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Abstract. We investigate a class of non-local Hamilton—Jacobi equations arising in
dislocation dynamics. The class of Hamilton—Jacobi equations treated here is a varia-
tion of those studied by N. Forcadel, C. Imbert and R. Monneau in [Discrete Contin.
Dyn. Syst. 23 (2009)(3), 785 — 826], and the new feature lies in the singularity at
the origin of the kernel functions which describe non-local effects. For the class of
Hamilton—Jacobi equations, we establish some stability properties of (viscosity) so-
lutions, comparison theorems between subsolutions and supersolutions and existence
theorems of solutions.
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1. Introduction

Let pe RY and 0 < T < 0o. Set Qr = RY x (0, T'). We consider the functional
differential equation of the Hamilton—Jacobi type

ur = (c(z,t) + My[u(-, t)](z))|p + Du(z,t)] in Qr, (1.1)

where u : RY x [0, 0o) — R is the unknown function, w; := du/0t, Du :=
(Ou/0zy,...,0u/dzy) and ¢ € C(RY x [0,00)) is a given function. Moreover,
the operator M, is formally given by

Mol() = [ TEB@l+2) — o) +p-2) =p-2)d
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where J is a measurable function on R" and E is the function on R given by
E(r) = |[r] 4+ 3. Here [r]| denotes the greatest integer less than or equal to
r € R.

This type of non-local Hamilton—-Jacobi equations have been introduced by
Forcadel-Imbert-Monneau [8] as model equations in the level-set approach to
dislocation dynamics. They have studied not only the well-posedness of the
initial value problem for such Hamilton—Jacobi equations but also its homog-
enization. We refer to [8] for the connections of (1.1) to dislocation dynamics
as well as the solvability and homogenization of (1.1). See also [1,6] and the
references therein for related topics.

In this article we investigate the solvability of the initial value problem for
(1.1), with the kernel J having a stronger singularity at the origin, in the frame-
work of viscosity solutions and establish some stability properties of solutions
of (1.1), comparison theorems between subsolutions and supersolutions of (1.1)
and existence theorems of solutions of the initial value problem for (1.1). We
refer to [2,3,9,11] for some results on the well-posedness of general functional-
differential equations.

The notion of solution here is defined through those of subsolution and
supersolution. It is convenient for us to divide (1.1) into two inequalities:

u(z,t)
ug(x,t)

(c(z,t) + MSTu(-,t)](x)|p + Du(z,t)]  in Qr (1.2)
(c(z,t) + M, [u(-,t)](z))|p + Du(z,t)| inQr, (1.3)

IV IA

where, for bounded measurable functions ¢ : RV — R,

MSf[¢](x) := lim sup/ Ey (¢(x + 2) — ¢(x), 2)J (2)dz
|z|>8

6—0+

M [9](x) = liminf / (B0 +2) = 9(@), ) 2)a

6—0+

Ef(r,z) =FE'(r+p-z) z

— p .
E (r,z) =Er+p-2)—p-2
Here and later, given a function f, we denote by f* (resp., f.) the upper (resp.,
lower) semicontinuous envelope of f. Note that E* = E and that E*(r) =
—E,(—r) for all r € R. Note also that |EX(r,z) —r| < 1 for all r € R.

To make the meaning of (1.2) and (1.3) precise, we introduce our assump-
tions on ¢ and J:

(cl) ¢ € BUC(Q,) for any 0 < 7 < T
(c2) for any 7 € (0, T), there is a constant L, > 0 such that

lc(x,t) — c(y,t)] < L.z —y| forall z,y € RY and t € [0, 7];
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(J1) J is nonnegative and measurable on R¥;

(J2) J(=2) = J(2) for all z € RN\ {0};

(J3) J € LY(B(0,1)°), where B(0,1)¢:= RN\ B(0,1);

(J4) there are constants 3 < N + 1 and Cy > 0 such that J(z) < ﬁ% for all
z € B(0,1)\ {0}.

Note that if ' > 3, then |z| 7 < |2|= for all z € B(0,1)\ {0}. Hence we may

and do assume throughout the paper that > N in condition (J4).

A new feature of this article is that condition (J4) allows J to have a
singularity, stronger than the one studied in [8], at the origin. Indeed, the main
issue here is how to deal with singularities of J at the origin in order to establish
stability properties of solutions of (1.1) and comparison and existence results
for solutions of the initial value problem for (1.1).

We see that, under assumptions (J3) and (J4), if ¢ is bounded measurable,
then the values MF[¢](z) are well-defined although they may be Foco.

The precise meaning of the above inequalities (1.2) and (1.3) are as follows.
Henceforth we deal only with solutions of (1.1), (1.2) or (1.3) which are bounded
on RY x (0,7) for any 0 < 7 < T. We denote by B(Qr) the space of functions
on Q7 which are bounded on @, for any 0 < 7 < T. A function u € B(Qr) is
called a (viscosity) solution or subsolution of (1.2) or (viscosity) subsolution of
(1.1) if whenever (x,t,¢) € RY x (0,T) x C?(Qr) and u* — ¢ attains a local

maximum at (x,t), we have

(1.4)

oo, 1) < {(C(%tHMJ[u*(w 1)](x))|p+Do(x,t)| if p+De(x, t) # 0
t\ T, 1) = 0

if p+Do(x, t) =0

It will be shown (see Lemma 2.1 below) that if p + D¢(z, t) # 0, then
M [u*(-, t)](z) < oo in the above inequality.

Similarly, a function u on Qr is called a (viscosity) solution or supersolution
of (1.3) or (viscosity) supersolution of (1.1) if whenever (z,t, ¢) € Qr x C*(Q7)
and u, — ¢ attains a local minimum at (z,t), we have

bl 1) Z{(c(x,lﬁ)JrMp[u*(., )](x))|p+Do(z, t)| if p+De(x, t) # 0 )

0 if p+D¢(x, t) = 0.

