sequence in Y (Rn−1). Its limit element – which by

(3.1) is independent of the approximating sequence {ϕj}
∞
j=1 ⊂ S(Rn) – is called

the trace of f ∈ As
p,q(R

n) and denoted by Tr f . Completion implies

‖Tr f |Y (Rn−1)‖ ≤ c‖f |As
p,q(R

n)‖, f ∈ As
p,q(R

n),

and Tr : As
p,q(R

n) →֒ Y (Rn−1) is a linear and bounded operator.
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Remark 3.1. We can extend (3.1) to spaces As
p,q(R

n) with p = ∞ and/or
q = ∞ in the following way. If p = ∞, then by (2.11), Bs

∞,q(R
n) with s > 0 is

embedded in the space of continuous functions and Tr makes sense pointwise.
If q = ∞, then one has by (2.7)

As
p,∞(Rn) →֒ As−ε

p,1 (Rn) for any ε > 0.

Let s > 1
p

and ε > 0 be small enough such that one has s > s − ε > 1
p
. Since

by [11, Remark 13] traces are independent of the source spaces and of the target
spaces one can now define Tr for As

p,∞(Rn) by restriction of Tr for As−ε
p,1 (Rn) to

As
p,∞(Rn). Hence (3.1) is always meaningful. We refer also to [12, Section 6.4.2,

pp. 218/219] for a detailed discussion.

3.1. The trace problem in Bs
p,q(R

n). Now we state our main result concern-
ing traces in Besov spaces on hyperplanes in R

n.

Theorem 3.2. Let n ≥ 2, 0 < p, q ≤ ∞, and s− 1
p
> 0. Then Tr = Tr Rn−1 is

a linear and bounded operator from Bs
p,q(R

n) onto B
s− 1

p
p,q (Rn−1),

Tr Bs
p,q(R

n) = B
s− 1

p
p,q (Rn−1).

Proof. Our constructions follow closely [1, Section 5].

Step 1. By Definition 2.3 every f ∈ Bs
p,q has an optimal atomic decomposition

of the form

f(x) =
∑

j∈N0

∑

m∈Zn

λj,maj,m(x), x ∈ R
n,

with ‖f |Bs
p,q‖ ∼ ‖λ|bsp,q‖. In this step we wish to prove that

Tr Bs
p,q(R

n) ⊂ B
s− 1

p
p,q (Rn−1). (3.2)

According to (3.1) and the explanations given thereafter we may restrict
ourselves to smooth functions f . For f ∈ S(Rn) and the trace operator
Tr f(x) = f(x′, 0), assumption (3.2) is equivalent to

‖f(·, 0)|B
s− 1

p
p,q (Rn−1)‖ ≤ c‖f |Bs

p,q(R
n)‖, (3.3)

for some c > 0 independent of f ∈ Bs
p,q. Considering the trace operator we see

that for m = (m′,mn) ∈ Z
n

Tr f(x) = f(x′, 0) =
∑

j

∑

m′

∑

mn∈I

λj,(m′,mn)aj,(m′,mn)(x
′, 0),
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where for fixed j we only sum over a finite index set I = I(j,m′) (depending
on d > 1) with supp aj,(m′,mn) ∩ R

n−1 6= ∅ if mn ∈ I. We define new atoms via

bj,m′(x′) :=











∑

mn∈I λj,(m′,mn)aj,(m′,mn)(x
′, 0)

∑

mn∈I |λj,(m′,mn)|
, if

∑

mn∈I

|λj,(m′,mn)| 6= 0

0 , otherwise.

For our construction only atoms aj,m are of interest with supports in cubes
dQj,m, for which dQj,m has a non-empty intersection with the hyperplane R

n−1.

Let Q = Qj,m be one of these cubes and let Q′ be the projection of Q on
that hyperplane (now being identified with R

n−1), i.e., Q′ = Q′
j,m′ . Furthermore

ηj,m′ :=
∑

mn∈I

|λj,(m′,mn)|, j ∈ N0, m
′ ∈ Z

n−1.

The restriction (or trace) of f to R
n−1 is now

Tr f(x) = f(x′, 0) =
∑

j

∑

m′

ηj,m′bj,m′(x′) (3.4)

whenever the sum converges. In fact, we have absolute convergence in Lp(R
n−1)

for all f ∈ Bs
p,q(R

n), cf. Step 2 below.

We show that bj,m′ represent suitable atoms according to Definition 2.2.
Observe that bj,m′ are again CK(Rn−1) functions that additionally satisfy

supp bj,m′ ⊂

(

⋃

mn∈I

dQj,(m′,mn)

)

∩ R
n−1 = dQ′

j,m′ , (3.5)

and for α′ ∈ N
n−1
0 , |α′| ≤ K,

|Dα′

bj,m′(x′)| ≤
|
∑

mn
λj,mD(α′,0)aj,m(x′, 0)|
∑

mn
|λj,m|

≤
2j|α′|

∑

mn
|λj,m|

∑

mn
|λj,m|

= 2j|α′|, (3.6)

which establishes that bj,m′ is a suitable atom for our representation of Tr f in

B
s− 1

p
p,q (Rn−1).

Using our new coefficients η = {ηj,m′}j,m′ we calculate for the norm
∥

∥

∥
Tr f |B

s− 1
p

pq (Rn−1)
∥

∥

∥
≤
∥

∥

∥
η|b

s− 1
p

p,q

∥

∥

∥

=

(

∑

j

2j((s− 1
p
)−n−1

p )q

(

∑

m′

|ηj,m′|p

)
q
p
)

1
q

=

(

∑

j

2j(s−n
p
)q

(

∑

m′

∣

∣

∣

∣

∑

mn∈I

|λj,m|

∣

∣

∣

∣

p
)

q
p
)

1
q
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and hence

∥

∥

∥
Tr f |B

s− 1
p

pq (Rn−1)
∥

∥

∥
≤ c

(

∑

j

2j(s−n
p
)q

(

∑

m

|λj,m|
p

)
q
p
)

1
q

∼ ‖f |Bs
p,q(R

n)‖

(with obvious modifications if p = ∞ and/or q = ∞), where the sequence spaces

b
s− 1

p
p,q are defined according to Definition 2.1 (i) with index set in N0 ×Z

n−1. We
used in the 4th line, that the cardinality of the index set I = I(j,m′) is actually
independent of j,m′. This proves (3.3).