Here we also remark (see Remark 2.1 below) that, under (J3) and (J4), if
p+ Do(x,t) # 0, then M "[u.(-,t)](x) > —oo.

Finally, a function u € B(Qr) is called a (viscosity) solution of (1.1) if it is
both a solution of (1.2) and of (1.3).

We will be also concerned with PDE of the form

w + f(a,t) = (c(z, ) + Mplu(-, D)](x)) [p + Dul - in Qr,
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where f € C(Qr) is a given function. For this, the above notion of solution,
subsolution and supersolution can be easily adapted.

We denote by ST = ST(Qr) (resp., S~ = S (Qr) or S = S(Qr)) the set
of all solutions of (1.3) (resp., (1.2) or (1.1)). By definition, we have S*(Qr) C
B(QT) and S(QT) C B(QT)

The above definition of viscosity solutions differs slightly from that of [7]
where subsolutions (resp., supersolutions) are assumed to be upper (resp., lower)
semicontinuous.

Condition (J4) can be considerably relaxed in one dimension. By modifying
the notion of solutions, subsolutions and supersolutions by imposing an extra
condition on test functions and taking advantage of the simple geometry of the
space R, we will show that the Cauchy problem for (1.1) is well-posed in one
dimension without the restriction, 8 < N + 1. See (J4’) for the replacement of
(J4) in one dimension.

The paper is organized as follows. Sections 2-5 are concerned with the well-
posedness of (1.1) in general dimension. In Section 2 we establish a couple of
estimates on the operators MpjE [u] under some semi-convexity or semi-concavity
assumptions on u. In Section 3, we establish some stability properties of solu-
tions of (1.1), (1.2) or (1.3) as well as the Perron method. Section 4 is devoted
to the proof of comparison theorems for solutions. In Section 5 we apply results
obtained in the previous sections to prove an existence and uniqueness theorem
for the initial value problem for (1.1). Section 6 is focused on the well-posedness
of the initial value problem for (1.1) in one dimension. We modify the notion
of solution, subsolution and supersolution and establish stability properties,
comparison and existence theorems for solutions of (1.1) in one dimension.

Notation: for a, b € R we write a V b := max{a, b} and a A b := min{a, b}. For
any real-valued function f on X, we write || f|lcc = || flloo.x = supx | f]-

2. Basic estimates on operators Mpi
In this section, we give some estimates on operators Mpi. Let p € RY be a fixed
vector.

Lemma 2.1. Let u be a bounded measurable function on RYN. Let z, ¢ € RV,
r >0, A>0 and C; > 0. Assume that 0 < [p+q| < A and

u(z +2) <ulz)+q-z+Cilz|>  forall z € B(0,r).

Then there are constants p > 0, depending only on r, A and Cy, and C'" > 0,
depending only on Cy, Cy, B and N, such that for any 0 < 9§ < p A ('1’2’—2?'),

lu(z O ni1p 2)EF (u(x + 2) — u(z), 2)dz
V) < gt [ @B e+~ e @)
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Remark 2.2. An assertion analogous to Lemma 2.1 holds true for M. It is
the proposition same as Lemma 2.1, except that the assumption that v(z+z) >
v(z) + q -z — Cy|z|? for all z € RY replace the corresponding assumption in
Lemma 2.1 and the inequality

- O gn+1-s DNE (v(z + 2) —v(z), 2)dz
VB 2~ [ B e+ 2) —o(e), )

replaces inequality (2.1) of Lemma 2.1. To see this, we just need to apply
Lemma 2.1 to u = —v, with —p and —¢q in place of p and ¢, respectively. Other
propositions in this section stated only for M; have their analogues valid for
M.

P

Proof. We set v = p + ¢, choose an orthonormal basis {fi,..., fx} of RY so
that fx = |v|"'v, and define the orthogonal matrix F' by

S
F=1":
In

and observe that for any 2 € RN, 2F = 2, f1 + - -- + 2y fy. We have

u(x + zF) —u(x) +p-2F < (p+q) - 2F + C1|zF|?
U - (Zlfl + -+ ZNfN) + 01|ZF|2 (22)
= |v|zy + Cy|z]*  for all z € B(0,r).

Observe that if |z] < % and zy < — 201 |z’|2, where z = (¢, zy) € RV 1 xR,
then

v
|U|z]\/+C’1|z|2 < —Cy)7 |2 |2’ZN +C’1|z|2 < |zN|(C’1|z| |2’) <0. (2.3)

Set p = min {r, m} and note that p < 1 and Ap + C1p?<1.
Next let 0<y< 6 < pA (54 Jol ) For any z € B(0,4), we have |v|zy+C1|z]* < 1

and moreover, by (2.3)

1 2C"
—— if 2y < Bt Y PY
2 |v]

I

E*(|vlzy + Ci]2%) < (2.4)

otherwise.
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Using (2.2) and (2.4), we calculate that
/ J(2)E*(u(z + 2) —u(z) +p-2)dz
V<|2<6
:/ J(zF)E* (u(z + 2F) — u(z) + p- 2F)dz
<lz|<é

g/ J(F)E* ([o]zy + Ci|2[?)d=
v<|2|<6

1

< 5( 5 J(zF)dz — J(zF)dz),

-
where U := {z € RV | y < |2| < 6, 2y > —%|2/|2} and U™ :={z e RV |y <
|z| <6, 2y < —%|z’|2}. Setting Uy = {z € ]RN‘W <|z| <6, |an] < %|Z’|2}
and using the symmetry property of J, we observe that

/WJ(zF)dz—/ J(2F)dz :/_WJ(ZF)dz—/J(ZF)dz :/U J(2F)dz,

to find that

, T Z)—ul\xr),z z:l > e
/7<|ZS5J(Z)EP (ulz +2) (z),2)d 2/UO J(zF)dz.