Step 2. The existence, or non-existence, of the trace of Bs
p,q(R

n) is equivalent
to the question whether we can make sense of the sums in (3.4) whenever (3.5)
and (3.6) hold, since any such expression can arise from a suitable f ∈ Bs

p,q(R
n).

If p ≥ 1 it is known from older results that for s − 1
p
> 0 the sums in

(3.4) always converge in Lp (in particular in S ′) and therefore the trace exists,
cf. [7, Section 2.7.2].

Suppose now 0 < p < 1. Then (3.4) does converge in Lp (but not necessarily
in S ′), which may be seen calculating

∥

∥

∥

∥

∥

∞
∑

j=0

∑

m′

ηj,m′bj,m′(x′)|Lp(R
n−1)

∥

∥

∥

∥

∥

p

≤
∑

j

∑

m′

|ηj,m′|p‖bj,m′ |Lp(R
n−1)‖p

≤
∑

j

∑

m′

|ηj,m′|p|dQ′
j,m′ |

≤ c′
∑

j

2−j(n−1)
∑

m

|λj,m|
p

= c′
∑

j

2−j(sp−1)2j(sp−1)2−j(n−1)
∑

m

|λj,m|
p

≤ c′′

(

∑

j

2j((sp−1)−(n−1)) q
p

(

∑

m

|λj,m|
p

)
q
p
)

p
q

∼ ‖f |Bs
p,q(R

n)‖p,

where in the second but last line when q
p
≤ 1 we can use the embedding ℓ q

p
→֒ ℓ1,

and in the case q
p
> 1 an application of Hölder’s inequality gives the desired

result, since sp− 1 > 0. This proves the absolute convergence in Lp.

Step 3. It is fairly easy to see that the trace map Tr is onto B
s− 1

p
p,q (Rn−1), since

any K-atom bj,m′ ∈ CK(Rn−1) satisfying (2.1), (2.2) can be obtained as the
restriction of a K-atom aj,m ∈ CK(Rn) (simply construct aj,m by multiplying
bj,m′ with a suitable K-atom bj,mn

defined on R with bj,mn
(0) = 1).
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To establish the extension property we show that for given g ∈ B
s− 1

p
p,q (Rn−1)

there exists a function f ∈ Bs
p,q(R

n) with

f(x′, 0) = g(x′) and ‖f |Bs
p,q(R

n)‖ ≤ c‖g|B
s− 1

p
p,q (Rn−1)‖.

In order to obtain a bounded extension operator

Ex: B
s− 1

p
p,q (Rn−1) → Bs

p,q(R
n), (Ex g)(x) = f(x),

with Tr ◦ Ex = id
B

s− 1
p

p,q (Rn−1)
, let g ∈ B

s− 1
p

p,q (Rn−1) with optimal atomic decom-

position, i.e.,

g(x′) =
∑

j

∑

m′

λj,m′bj,m′(x′) and ‖g|B
s− 1

p
p,q (Rn−1)‖ ∼ ‖λ|b

s− 1
p

p,q ‖. (3.7)

We set
f(x′, xn) =

∑

j

∑

m′

∑

mn

λj,maj,m(x′, xn),

with coefficients

λj,m =

{

λj,m′ , mn = 0

0, mn 6= 0 ,

and aj,m(x′, xn) = bj,m′(x′)bj,mn
(xn), where bj,mn

are K-atoms according to Def-
inition 2.2 satisfying bj,mn

(0) = 1 and supp bj,mn
⊂ [2−j(mn − 1), 2−j(mn + 1)].

Therefore aj,m are K-atoms and we see that f(x′, 0) = g(x′), x′ ∈ R
n−1. Fur-

thermore, we estimate

‖f |Bs
p,q(R

n)‖ ≤

(

∑

j

2j(s−n
p
)q

(

∑

m

|λj,m|
p

)
q
p
)

1
q

=

(

∑

j

2j[(s− 1
p
)−n−1

p ]q
(

∑

m′

|λj,m′|p

)
q
p
)

1
q

∼ ‖g|B
s− 1

p
p,q (Rn−1)‖.

Hence we have established the existence of a bounded (but not linear – cf.
Remark 3.3) extension operator Ex from the trace space into the original space,
which finally completes the proof.

Remark 3.3. Note that the constructed extension operator in Step 3 is
bounded but not linear. In [12, Chapter 6.2] it is shown that

(

B
s− 1

p
p,q (Rn−1)

)′

= {0}, 0 < s−
1

p
< (n− 1)

(

1

p
− 1

)

,
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which implies the impossibility of frame representations in these spaces and
therefore the optimal coefficients λj,m′ as well as the atoms aj,m in (3.7) are not
linear with respect to g in this case.

Alternatively we could use the subatomic approach as described in [10,
Section 9.2] instead of atomic decompositions in Step 3 of Theorem 3.2. Then
again the constructed extension operator turns out to be bounded but not linear
– but in this case linearity fails only in terms of the coefficients but not for the
building blocks. We sketch the proof.

For a given g ∈ B
s− 1

p
p,q (Rn−1) we need to construct a function f ∈ Bs

p,q(R
n)

such that

f(x′, 0) = g(x′) and ‖f |Bs
p,q(R

n)‖ ≤ c
∥

∥

∥
g|B

s− 1
p

p,q (Rn−1)
∥

∥

∥
.

Let g ∈ B
s− 1

p
p,q (Rn−1) with optimal subatomic decomposition, i.e.,

g(x′) =
∑

β′

∑

j

∑

m′

λ
β′

j,m′k
β′

j,m′(x
′) and ‖g|B

s− 1
p

p,q (Rn−1)‖ ∼ ‖λ|b
s− 1

p
,̺

p,q ‖,

where ̺ > 0 is chosen later on. Put

(Ex g)(x) = f(x) =
∑

β′,j,m′

−2J
∑

mn=−1

λ
β′

j,m′k
β′

j,m′(x
′)k0

j,mn
(xn),

where k0
j,mn

(xn) are 1-dimensional (standardized) building blocks. It is easy

to see that f(x′, 0) = g(x′), since
∑−2J

mn=−1 k
0(0 − mn) = 1. The following

calculation for α = (α′, αn) ∈ N
n
0

∣

∣

∣
Dαk

β′

j,m′(x
′)k0

j,mn
(xn)

∣

∣

∣

=

∣

∣

∣

∣

∑

γ′+δ′=α′

Dγ′

(2−J(2jx′ −m′))β′

Dδ′k(2jx′ −m′)
∂αn

∂xαn
n

k(2jxn −mn)

∣

∣

∣

∣

≤
∑

γ′+δ′=α′

2j|γ′|2(c−ε)|β′|2j|δ′| sup
z′∈Rn−1

∣

∣

∣
Dδ′k(z′)

∣

∣

∣
2jαn sup

z∈R

∣

∣

∣

∣

∂αn

∂xαn
n

k(z)

∣

∣

∣

∣

≤ ck,K2r|β′|2j|α|, since |γ′| + |δ′| + αn = |α|,

together with supp kβ′

j,m′(x′)k0
j,mn

(xn) ⊂ dQj,m shows that
kβ′

j,m′ (x
′)k0

j,mn
(xn)

ck,K2r|β′| rep-

resent suitable atoms according to Definition (2.2). Furthermore we estimate
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for η ≤ 1,

‖f |Bs
p,q(R

n)‖η ≤
∑

β′

∥

∥fβ′

|Bs
p,q(R

n)
∥

∥

η

≤
∑

β′

(

∑

j

2j(s−n
p
)q

(

∑

m′

−2−J
∑

mn=−1

∣

∣

∣
λ

β′

j,m′ck,K2r|β′|
∣

∣

∣

p
)

q
p
)

η
q

≤ c
∑

β′

2ηr|β′|

(

∑

j

2j[(s− 1
p
)−n−1

p ]q
(

∑

m′

|λβ′

j,m′ |p

)
q
p
)

η
q

≤ c

(

∑

β′

2−δ|β′|

)

sup
β′

2̺|β′|

(

∑

j

2j[(s− 1
p
)−n−1

p ]q
(

∑

m′

|λβ′

j,m′ |p

)
q
p
)

η
q

≤ c′
∥

∥

∥
g|B

s− 1
p

p,q (Rn−1)
∥

∥

∥

η

,

where we set ̺ = ηr + δ in the second but last line.

Remark 3.4. So far we only considered Tr Rn−1f=Tr f . But it is obvious that
traces on hyperplanes of dimension 1, 2, . . . , n− 2 can be obtained by iteration
of Theorem 3.2. Let n > m ∈ N and Tr Rmf = Tr f . Then

Tr Bs
p,q(R

n) = B
s−n−m

p
p,q (Rm) when s >

n−m

p
, 0 < p, q ≤ ∞.

We now discuss what happens in the limiting case s = 1
p
.

Corollary 3.5. Let 0 < p <∞, 0 < q ≤ min(1, p). Then

Tr B1/p
p,q (Rn) = Lp(R

n−1).

Proof. Step 1. Using the same construction as in Theorem 3.2, we need to

show that Tr B
1/p
p,q (Rn) ⊂ Lp(R

n−1), i.e., the sums in (3.4) converge in Lp(R
n−1)

if f ∈ B
1/p
p,q (Rn), 0 < q ≤ min(1, p). If 0 < p < 1 and q ≤ p this is observed by

the following calculation

‖Tr f |Lp(R
n−1)‖p ≤

∑

j

∑

m′

|ηj,m′|p
∫

dQ′
j,m′

|bj,m′(x′)|pdx′

≤ c
∑

j

2−j(n−1)
∑

m

|λj,m|
p

≤ c′

(

∑

j

2−j(n−1) q
p

(

∑

m

|λj,m|
p

)
q
p
)

p
q

∼
∥

∥f |B1/p
p,q (Rn)

∥

∥, (3.8)
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where in the second but last line we used the embedding ℓ q
p
→֒ ℓ1. When p ≥ 1

and 0 < q ≤ 1 we obtain

‖Tr f |Lp(R
n−1)‖ ≤

∑

j

(

∫

dQ′
j,m′

∣

∣

∣

∣

∑

m′

ηj,m′bj,m′(x′)

∣

∣

∣

∣

p

dx′

)
1
p

∼
∑

j

(

∑

m′

|ηj,m′|p
∫

dQ′
j,m′

|bj,m′(x′)|pdx′

)
1
p

≤ c
∑

j

2−j
(n−1)

p

(

∑

m

|λj,m|
p

)
1
p

≤ c′

(

∑

j

2−j
(n−1)q

p

(

∑

m

|λj,m|
p

)
q
p
)

1
q

∼
∥

∥f |B1/p
p,q (Rn)

∥

∥, (3.9)

using the fact that we only have a controlled overlap of the atoms bj,m′ for
fixed j, and ℓq →֒ ℓ1 in the second but last line. Now (3.8) and (3.9) prove that

Tr is a bounded (and linear) operator from B
1/p
p,q (Rn) into Lp(R

n−1).

Step 2. In order to see that Tr is onto Lp(R
n−1), it is sufficient to show that

each h ∈ Lp(R
n−1) has a decomposition

h(x′) =
∑

j

∑

m′

ηj,m′bj,m′ , (3.10)

where the bj,m′ ’s satisfy |Dα′
bj,m′(x′)| ≤ 2j|α′|, |α′| ≤ K, α′ ∈ N

n−1
0 , and

supp bj,m′ ⊂ Q′
j,m′ – since any such representation can be obtained as the re-

striction of the trace operator applied to an f ∈ B
1/p
p,q (Rn). Additionally we

require that

(

∑

j

2−j
(n−1)

p
q

(

∑

m′

|ηj,m′|p

)
q
p
)

1
q

≤ c‖h|Lp(R
n−1)‖, (3.11)

since for f(x′, 0) = h(x′) this leads to – cf. Step 3 of Theorem 3.2 –

‖f |B1/p
p,q (Rn)‖ ≤ c‖h|Lp(R

n−1)‖.