Now, recalling that 6 < 1, we observe that if |zy| < %|z’|2 and v < |z] <0,

then v* < [P+ 2% < [Z/P+ || < (1 + %)|z’\2, and |2/| < 4. Setting
1
v =(1+ 24)7% we note that Uy C {z € RN | v < |2/| <6, |2n] < 2222}

[v] [v]

and compute that

1
ET (u(x + 2) — u(z), 2)dz < = > -
/v<|z|saj( JE (ule o+ 2) ~ u(e), z)d S2/ J(zF)d

Up
C
<= 1Pz
Uo
%'ZI‘Q
:C'O/ dz// |2'|7Pdzy
v<|2'|<6 0
2C,C'
< 0“1

/ ‘Z/’27,8d2/
|?)| v<|2|<é

) )
:—C°|C|10N / V=Bt
U 12

200010’]\[ 5N+1—ﬁ
(N+1-0) ’

<
0]
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where o is a positive constant depending only on N. Finally, we note

lul(x 2C0ChoN  ny1p ET (u(x + 2) — u(z), 2)dz
V) < ey [ OB e ) a2

to conclude the proof. [l

Lemma 2.3. Let u be a bounded measurable function on RY. Let z, ¢ € RV,
r >0 and C; > 0. Assume that p+q # 0 and u(x + 2) < u(x) + ¢z + Cyz|?
for all z € B(0,r). Then there are constants p > 0, depending only on r and
Cy, and C > 0, depending only on Cy, Cy, B and N, such that if |p+ q| < p,
then

Mgmmas0@+mNﬂ+/

|z]>

J(2)Ef (u(z + 2) — u(x), z)dz.

|p+al

2C

Proof. By Lemma 2.1 with A = 1, there are constants p; > 0, depending only
on r and C7, and Cy > 0, depending only on Cy, C, § and N, such that if
0<do<pi A ('g—g‘l]') and |p+ ¢| <1, then

C
M [u)(z) < —2—gN*+1=0 +/ J(2)E) (u(z + 2) —u(x),z)dz.  (2.5)
p+4q| |2]>6
We set p = (2C1p1) A1, so that p < 1 and ;& < p1. Now, assume that

lp+q| < p. Then we have |[p+¢| <1 and 6 := 254 <y, Hence, by (2.5), we

2C,
get
Cy  (lp+q\N+1-8 /
A]\jJr < + J E+ + . , d
b [ul(z) < b+ q| ( 20, ) s gt (2)Ef (u(z + 2) — u(x), 2)dz
_—02 N-8 +
~aC)Ni D lp+aql" "+ /|z|>'pgq J(2)Ef (u(z + 2) — u(x), z)dz,
207
which was to be shown. 0

Lemma 2.4. Let u be a bounded measurable function on RN. Let x, ¢ € RY,
r>0,0< X< A<ooand Cy > 0. Assume that A < |p+q] < A and
wx + 2) <u(x)+q- 2+ Ci|z|? for all z € B(0,r). Then there are constants
p > 0, depending only on r, \, A, Cy and Cy, and C' > 0, depending only on
Co, C1, A\, B and N, such that for any 0 < < p,

M [u)(z) < CeNTF0 —i—/ J(2)E) (u(x + z) — u(x) z)dz.

|z|>8
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Proof. According to Lemma 2.1, there are constants p; > 0, depending only on
r, A, and C}, and Cy > 0, depending only on Cy, C;, # and N, such that if
0<6<p A (%), then

Flul(z Gy N DAEF(u(z + 2) — u(x), 2)dz
M [ul( )§|p+q|5 + |z\>6J( VB, (u(x + 2) —u(z),z)dz.  (2.6)

Setting p = p1 A (ﬁ) and noting that p < p; A (lggfl), we find from (2.6) that
for any 0 < 6 < p,

Flu)(x G ntip 2)Ef (u(x + 2) — u(z), 2)dz
V) S [ JEE e ) ), 2)d

§%5N+1_3 —|—/ J(2)Ef (u(z + 2) —u(z), z)dz.
|z|>6

The proof is complete. [

Lemma 2.5. Let u be a bounded measurable function on RYN. Let x, ¢ € RV,
r>0,A>0,C; >0 and Cy > 0. Assume that 0 < |p+ q| < A, |u(2)| < Cy
for all z € RY and

u(z +2) <ulz)+q-2+Cilz|>  for all z € B(0,r).

Then there is a modulus w, depending only onr, A, B, Co, Cy, Ca, ||J | L1(B0,1))
and N, such that
M [u](2)|p + gl < w(lp +q).

Proof. By Lemma 2.3, there are numbers p > 0, depending only on r and C',
and C3 > 0, depending only on Cy, C1, 3 and N, such that if 0 < |p + ¢q| < p,
then

M) < Colp+ a4 [

21> 5e,

J(2)E) (u(x + 2) —u(x),z)dz.  (2.7)

We may assume, by replacing p by a smaller positive number if needed, that
p < A and % < 1.

Assume that 0 < |p + ¢| < p. We compute that

/|>p+q J(Z)E;(u(x +2) — u(x), 2)dz

2C
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where o’y is a constant depending only on N and B(0,1)¢. Combining this with
(2.7), we get

M¥ul(@)[p+ql <Ci (Ip+ a7 + o+ alll |l 21B0,1)))
<Cy (1+ o M1 Bony) I+ a7,

where Cy > 0 is a constant depending only on Cy, C4, 8, Cy and N.

By Lemma 2.4, there are constants 0 < 6 < 1, depending only on r, p, A,
Cy and C, and C5 > 0, depending only on Cy, Ci, p, B and N, such that if
p <|p+q| <A, then

M u)(z) < C56N 17 +/ J(2)E; (u(x + 2) — u(x), z)dz. (2.8)

|z|>d

Assume that p < |p+ ¢| < A. As before, we compute that
[ I@E; e+ 2) - u(w), 2z
|z|>6

1
< (205 + 1) (Coaﬁv/ tN0dE 4 HJHD(B(o,l)c))

< 203+ ) $25 + o )

Hence, using (2.8), we get M, "[u](z)|p+q| < Cs|p+q| for some constant C > 0
which depends only on r, C;, with ¢ = 1,2,3, 3, A and N.

By replacing Cy and Cg by larger numbers if necessary, we may assume
that Cy (1 + p" N[ J|l1(Bo,1)e)) PN TP = Cep. Then we define the function
w € C([0,00)) by setting

(t) = Ci (1+ P M| I oy VTP fort < p
w
Cgt for t > p.
This function w is a modulus having all the required properties. O

3. Stability properties and the Perron method

In this section we establish some stability properties of solutions of (1.2) or
(1.3) as well as the Perron method. Analogous stability properties are valid for
solutions of (1.3), but we do not give here the details and leave it to the reader
to supply them.
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Lemma 3.1. Let § > 0, {p,} C RN, {z,} C RY and {u,} € USC(RY). Let
p, v € RY and u € USC(RY). Assume that {u,} is uniformly bounded on RY
and that (pp, Tn, Un(z,)) — (p, z, u(x)) as n — co. Moreover assume that

klim sup {un(y) |y € B(z,k™"), n >k} <u(z) foralzeR". (3.1)

Then
lim Sup/| ) J(2) E} (tun(n 4 2) — up (), 2)dz
n—oo  J|z>
< /| ) J(2) Ef (u(z 4 z) — u(z), z)dz.
2>
Proof. Set

n = 2) B (un (2 + 2) — up(xn), 2)dz
A AR C AT R
fn(2) :E;;(Un(fﬂn +2) —up(xy,),z) for z € RY.

Choose a constant C' > 0 so that |u,(z)| < C for all (z,n) € RY x N, and note
that J(2)|f.(2)] < (2C +1)J(z) for all (z,n) € (RY \ {0}) x N. By the Fatou

lemma, we find that

n—oo n—oo

limsup [,, < / J(2)limsup f,(z)dz.
|z|>8

Since E* is upper semicontinuous and non-decreasing in R, we see that for
any z € RV,

limsup f,(z) < E*(limsup u,(z, + 2) —u(z) +p-2) —p- 2.
Using (3.1), we see that lim sup,, . 4, (2, +2) < u(z+2) for all z € RY. Hence,
we get
limsup f,(2) < Ef(u(z + 2) —u(z),2) for all z € RY.

n—oo

Thus we obtain

limsup I, < / J(2) Ej(u(x + z) — u(x), 2)dz,
|z|>6

which completes the proof. [l

Theorem 3.2. Let Sy be a non-empty set of solutions of (1.2). Assume that the
family Sy is uniformly bounded on Q). for any 0 < 7 < T. Define the function
u € B(Qr) by u(z, t) =sup{v(z, t) | v e Sy}. Then u is a solution of (1.2).
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Proof. Let (2, 1) € Qr and ¢ € C?(Qr), and assume that u* — ¢ attains a strict
maximum at (Z,%). By the definition of u*, there are sequences {(z,,%,)} C
B((#,t),2r), where r > 0 is chosen so that B((%,%),2r) C Qr, and {v,} C Sy
such that v, (2, t,) — u*(2,t) and (2,t,) — (2,f) as n — oco. By the
definition of u, we have v}, < u* in Q7.

For any n € N let (y,,s,) € B((#,1),2r) be a maximum point, over
B((#,t),2r), of the function v} — . Observe that

(u" = @)(&,1) = liminf (v, — ©)(2n )
< lim inf (v, — ©)(Yn, 5n)
< limsup(v), — ©)(Yn, Sn)
< li?rl_:ljp(u* — ) (Yn, Sn)

n—oo

< (u' = )(@,1).

This shows that v (y,, s,) — u*(#,1) and (u* — ©)(Yn, $n) — (u* — ©)(2,1) as
n — o0o. It is now easy to deduce that (y,,s,) — (Z,t) as n — oc.

Passing to a subsequence if necessary, we may assume that (y,,s,) €
B((z,t),r) for all n. Since v, € S~, we have

Pe(Yns 8n) < (e(Yns sn) + M [07(5 2)](Yn)) 1P + Dp(Yn, 5n)| (3.2)
if p+ Dp(yn, sn) # 0, and

Ot(Yn, $n) <0 if p+ Do(yn, s,) = 0. (3.3)

We now separate into two cases.

Case 1: p+ Dp(#,t) = 0. In view of Lemma 2.5, there is a modulus w, which
depends on || D¢ llo p((a.i).)s D¢ lloo,5((a.0).2r) 20 V]| oo 25 w1, i) DUt DOL OD
n, such that

My [ (-, $0)](Wn) [P+ D(Yns $n)| < w([p+ D(Yn, sp)|)  for all n.

We combine this with (3.2) and (3.3) and send n — oo, to see that ¢, (#,%) < 0.

Case 2: p+ Dp(#,1) # 0. By selecting a subsequence if necessary, we may
assume that |p+ Dp(yy, s,)| > A for all n and for some constant A > 0. By the
definition of u, we see that for all z € RV,

lim sup {0} (y, sn) [0 >k, y € Bz, k7')}
< klim sup {u*(y, Sp) |m >k, ye Blx, k_l)}

< ut(z,t).
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We now apply Lemma 2.4, to find that there are constants pg > 0 and C' > 0
such that for any 0 < 6 < py,

Ml sl < O8I 4 [ JEE (0 + 2) o) )

p p
|z|>0
We next apply Lemma 3.1, to get for any § € (0, po,

limsup M, [v} (-, 5,)] (yn) < CONT7 J(2)Ef (u*(d+2,1)—u*(2,1),2)dz
n—oo |z\>(5

From this, we easily get limsup,, ., M [vi(:, s2)](yn) < M u*(-, £)](2), and

hence conclude from (3.2) that

iy 1) < (e, B) + Mylu* (-, D)](@)Ip + Dol )]
Thus, u* is a solution of (1.2). O

Theorem 3.3. Let {u,} be a sequence of solutions of (1.2). Assume that the
collection {u,} is uniformly bounded on Q. for any 0 < 7 < T. Define u €

B(Qr) by
u(z,t) = klgglo sup {u,(y,s) | (y,s) € B((x,t), k™), n>k}.