Our proof follows closely [1, Theorem 5.1]. To establish such a decomposition,

start by picking a κ ∈ C∞
0 (Rn−1) satisfying suppκ⊂ [0, 1]n−1 =: Ω, 0 ≤ κ(·) ≤ 1,

and ‖1 − κ|Lp(Ω)‖ ≤ min
(

1
5
,
(

1
5

)
1
p
)

. If Q′
j,m′ = {x′ : mi2

−j ≤ xi < (mi + 1)2−j,
i = 1, . . . , n− 1}, put

bj,m′(x′) := C · κ(2jx′ −m′), (3.12)
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such that supp bj,m′ ⊂ Q′
j,m′ , where m′ = (m1, . . . ,mn−1) and C is chosen small

enough for bj,m′ to satisfy |Dα′
bj,m′(x′)| ≤ 2j|α′|, |α′| ≤ K, α′ ∈ N

n−1
0 . Fix

a non-negative h ∈ Lp(R
n−1). (It suffices to prove the assumption for such

functions, since an arbitrary h ∈ Lp(R
n−1) can be reduced to the sum of two real-

valued functions h = Reh + iImh and any real-valued function h ∈ Lp(R
n−1)

can be decomposed into two non-negative functions h+, h− such that h(x) =
h+(x)−h−(x), where h+ := max(h, 0), h− := max(−h, 0). The full generality of
(3.10), (3.11) for arbitrary h ∈ Lp(R

n−1) then follows by standard arguments.)

By choosing the side length 2−j1 small enough, it is possible to find a simple
function

e1(x
′) =

∑

m′

rj1,m′χj1,m′(x′)

such that

e1 ≥ 0 and ‖h− e1|Lp(R
n−1)‖ ≤ min

(

1

4
,
(1

4

)
1
p

)

‖h|Lp(R
n−1)‖.

We define the smooth version

ẽ1(x
′) =

∑

m′

ηj1,m′bj1,m′(x′),

where the bj1,m′ ’s are given by (3.12) and ηj1,m′ =
rj1,m′

C
with the same con-

stant C. Setting

D =
C

min
(

5
4
,
(

5
4

)
1
p

)

for p ≥ 1 we see that

(

∑

m′

2−j1(n−1)|ηj1,m′ |p

)
1
p

=
‖e1|Lp(R

n−1)‖

C

≤
‖h− e1|Lp(R

n−1)‖ + ‖h|Lp(R
n−1)‖

C

≤
‖h|Lp(R

n−1)‖

D
,

and when 0 < p < 1 we obtain the same estimate via

∑

m′

2−j1(n−1)|ηj1,m′ |p =
‖e1|Lp(R

n−1)‖p

Cp

≤
‖h− e1|Lp(R

n−1)‖p + ‖h|Lp(R
n−1)‖p

Cp

≤
‖h|Lp(R

n−1)‖p

Dp
.
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We picked κ so that ‖e1 − ẽ1|Lp(R
n−1)‖ ≤ min

(

1
5
,
(

1
5

)1/p)
‖e1|Lp(R

n−1)‖. Hence
for p ≥ 1,

‖h−ẽ1|Lp(R
n−1)‖≤ ‖h−e1|Lp(R

n−1)‖ + ‖e1−ẽ1|Lp(R
n−1)‖

≤

{

min

(

1

4
,
(1

4

)
1
p

)

+min

(

1

5
,
(1

5

)
1
p

)

C

D

}

‖h|Lp(R
n−1)‖

≤
1

2
‖h|Lp(R

n−1)‖.

(3.13)

Similar for 0 < p < 1. If this process is repeated with h replaced by h− ẽ1, we
obtain ẽ2 =

∑

m′ ηj2,m′bj2,m′ such that

(

∑

m′

2−j2(n−1)|ηj2,m′ |p

)
1
p

≤
‖h− ẽ1|Lp(R

n−1)‖

D
≤

‖h|Lp(R
n−1)‖

2D

and

‖h− ẽ1 − ẽ2|Lp(R
n−1)‖ ≤

‖h− ẽ1|Lp(R
n−1)‖

2
≤

‖h|Lp(R
n−1)‖

4
,

where we used (3.13). We can also arrange that j2 > j1. Continuing this process
inductively we obtain the functions ẽi =

∑

m′ ηji,m′bji,m′ , i = 1, 2, . . . , satisfying

(

∑

m′

2−ji(n−1)|ηji,m′ |p

)
1
p

≤
‖h|Lp(R

n−1)‖

2i−1D
, (3.14)

∥

∥

∥

∥

h−
m
∑

i=1

ẽi|Lp(R
n−1)

∥

∥

∥

∥

≤ 2−m‖h|Lp(R
n−1)‖, m = 1, 2, . . . , (3.15)

and ji+1 > ji for every i. The required decomposition of h is h(x′) =
∑∞

i=1 ẽi(x
′).

By (3.15) this sum converges in Lp(R
n−1) and from (3.14) we see that

(

∞
∑

i=1

(

∑

m′

2−ji(n−1)|ηji,m′ |p

)
q
p )

1
q

≤ c‖h|Lp(R
n−1)‖.

This completes the proof.

Remark 3.6. We actually proved a bit more than stated. Note that Step 3
in the proof of Theorem 3.2 together with Step 2 of Corollary 3.5 establish the
existence of a bounded extension operator, i.e. for given g ∈ Lp(R

n−1) there

exists a function f ∈ B
1/p
p,q (Rn) with

f(x′, 0) = g(x′) and
∥

∥f |B1/p
p,q (Rn)

∥

∥ ≤ c‖g|Lp(R
n−1)‖.

In particular, we have

Ex : Lp(R
n−1) → B1/p

p,q (Rn), (Ex g)(x) = f(x),

with Tr ◦ Ex = idLp(Rn−1).
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Remark 3.7. As in Remark 3.4 we obtain similar results for the limiting case
when dealing with hyperplanes R

m, n > m ∈ N. Using Theorem 3.2 and
Corollary 3.5, by iteration we obtain

Tr B
n−m

p
p,q (Rn) = Lp(R

m), 0 < p <∞, 0 < q ≤ min(1, p).

Remark 3.8. Our results are best possible in the sense that the sums in (3.4)
do not necessarily converge in

Lp + L∞ := {f : f = gp + g∞, gi ∈ Li(R
n)},

normed by

‖f |Lp + L∞‖ := inf
f=gp+g∞

gi∈Li

(‖gp|Lp(R
n)‖ + ‖g∞|L∞(Rn)‖),

if s = 1
p

and q > p. Therefore the trace does not exist. (Note that Proposi-

tion 2.6 (i) establishes B
1/p
p,q (Rn) →֒ Bs

p,u(R
n), s < 1

p
, 0 < u ≤ ∞, from which

then also follows that the trace in general does not exist if s < 1
p
.)