Then u is a solution of (1.2).

Proof. We begin by noting that u € USC(Qr). Let (#,f) € Qr and ¢ €
C?(Qr), and assume that u — ¢ attains a strict maximum at (2,7 ). By the defi-
nition of u, there are sequences {n;} C N, diverging to infinity, and {(xy,t;)} C
B((#,1),2r), where r > 0 is chosen so that B((i,7),2r) C Qr, such that
Up, (Thy ) — (@, 1) and (zp, 1) — (2,1) as k — oo.

Set vy = u,, for k € N. For any k € N let (yx,s,) € B((#,£),2r) be a
maximum point, over B((Z,%),2r), of v; — ¢. We observe that

(u=@)(,1) = lim (v5 — @) (wy, te) < liminf(vF — ) (v, sk)- (3-4)

Let (z,t) € B((&,1),r) be an accumulation point of the sequence {(y, sx)} and
let {(yx,,sk;)} be one of its subsequences converging to (x,t). By the definition
of u, we see that
lim sup(vg, — )Yk, Sk,) = lim sup g, (Uny S1y) — o, 1) S ulz,t) — p(z,t).
j—o0 —00
This together with (3.4) guarantees that (v,t) = (,7). That is, the sequence
{(yk, sx)} converges to (Z,t). Again, by the definition of u, we see that
lim sup(vy — @) (Y sx) < (u— @) (2, ).

k—o0
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It is now clear that v} (y, sx) — u(@,t) as k — oo.

The rest of the proof parallels the argument in the proof of Theorem 3.2
where it is divided into two cases, and we omit here the details. The proof is
complete. [l

To formulate the Perron method, we fix p € RY and let f € S, (Qr) N
LSC(Qr) and g € S (Q7) N USC(Qr). Assume that f < g in Q7. Set

u(z,t) = sup {v(z,t) |veS, (Qr), f<v<ginQr}. (3.5)
Note that u € B(Qr).
Theorem 3.4. The function u given by (3.5) is a solution of (1.1).

Proof. First of all, we note by Theorem 3.3 that u* € S~.

We next show that u, € S*. Let (2,) € Qr and p € C?(Qr). Assume
that u. — ¢ attains a strict minimum at (Z,¢), with minimum value zero. We
need to show that the inequality

©i(2,1)
( (@, 1) + M, [u.(-,0))(@))|p + Do(&, 1) if p+ Dp(@, 1) #0  (3.6)

if p4+ Dp(#,1) =0
holds.

It is clear by the definition of u that f < u < g in Q7. Consequently we
have f < u, < g, in Q7. Consider the case where u*(i,f) = g*(i‘,f). Then,
since u, < g, in @Qr, it follows that g, — ¢ attains a minimum at (z, f) By the
viscosity property of g, we have

(@, 1)
( )+ M [g.(-D)](2)lp+ Do(2, 1) if p+ Do(2,8) #0  (3.7)
if p4+ Dp(z, 1) = 0.

But, since g, > u, and g(2,1) = u, (2,1 ), we see that if p + Dp(&, £) # 0, then

M g 8))(&) = M [u. (-, )](2),

from which together with (3.7) we conclude that (3.6) holds.

Next we assume that u,(#,1) < g.(#,1). We find by the semicontinuity
of g, that g,(x,t) > ¢(x,t) + ¢ in a compact neighborhood W (C Qr) of (&,1)
for some constant ¢ € (01). Furthermore, we may assume by modifying ¢
except near the point (&, ¢), if necessary, that u,(z,t) > o(z,t) + 1 for all
(l’, t) € Qr \ W.
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Define u,, = uV (¢ + 1) in Q7. Note that (u,).(&,1) = ¢(2,1) + 1/n >
u,(2,1) and therefore u, % u. Since ¢ +¢ < g in Qp, we see that f < u, < g
for sufficiently large n, say, n > k, for some k € N.

In what follows we are concerned only with u,,, with n € N satisfying n > k.
Since wu, £ u, by the definition (maximality) of u, we find that (u,)* & S~.
Thus, for each n there are a point (x,,t,) € Qr and a function ¢, € C*(Qr)
such that (z,,t,) is a maximum point of v’ — v, and the inequality

c(Tn, tn) + Ml ()] (@) + gl ifp+qn#0

"> (c(@n, tn) + M [, (-, 60)](20)) P + dnl i G # (3.8)
0 ifp+q,=0

holds. Here and later we write a,, = ¢, (2, t,) and g, = D, (2, t,).

Set @, (z,t) = p(x,t) + £ for (z,t) € Qr and
Vi =A{(z,t) € Qr | pn(z,t) > u*(z,t)}.

Note that V,, is an open subset of Q1 and u,, = ¢, on V.

We claim that (z,,t,) € V,. Indeed, if this were not the case, then we
would have ¢, (x,,t,) < u*(x,,t,), and therefore

(Un>*($na tn) =u" (.Z‘n, tn) Vv QOn(l’n, tn) - U*(l’n, tn)

Now, since v} > u* in Qr, we see that (x,,t,) is a maximum point of u* — 1),.
Hence we have

{ (c(n, tn) + M [u (- tn)[(20)) [P+ qnl i p+gn #0

a, < .
ifp+gq,=0.

(3.9)

Since (u,)*(xn,t,) = u*(x,,t,) and u} > u* in 7, we find that
n

M [ (-, )] () < My us (-, £0)] ().

p

From this and (3.9) we obtain

0 < (c(Tn,s tn) + M;[“Z(vtn)](ajn))’p +qn| fp+ag.#0
" 0 lfp + Gn = 07

which contradicts (3.8). Thus we conclude that (z,,t,) € V,.

As noted above, V,, is an open subset of Q7 and u,, = ¢, on V,,. Therefore,
we have a,, = ¢i(x,,t,) and ¢, = Dy(x,,t,). Noting that if p + ¢, # 0, then
M;[u:(atnn(xn) > M;:[(un)*('vtn)](xn)7 from (3.8) we get

. { (c(Tn,tn) + M, [(wn)« (- 1) (z0)) P+ @ul I p+ G # 0 (3.10)

0 itp+q,=0.
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Since (zp,t,) € Vi, we have (uy).(zn, tn) = on(Tn,t,), while (u,). > @y
on Qr by the definition of w,. Therefore, (u,). — ¢, attains a minimum at
(Zp, tn) with minimum value 0. Since (up). — ¢n > ur — ¢ — = > 0 outside
the set W C Qr, we find that (z,,t,) € W. Recall that u, > ¢ and hence
uy < (up)e < ue+ = in Qp. From this we see that (un).(z,t) — u.(z,t)
uniformly for (z,t) € Qr as n — oo. Since (#,1) is a strict minimum of u, — ¢,
we easily deduce that (z,, t,) — (&, ) as n — oo.

We now divide our consideration into the following two cases.

Case 1: #{n | p+ g, =0} < co. We may assume by replacing k by a larger
integer if necessary that p + ¢, # 0 for all n. Using the facts that (u,). — ¢
attains a minimum at (z,,t,), (zn, tn) — (Z,1) as n — oo and (u,). — us.
uniformly on Q7 as n — oo, we apply Lemmas 2.4 and 3.1 if [p+ Dy(#,1)| > 0
or Lemma 2.5 otherwise, to obtain

liminf M [(un)« (-, tn)] () [P+ Gnl

n—oo

{Mp_[u*(w D)(@) [p+ D&, £)] it p+ Dep(i, &) # 0

> A
0 if p+ Do(z,t) =0.

Combining this and (3.10), we conclude that (3.6) is valid.

Case 2: #{n | p+¢, = 0} = co. We may choose a sequence {n;} C N diverging
to infinity so that p + ¢,, = 0 for all j € N. An immediate consequence is that
p+Dyp(&, 1) = 0. From (3.10), we have a,,, = ¢4(2,,,tn,) > 0 for all j. Sending
j — oo, we obtain ¢,(#, £) > 0, which shows that (3.6) is valid. The proof is
complete. O]

4. Comparison theorems

Throughout this section we let p € RY be an arbitrary vector.

Theorem 4.1. Let 0 < T < 0o. Let u and v be solutions of (1.2) and of (1.3),
respectively. Assume that u and —v are upper semicontinuous and bounded on
RN x [0, T) and that

lim sup{u(z,t)—v(y, s)|(z,t),(y, s) ERVX[0,T), |z —y| VEV s<r}<0. (4.1)

r—0+
Then u < v on RY x [0, T).

We show first the following theorem and then apply it to prove the theorem
above.
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Theorem 4.2. Assume in addition to the hypotheses of Theorem 4.1 that u and
v are defined on Q, that u and —v are bounded and upper semicontinuous on
Qp and that u(x,t), —v(x,t) are semi-convex in x on RY uniformly int € [0, T},
that is, there exists a constant Cy > 0 such that for any t € [0, T| the functions

u(z,t) + Cilz|*  and —ov(x,t)+ Ci|z]?
are conver in x on RY. Then u <v on RY x [0, T).

Proof. We suppose that supgw (o (u —v) > 0 and will get a contradiction.

Fix a constant Cy > 0 so that |u(z,t)| V |v(x,t)] < Oy for all (z,t) € Q.
Let € > 0 and set

9

ue(z,t) = u(z,t) — T2t

for (z,t) € Q.
Observe that u, is a subsolution of

vt = (¢ + Myu(-,D](@)lp+ Dul in Qr,

€
(T + £2)?
and that if € > 0 is sufficiently small, then

sup(u. —v) >0
Qr

1
us(z,t) —v(y, s) < 205 — % < 0 forall (z,1),(y,s) € RY x [T — &% T.

We fix such a small € > 0 and we write u for u. in what follows. We fix a v > 0
so that v < m and that for all (z,t,y,s) € @;, if
either |z —y|ViVvs<y or |z—y|lV(T—t)V(T—-s)<n,

then
u(z,t) —ov(y,s) <O0. (4.2)

Note that u is a solution of
w +v < (c+ Myu(-, t)](z)|p+ Du| in Qr, (4.3)
We set
a(z,t) = u(z,t) +p-r and (x,t) =v(z,t) +p-x for (x,t) € Qp.

In view of (4.2), replacing v > 0 by a smaller number if necessary, we may
assume that for any (z,t,y,s) € @;, if

either |z —y|ViVs<y or |z—y|lV(T—t)V(T—-s)<nr,



Non-Local Hamilton—Jacobi Equations 325
then
a(z,t) — 0(y,s) < 0. (4.4)

Let @ > 1 be a large constant to be specified later on. We define the
function & = ¢, on @7? by
(I)(Iat7yv 8) = ﬂ({L‘,t) - {)(yv S) - Oé|{L‘ - y|2 - a|t - 8|2‘

We set 0 =0, := supg> @ and note that § > supg_(2—0) = supg,_(u—v) > 0.
Observe that if ®(x,t,y,s) > 0, then

20y > —p- (x —y) +alz —y|* + aft — s|?