This can be seen in the following way. Let s = 1
p
, q > p, and pick a sequence

{ηj}
∞
j=2 ∈ ℓq \ ℓp (or in c0 \ ℓp if q = ∞). Furthermore, we choose a collection

of dyadic cubes {Ej}
∞
j=2 with Ej ⊂ [−1, 1]n−1 and length l(Ej) = 2−j, that

additionally satisfy Ej ∩ Ek 6= ∅ if j 6= k. Put

ηj,m′ :=

{

2j n−1
p ηj, Q′

j,m′ = Ej

0, otherwise,

and let bj,m′ be K-atoms in R
n−1, i.e., supp bj,m′ ⊂ dQ′

j,m′ ,
∣

∣Dα′
bj,m′(x′)

∣

∣ ≤

2j|α′|, |α′| ≤ K, for which additionally bj,m′(x′) ≥ c if x′ ∈ Q′
j,m′ , c > 0. Then

∥

∥η|b1/p
p,q

∥

∥ =

(

∞
∑

j=0

2−j n−1
p

q

(

∑

m′∈Zn−1

|ηj,m′|p

)
q
p
)

1
q

=

(

∞
∑

j=2

|ηj|
q

)
1
q

<∞,

and it is clear that
∑

j,m′ ηj,m′bj,m′ would arise as the trace of a suitable f ∈

B
1/p
p,q (Rn) if the trace operator was continuous. But if we let

gN(x′) :=
N
∑

j=2

∑

m′

ηj,m′bj,m′(x′), N large,
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then supp gN ⊂ [−1, 1]n−1. Since L∞([−1, 1]n−1) →֒ Lp([−1, 1]n−1) we estimate

‖gN |Lp + L∞‖ ≥ c‖gN |Lp‖

=

∥

∥

∥

∥

N
∑

j=2

∑

m′

ηj,m′bj,m′ |Lp

∥

∥

∥

∥

∼

(

N
∑

j=2

2j(n−1)|ηj|
p

∫

dEj , Ej=Q′
j,m′

|bj,m′(x′)|pdx′

)
1
p

≥ c′

(

N
∑

j=2

|ηj|
p

)

1
p

−→ ∞ as N → ∞.

Therefore the sum
∑

j,m′ ηj,m′bj,m′ cannot converge in Lp + L∞.

A remark on the trace problem in B
s

p,q
(Rn). Our results shed new light

upon traces of Besov spaces Bs
p,q(R

n) defined via the Fourier-analytical ap-

proach. The spaces Bs
p,q(R

n) are defined as the set of all tempered distributions
f ∈ S ′(Rn) such that

∥

∥f |Bs
p,q(R

n)
∥

∥ =
∥

∥

∥

∥

∥

{

2jsF−1(ϕjFf)(·)
}

j∈N0
|Lp(R

n)
∥

∥ | ℓq

∥

∥

∥

is finite, where s ∈ R, 0 < p, q ≤ ∞ and {ϕj}j is a smooth dyadic resolution
of unity. For these spaces there are equivalent characterizations in terms of
atomic decompositions similar to Definition 2.3, cf. [9, Section 13]. The rele-
vant (K,L)-atoms now are defined as the K-atoms in Definition 2.2, where we
additionally require moment conditions up to order L, i.e.,

∫

Rn x
βa(x)dx = 0 if

|β| ≤ L. Here L = −1 means that there are no moment conditions. The atomic
characterization of function spaces of type Bs

p,q(R
n) is given by the following

result, cf. [9, Theorem.13.8].

Theorem 3.9. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R. Let K ∈ N0 and

L + 1 ∈ N0 with K ≥ (1 + [s])+ and L ≥ max(−1, [σp − s]) be fixed. Then

f ∈ S ′(Rn) belongs to Bs
p,q(R

n) if, and only if, it can be represented as

f =
∞
∑

j=0

∑

m∈Zn

λj,maj,m(x), convergence being in S ′(Rn),

where the aj,m are K-atoms (j = 0) or (K,L)-atoms (j ∈ N) with supp aj,m ⊂
dQj,m, j ∈ N0, m ∈ Z

n, d > 1, and λ ∈ bsp,q. Furthermore,

‖f |Bs
p,q(R

n)‖ ∼ inf ‖λ|bsp,q‖,

where the infimum is taken over all admissible representations, is an equivalent

quasi-norm in Bs
p,q(R

n).
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With the help of Theorem 3.2 we can now extend the results from [5] as
follows.

Theorem 3.10. Let n ≥ 2 and 0 < p, q ≤ ∞.

(i) Let s− 1
p
> 0. Then

TrBs
p,q(R

n) = B
s− 1

p
p,q (Rn−1).

(ii) In the limiting case s = 1
p
, p <∞ and 0 < q ≤ min(1, p) we have

TrB1/p
p,q (Rn) = Lp(R

n−1).

Proof. The proof of (i) is similar to the proof of Theorem 3.2. We indicate
the necessary changes. Considering the trace operator in Step 1 we loose mo-
ment conditions when defining the new atoms bj,m′ . Nevertheless, considering

the trace makes sense in the setting of the spaces B
s− 1

p
p,q (Rn−1) since we have

absolute convergence of the defined trace in Lp(R
n−1), cf. Step 2 of the proof.

Furthermore, as in Step 3 we obtain a suitable extension operator. Note that it
is possible to construct atoms aj,m defined on R

n, extending atoms bj,m′ defined
on R

n−1 that have the desired moment conditions. The convergence in S ′(Rn)
of the resulting atomic decomposition

f(x) = (Ex g)(x) =
∑

j,m

λj,maj,m(x)

follows from [9, Corollary 13.9].

A proof for the limiting case (ii) may be found in [1, Theorem 5.1].

3.2. The trace problem in Fs
p,q(R

n). With the help of our previous results
on traces in Bs

p,q(R
n) we are now able to investigate the trace problem for

the spaces Fs
p,q(R

n). It turns out that the trace is actually independent of the
parameter q. We make use of the following Proposition. A proof may be found
in [2, Proposition 2.7].

Proposition 3.11. Let j ∈ N0, m ∈ Z
n, and Ej,m ⊂ Qj,m measurable sets with

|Ej,m| ∼ |Qj,m|. Then

‖λ|f s
p,q‖ ∼

∥

∥

∥

∥

∥

(

∑

j,m

2jsq|λj,mχEj,m
(·)|q

)
1
q

|Lp(R
n)

∥

∥

∥

∥

∥

.

The next Theorem states our main result.