PP |« 2 2
Z—%+§(|$—y| + [t —s]?)
2
D «
Z—%+§(|x—yl2+lt—5|2).

Fix a constant Ry > 0 so that R2 > 4Cy+|p|?, and note that for any (z,t,y,s) €
— 2
QT?

(Vale —y)V (Valt —s) < Ro i ®(rtys) >0, (45)

In particular, we have 6 = sup{®(z,t,y,s) | (z,t,y,s) € QF, Valr —y| < Ry}.
We denote by R, the set of those » > 0 which satisfy

6 = sup {®(x,t,y,5) | (z,t,y,5) € Qp, alz —y| <7},

and set \, = inf R,. Since \/aRy € Ry, we have 0 < \, < /aRy. Observe
that if A\, > 0 and A\, > r > 0, then

0 > sup {®(x,t,y,5) | (x,t,y,5) € Qp, alz —y| <7}

and that if r > \,, then
0 = sup {Pa(,t,9.5) | (z,t,y,5) € Qr, oz —y| <1}

We divide our consideration into two cases.

Case 1: liminf, ..o Ay = 0. Let n > 0 be a constant to be fixed later. We
choose an o« > 1 so that A\, < 7. By the definition of \,, there is a sequence
{(Tn, tn, Yn, sn)} C @; such that ®(z,, tn, Yn, Sn) > (9(1— %) and a|z, —y,| < n.
Since ®(x,,, Ly, Yn, Sn) > 0, by (4.5) we have |z, — yn| V [t;, — sn| < 5—%. We may
assume, by selecting « large enough if needed, that % < 3. By (4.4), we see
that

tn,Sn € (%,T—%) for all n € N. (4.6)
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By taking a subsequence if necessary, we may assume that (t,, s,) — (£, §)

for some £, § € [2, T — 1] as n — oo. We choose a maximum point (&,,7,) of

2
the function
(z,t) = d(x,t) — 20|z — yo|* — alt — su|* —alt —£]*>  on Q.

Note that such a maximum point exists since the function above goes to —oo
as |z| — oo uniformly for ¢ € [0, T]. We have

(T, tny Yy Sn) — @ (|20 — Yl + [ta — £7)
< (&n, Ty Yy Sn) — @ (160 = Yal* + |70 — 1)
SQ—a(\fn—ynF—i—]Tn—ﬂz).

Hence, we get

« (|£n - yn|2 + |7-n - £|2) S 0 — (I)(Zﬁn, tna Yn, Sn) + o (lxn - yn|2 + |tn - 2?|2)
(I)(Inu tna yn7 811) S q)(é-THTTL?yTL? Sn) + « (’l’n - yn|2 + |tn - 2?|2) ?
and consequently
2

2
limsupa(|€n - yn|2 + |7_n - £|2) S 77_7 llmlnf@(fn, Tny Yn, Sn) Z 0 — 77_
(07

n— oo n—oo (6

Reselecting « large enough if necessary, we may assume that Zlai < g, so that

liminf, o P&, Tny Yn, Sn) > g. We may choose an nyg € N so that if n > ng,
then

2 P 4772 0
allén —ynl” + |m —t7) < o and  P(&n, Toy Yn, Sn) > 3

In what follows we are concerned only with those n € N which satisfy n > ny.
Note that |, — y,| < 2n and a7, —t | < 2n.

Once again, reselecting « large enough if needed, we may assume that 2 <
2, and we have 0 < 7, < T by (4.6). Now, setting

o(x,t) = —p-x+2alr —y|* + alt — 5,2 +alt —t*  for (x,t) € Qp
and noting that w is a solution of (4.3) in Qr, we get

Pi(Ens ) +7 < (c(&n, ) + M [u(, 70))(€0)) Ip 4+ Dp(€n, 70| (4.7)

if Dp(&,,7,) # 0, and otherwise

@t (&ns Tn) + < 0. (4.8)
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Note that for any z € RN, (u — ¢0)(& + 2,7) < (4 — ¢)(&n, 7) and hence

w(&n + 2,70) — w(&n, ) < (—p+4a(é, —yn)) - 2 + 202

By Lemma 2.5, there is a modulus w, independent of n, such that

M [u(,72)](&n) [P+ Dp(&n, )| < wdalén —yal)  if p+ Dp(&n, 70) # 0.
This together with (4.7) and (4.8) yields ¢i(&n, 7) +7v < w(4a€, —yn|). Hence,
v < w(8n) = 2a(t — s,) — da(r, —t) < w(8n) + 8y — 2a(t — s,,).

Sending n — oo, we get
v < w(8n) 4+ 8n+2a(5 —1). (4.9)
Choosing a minimum point of the function
(4,5) — 5, 9) + 2002 — yP + altu — s>+ als — 57 on Gy

and repeating an argument similar to the above, we get 0 > —w(8n) — 8y +
2a(8—t). Subtracting this from (4.9), we obtain vy < 2w(8n) + 16n, which gives
a contradiction by selecting n > 0 small enough.

Case 2: liminf, ., A, > 0. By the semi-convexity and boundedness assump-
tions on v and —wv, we find a constant L > 0 (see Proposition A.1 in Appendix)
such that for all z,y € RY and t € [0, T,

a(z,t) —ay,t)| V [0z, t) = 0(y, t)| < Llz —yl. (4.10)
Also, by the semi-convexity of u in the variable x , we have
u(z + 2,t) —u(z,t) > q-z— Ci|z|* forall (¢q,2) € Dyu(x,t) x RY

and for all (x,t) € Qp, where D u(x,t) denotes the subdifferential of the func-
tion u(-,t) at . Similarly, we have

v(z + z,t) —v(z,t) < q- 2+ Ch|z* forall (q,2) € Dfv(x,t) x RN (4.11)

and for all (z,t) € Qp, where Dfv(z,t) denotes the superdifferential of the
function v(-,t) at z. Here we note also by the semi-convexity assumption on u
and —v that Dy u(z,t) # 0 and D v(z,t) # 0 for all (z,t) € Q.