Theorem 3.12. Let n ≥ 2, 0 < p <∞, 0 < q ≤ ∞, and s− 1
p
> 0. Then

Tr Fs
p,q(R

n) = B
s− 1

p
p,p (Rn−1).
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Proof. It is sufficient to show that the trace of Fs
p,q is independent of q, i.e.

Tr Fs
p,q(R

n) = Tr Fs
p,p(R

n) = Tr Bs
p,p(R

n),

since then the rest follows immediately from Theorem 3.2. If 0 < q < r ≤ ∞,
we have the embedding Fs

p,q →֒ Fs
p,r yielding Tr Fs

p,q →֒ Tr Fs
p,r. In order to prove

the other direction let f ∈ Fs
p,r with optimal atomic decomposition

f(x) =
∑

j,m

λj,maj,m(x), x ∈ R
n,

i.e., ‖f |Fs
p,r‖ ∼ ‖λ|f s

p,r‖. In particular, by Definition 2.3, we have supp aj,m ⊂

dQj,m. We need to show that there exists an f̃ ∈ Fs
p,q such that Tr f = Tr f̃ . Set

λ̃j,m :=

{

λj,m, dQj,m ∩ R
n−1 6= ∅

0, otherwise.

Furthermore, put ãj,m(x) = aj,m(x) and consider

f̃(x) =
∑

j,m

λ̃j,maj,m(x). (3.16)

From the construction we immediately see that Tr f = Tr f̃ . Note that in (3.16)
we only sum over finitely many mn ∈ I(j,m′), where the index set is actually
independent of j,m′. This can be seen by observing that

mn ∈ I if, and only if, dQj,m ∩ R
n−1 6= ∅,

which is equivalent to

mn ∈ I if, and only if, 0 ∈
(

2−jmn − d2−j−1, 2−jmn + d2−j−1
)

.

But this yields

mn ∈ I if, and only if, 0 ∈

(

mn −
d

2
,mn +

d

2

)

,

establishing the independence of the index set I on j and m′.

We want to apply Proposition 3.11. Therefore we wish to construct suitable
sets Ej,m such that

Ej,(m′,mn) ⊂ Qj,(m′,mn) and |Ej,(m′,mn)| ∼ |Qj,(m′,mn)|, (3.17)

which do not intersect for fixed mn ∈ I.
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If |mn| ≥ 2 we can simply choose Ej,m := Qj,m, cf. Figure 1.

If mn = 0 put

Ej,(m′,0) := {x ∈ Qj,(m′,0) : 2−j−1 < |xn| < 2−j},

whereas for |mn| = 1 we set

Ej,(m′,1) := {x ∈ Qj,(m′,1) : 0 < xn−2−j < 2−j−1}

and

Ej,(m′,−1) :=

{x ∈ Qj,(m′,−1) : −2−j−1 < xn + 2−j < 0},

cf. Figures 2 and 3, respectively.

R
n−1

2

1

Q0,m1

Q1,m2

Q2,m3

0

Figure 1: |mn| ≥ 2

R
n−1

Q0,m1

Q1,m2

Q2,m3

E2,m6

E0,m4 E1,m5

0

Figure 2: mn = 0

R
n−1

1

0

Q0,m1

Q1,m2

Q2,m3

E2,m6

E0,m4

E1,m5

Figure 3: |mn| = 1

Clearly we have (3.17). In particular, for fixed mn the sets Ej,(m′,mn) have
pairwise disjoint support for all j ∈ N0, m

′ ∈ Z
n−1. Hence, if q < ∞ we

calculate

‖f̃ |Fs
p,q(R

n)‖≤ ‖λ̃|f s
p,q‖ ∼

∥

∥

∥

∥

∥

(

∞
∑

j=0

∑

m∈Zn

2jsq|λ̃j,m|
qχEj,m

(·)

)
1
q

|Lp(R
n)

∥

∥

∥

∥

∥

∼
∑

mn∈I

∥

∥

∥

∥

∥

(

∞
∑

j=0

∑

m′

2jsq|λj,(m′,mn)|
qχEj,(m′,mn)

(·)

)
1
q

|Lp(R
n)

∥

∥

∥

∥

∥

∼
∑

mn∈I

∥

∥

∥

∥

∥

(

∞
∑

j=0

∑

m′

2jsr|λj,(m′,mn)|
rχEj,(m′,mn)

(·)

)
1
r

|Lp(R
n)

∥

∥

∥

∥

∥

∼

∥

∥

∥

∥

∥

(

∞
∑

j=0

∑

m∈Zn

2jsr|λ̃j,m|
rχEj,m

(·)

)
1
r

|Lp(R
n)

∥

∥

∥

∥

∥

∼ ‖λ̃|f s
p,r‖

≤ ‖f |Fs
p,r(R

n)‖ <∞,
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where in the 2nd and 6th step we made use of Proposition 3.11. The q and 1
q

in

line 3 cancel and can be replaced by r and 1
r
, since the sets Ej,(m′,mn) have disjoint

supports for fixedmn ∈ I. In particular, f̃ ∈ Fs
p,q and therefore Tr Fs

p,r ⊂ Tr Fs
p,q,

which completes the proof.

We investigate the limiting case when s = 1
p

as well.

Corollary 3.13. Let 0 < p ≤ 1 and 0 < q ≤ ∞. Then

Tr F1/p
p,q (Rn) = Lp(R

n−1).

Proof. In Theorem 3.12 we established the independence of the trace of Fs
p,q

on q. Therefore Corollary 3.5 yields

Tr F1/p
p,q = Tr F1/p

p,p = Tr B1/p
p,p (Rn) = Lp(R

n−1), 0 < p ≤ 1.

Remark 3.14. Again by iteration of Theorem 3.12 and Corollary 3.13 we obtain
results for traces on hyperplanes of dimension 1, 2, . . . , n − 2. Let n > m ∈ N

and Tr Rmf = Tr f . Then for s > n−m
p

Tr Fs
p,q(R

n) = B
s−n−m

p
p,p (Rm), 0 < p <∞, 0 < q ≤ ∞

and in the limiting case when s = n−m
p

we have

Tr F
n−m

p
p,q (Rn) = Lp(R

m), 0 < p ≤ 1, 0 < q ≤ ∞.

4. Dichotomy: traces versus density

4.1. Preliminaries. So far we were concerned with exact traces of spaces
As

p,q(R
n), where A ∈ {B,F}, with n ≥ 2, s > 0, and 0 < p, q < ∞ on hyper-

planes Γ = R
m, n > m ∈ N. In the sequel let µ stand for the m-dimensional

Lebesgue measure lm.

We now adopt a slightly more general point of view. Again we understand
traces as limits of pointwise traces of smooth functions (recall that D(Rn) and
S(Rn) are dense in all the spaces As

p,q(R
n), excluding p = ∞ and/or q = ∞).

Therefore, if for some c > 0 we have

‖ϕ|Lr(R
m)‖ ≤ c‖ϕ|As

p,q(R
n)‖ for all ϕ ∈ S(Rn), (4.1)

the trace operator TrΓ,

TrΓ : As
p,q(R

n) →֒ Lr(R
m)

is the completion of the pointwise trace (TrΓϕ)(γ) = ϕ(γ) with ϕ ∈ S(Rn) and
γ ∈ R

m.
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Remark 4.1. In particular, it can be shown that for individual elements f the
traces are independent of the source spaces and of the target spaces as long
as one has (4.1) and whenever comparison makes sense, cf. [11, Remark 13]
and [12, Section 6.4.2, pp. 218/219].

Let DΓ = D(Rn \R
m) be as usual the collection of all (complex-valued) C∞

functions in R
n with compact support in R

n \ R
m.

One may ask the two mutually exclusive questions (see also Proposition 4.4
below):

(i) In which of the above spaces As
p,q(R

n) is DΓ dense?

(ii) For which of the above spaces As
p,q(R

n) does there exist a linear and
bounded trace operator TrΓ : As

p,q(R
n) →֒ Lp(R

m)?

It comes out that the above spaces divide sharply in these two contrasting
classes (dichotomy).

The well-known inclusion properties of the spaces As
p,q under consideration

suggest the following formulation.

Definition 4.2. Let 0 < p < ∞ and let Ap(R
n) = {As

p,q(R
n) : 0 < q < ∞, s >

0}. Let σ > 0. Then D(Ap(R
n), Lp(R

m)) = (σ, u) with 0 < u < ∞ is called
dichotomy of {Ap(R

n), Lp(R
m)} if

TrΓ exists for

{

s > σ, 0 < q <∞

s = σ, 0 < q ≤ u,

and

DΓ is dense in As
p,q(R

n) for

{

s = σ, u < q <∞

s < σ, 0 < q <∞.

Furthermore, D(Ap(R
n), Lp(R

m)) = (σ, 0) means that

{

TrΓ exists for s > σ, 0 < q <∞,

DΓ is dense in As
p,q(R

n) for s ≤ σ, 0 < q <∞;

and D(Ap(R
n), Lp(R

m)) = (σ,∞) means that

{

TrΓ exists for s ≥ σ, 0 < q <∞,

DΓ is dense in As
p,q(R

n) for s < σ, 0 < q <∞.

Remark 4.3. The above definition makes sense. Let s ≥ σ > 0, 0 < p < ∞,
and 0 < q1, q2 <∞. From Proposition 2.6 we have the continuous embedding

As
p,q1

(Rn) →֒ Aσ
p,q2

(Rn), (4.2)
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whenever s ≥ σ and q1 ≤ q2 if s = σ. If the traces exist in Aσ
p,q2

(Rn), then
automatically all spaces on the left-hand side in (4.2) have traces as well.

Furthermore, if DΓ is dense in As
p,q1

(Rn), the embedding (4.2) together with
the density of D(Rn) in all spaces in (4.2) imply the density of DΓ in Aσ

p,q2
(Rn).

This can easily be seen. If ϕ ∈ D(Rn) and ψj ∈ DΓ is an approximating
sequence in As

p,q1
(Rn), we have

‖ϕ− ψj|A
σ
p,q2

(Rn)‖ ≤ c‖ϕ− ψj|A
s
p,q1

(Rn)‖ −→ 0.

Additionally, one has the following almost obvious observation.

Proposition 4.4. Let s > 0, 0 < p, q <∞, 0 < r <∞ and let DΓ be dense in

As
p,q(R

n). Then there is no c > 0 with

‖ϕ|Lr(R
m)‖ ≤ c‖ϕ|As

p,q(R
n)‖, ϕ ∈ S(Rn). (4.3)

Proof. We assume that there is a constant c > 0 with (4.3). We have R
n ⊂

⋃∞
l=0Kl, where Kl are appropriate compact sets. Put Γl := R

m ∩Kl, where Γl

may be interpreted as a subset of R
m (considered as a space itself and not just

a hyperplane of R
n). We approximate a function ϕl which is identically 1 near

Γl and has support in a neighbourhood of Kl by DΓ-functions ψj, j ∈ N. Then
one has that

TrΓϕl = lim
j→∞

TrΓψj = 0 µ− a.e.

Since µ(Rm) ≤
∑∞

l=0 µ(Γl), this contradicts µ(Rm) > 0.

4.2. Dichotomy. Our main result is stated in the theorem below.

Theorem 4.5. Let n,m ∈ N, n > m, and 0 < p <∞. Then

D (Bp(R
n), Lp(R

m)) =







(

n−m
p
, 1
)

if p > 1
(

n−m
p
, p
)

if p ≤ 1
(4.4)

and

D (Fp(R
n), Lp(R

m)) =







(

n−m
p
, 0
)

if p > 1
(

n−m
p
,∞
)

if p ≤ 1.
(4.5)

Proof. The proof is based on ideas from a similar proof in [11] and [12].

Step 1. We have to show that the breaking points (σ, u) exist and that they
coincide with the right-hand sides of (4.4) and (4.5). By Corollary 3.5, Re-
mark 3.7, and our discussions in Remark 4.3 in case of the B-spaces it remains
to prove that

DΓ is dense in B
n−m

p
p,q (Rn) if 0 < p <∞, q > min(p, 1), (4.6)
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which will be done in Steps 3 and 5 below. Concerning the F-spaces if p ≤ 1
we have

B
n−m

p

p,q̃ (Rn) →֒ F
n−m

p
−ε

p,q (Rn), 0 < q <∞, q̃ > p, ε > 0. (4.7)

D(Rn) is dense in both spaces. Using (4.6) (with q̃) now yields that DΓ is dense
in all spaces on the right-hand side of (4.7). This together with Corollary 3.13
and Remark 3.14 already gives the bottom line in (4.5). As for the case 1 <
p <∞ we have

F
n−m

p
+ε

p,q (Rn) →֒ B
n−m

p

p,1 (Rn), 0 < q <∞, ε > 0. (4.8)

By Corollary 3.5 all spaces on the right-hand side of (4.8) have traces. It
therefore remains to prove in the case of F-spaces that

DΓ is dense in F
n−m

p
p,q (Rn) if 1 < p <∞, 0 < q <∞, (4.9)

which we do in Step 4.

Step 2. We begin with a preparation. Let K ⊂ R
n

be a compact set (which in Step 3 will be chosen to
be the support of f ∈ D(Rn), the function we wish
to approximate) and consider

ΓC = R
m ∩K,

cf. the figure aside.

K

R
n−m

R
m

Γc

The aim is to construct a sequence {ϕJ}∞J=1 ∈ D(Rn) with

ϕJ(x) = 1 in an open neighbourhood of ΓC

(depending on J) and

ϕJ −→ 0 in B
n−m

p
p,q (Rn) if 0 < p <∞, q > 1. (4.10)

For given j ∈ N we cover a neighbourhood of ΓC with balls Bj,k in R
n centred

at ΓC and of radius 2−j, where k = 1, . . . ,Mj and Mj ∼ 2jm (which is possible
since ΓC is compact) such that there is a resolution of unity,

Mj
∑

k=1

ϕj,k(x) = 1 near ΓC , 0 ≤ ϕj,k ∈ D(Bj,k), (4.11)

with the usual properties,

|Dγϕj,k(x)| ≤ cγ2
j|γ|, γ ∈ N

n
0 . (4.12)



300 C. Schneider

For 2 ≤ J ∈ N, let J ′ ∈ N be such that
∑J ′+1

j=J rj = 1 with rj = j−1 if J ≤ j ≤ J ′

and 0 < rJ ′+1 ≤ (J ′ + 1)−1. Then

ϕJ(x) =
J ′+1
∑

j=J

rj

Mj
∑

k=1

ϕj,k(x), x ∈ R
n, (4.13)

is an atomic decomposition in Bs
p,q(R

n) according to Definition 2.3 for any s > 0,
0 < p <∞. Setting s = n−m

p
such that s− n

p
= −m

p
one gets for q > 1

‖ϕJ |B
n−m

p
p,q (Rn)‖q ≤ c

J ′+1
∑

j=J

r
q
j2

−j mq
p

(

Mj
∑

k=1

1

)
q
p

≤ c′
∞
∑

j=J

j−q

∼ J1−q −→ 0 as J → ∞.

(4.14)

This proves (4.10).

Step 3. We prove (4.6) for p > 1, q > 1. It is sufficient to approximate
f ∈ D(Rn) in Bs

p,q(R
n), s = n−m

p
, by functions fJ ∈ DΓ. Put

K := supp f and ΓC := K ∩ R
m.

Let ϕJ be the functions constructed in Step 2 and

f = fJ + fJ with fJ = ϕJf and fJ = (1 − ϕJ)f ∈ DΓ.

(We choose a different resolution of unity ϕJ for every f .) By Proposi-
tion 2.5 (ii), using (4.10), one has for some c > 0, f ∈ D(Rn), and ϕJ that

‖fJ |B
s
p,q(R

n)‖ ≤ ‖f |C∞(Rn)‖ · ‖ϕJ |Bs
p,q(R

n)‖

≤ c‖ϕJ |Bs
p,q(R

n)‖ −→ 0 as J → ∞.

Step 4. We prove (4.9). By Theorem 3.12 and Corollary 3.13 we see that the
trace of f in Fs

p,q is independent of q. Therefore,

∥

∥

∥
ϕJ |F

n−m
p

p,q (Rn)
∥

∥

∥
∼
∥

∥

∥
ϕJ |B

n−m
p

p,p (Rn)
∥

∥

∥
−→ 0 if J → ∞,

cf. the constructions in Theorem 3.12. Then one gets (4.9) by the same argu-
ments as in Step 3 for all 1 < p <∞ and 0 < q <∞.

Step 5. We prove (4.6) for the remaining case when p < q (in particular p ≤ 1),
constructing now a more refined resolution of unity as in Step 2. We cover the
compact set ΓC , say with µ(ΓC) = 1, for given L ∈ N by sets Γl such that
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ΓC =
⋃L′

l=L Γl, µ(Γl) ∼ l−1,
∑L′

l=L µ(Γl) ∼ µ(ΓC) = 1, where L ∈ N with L′ > L

is appropriately chosen. For the details we refer to [12, Theorem 6.68]. In
particular, this can be done in such a way that there are functions ψl ∈ D(Rn),

ψl ≥ 0,
∑L′

l=L ψl(γ) = 1 if γ ∈ ΓC , Γl ⊂ suppψl ⊂ {y ∈ R
n : dist(y,Γl) < εl} for

some εl > 0. Let for given l ∈ N (between L and L′) and appropriately chosen

j(l) ∈ N,
∑Mj(l)

k=1 ϕj(l),m(x) = 1 near ΓC , 0 ≤ ϕj(l),k ∈ D(Bj(l),k) as in (4.11) with
the counterpart of (4.12) and Mj(l) ∼ 2j(l)m.

With j(L) < · · · < j(l) < j(l + 1) < · · · < j(L′), we put in analogy to (4.13)

ϕL(x) =
L′
∑

l=L

ψl(x)2
−

j(l)m
p

Mj(l)
∑

k=1

2
j(l)m

p ϕj(l),k(x), x ∈ R
n.

If j(l) is chosen large enough this is an atomic decomposition which can be
written as

ϕL(x) =
L′
∑

l=L

2−
j(l)m

p

M ′
j(l)
∑

k=1

2
j(l)m

p ϕ̃j(l),k(x), x ∈ R
n,

with M ′
j(l) ∼ µ(Γl)2

j(l)m ∼ l−12j(l)m, counting only non-vanishing terms, where

the equivalence constants are independent of l. We have ϕL(x) = 1 near ΓC .
Then one gets by Definition 2.3 for q > p,

∥

∥

∥
ϕL|B

n−m
p

p,q (Rn)
∥

∥

∥

q

≤ c

L′
∑

l=L

2−j(l)mq
p

(M ′
j(l)
∑

k=1

1

)
q
p

≤ c′
L′
∑

l=L

l
− q

p ∼ L
1− q

p .

This is the counterpart of (4.14). Proceeding as in Step 3 finally proves the
Theorem.
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