Now, we choose a constant \g > 0 so that liminf, .. Ao > Ay and also a
constant o > 1 so that A\, > Ag for all o > «y.

Let § € (0,1). We consider the function ¥ = ¥, 5 on @TQ by

q;’(l’,t,y, 5) = (I)a(l‘,t,y, 5) - 5|$C|2
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For each o > 1 we may choose ¢, € (0,1) so that sup g > U,s > 0 for any
0 < 6 < 04 It is clear that the function ¥ attains a maximum at some point
of @TQ For each ¢ € (0, §,) we fix such a maximum point (z, 7,7, ) which, of
course, depends on « and 6. Noting that & > ¥, we see from (4.6) and (4.5)
as before that if 0 < § < ¢, and RO < 1, then t,5 € (0,T). Replacing ag by a
larger number if necessary, we may assume that \Rfo < 7 for @ > a. Henceforth
we deal only with those o and ¢ satisfying o > and 0 < d < 04, so that
Ao > g and £, 5 € (0, T).

We may assume by replacing d, € (0,1) by a smaller number if necessary
that oz —g| > A\g. Indeed, if this were not the case, we could choose a sequence
{6;} € (0,1) converging to zero such that a|z; — y;| < Ao for all j € N, where
(.5, 95, 33) denotes the point (#,,9, §) corresponding to § = §;. Observe that
® > Vin QT, which implies that Supg2 V.5, < 0. On the other hand, for any

fixed n > 0, if we choose a point (z,t,7,35) € QT so that ®(z, ¢, 3, 5) > 6 —n,
then we get

supWo5, >0 —n—0;|z> >0 —n asj— oo.
ar
These observations together yield lim;_. Supg 2 V,s, = 0. Hence, we have

liminf ®(x;,¢;,y;,s;) > hm sup Vos;, =0,

Qr
which implies that A\, < A\g. But, this contradicts our choice of «y.
A limiting argument parallel to the above shows that

lim §|2|* = 0. (4.12)
6—0+

We observe as usual in viscosity solutions theory that

(—p + 2a(2 — ) + 202, 2a(t — 8)) € DV (s, 1)
(—p + 2a(2 —9), 2a(t — 8)) € D™ v(g, ), (4.13)

and furthermore, we see by the semi-convexity of u, —v in the variable x that
u and v are differentiable, as functions of z, at (&, ) and (§, §), respectively.
Here D* f(z,t) denotes the sub- and superdifferential of the function f at (x,t),
respectively. The above inclusions together with (4.10) yield

2a(& — §) + 262| V |2 — §)| < L. (4.14)

~

Next, by the inequality ¥ (& + 2, £, §+ 2, §) < U(, t, , 3) for z € RV, we find
that

~

w(@+ 2z, t) —u(d, ) <o@+z, 8) —v(g, §) +20% -2+ 6|z]* forall z € RV,
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Combining this with (4.11) and (4.13), we get
w(@+ 2z, t) —u(d t)<q-z4+(0+C)|z|> forall z € RY, (4.15)
where ¢ :== —p + 2a(Z — g) + 262. Similarly, we get
v(§+ 2z, 8) —v(,8) >q-2— (0+C)|z|* forall z€ RY, (4.16)

where ¢ := —p + 2a(z — 7).
In view of (4.12), we may assume by replacing d, by a smaller number if
needed that 20|z| < Ag. Since a|& — g| > A9, we have

A
(|2 = gl) Aal(E —g) + 62| = 20

This together with (4.14) yields
Mo < (20T — 9|) A 20(2 — §) + 20| < L. (4.17)

Hence, using (4.15) and (4.16), we deduce by Lemma 2.4 that there are constants
0 < po < 1 and C5 > 0, independent of our choice of « and ¢, such that for any

M [u(-,£)](2) < CypN =7 —|—/ J(2)Ef (w(@+z,t) —u(d,t),z)dz  (4.18)
My 6 8N@) 2 ~Cop 7 [ IR, (ul2,8) - 0(38),2)dz (119

Now, since u and v are solutions of (4.3) and of (1.3), respectively, using
(4.17) again, we have

2a(f -85 +7< 2(0(@, f) + M;[u(~, f)](i’)) la(Z — g) + 07| (4.20)
and
2a(t — 8) > 2(c(9,8) + M, [o(-, 8)1(9)) |e(E — §)]. (4.21)

Next we note that for any z € RV,
w(@+2,t) —v(d +2,8) < uw(@, ) —v(g,8) +p- (& —9) + 6|2+ 2> —ali — >
Therefore, for any z € RY, if §|2 + 2|2 < a2 — |2, then we have
w(Z 4 z,t) —u(@,t) <v(@+2,38) —v(@,8) +p- (T —19),
and moreover

E;(u(i:—kz,f)—u(j:,f),z) < E, (v(& 4 2,8) —v(g,8) +p- (& —19),2).
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Now, let 0 < p < pp, 0 < v < £ and R > 1. By virtue of (4.12), we may
assume by replacing d, by a smaller number that 85(|z|> + R?) < A2/a and
d|Z| < v. Accordingly, thanks to (4.17), we have

)\2
§|l& + 2> < 26(|12)* + R?) < 4—0 <alt —g|* forany z € B(0, R).
a

In view of (4.5), we may assume by replacing ag by a larger number if necessary
that |# — ¢| + |t — §| < v. Note that J,, and «p indeed depend also on R and v
and on v, respectively. Thus, we get

~

/|> J(2)Ef (w(@ + 2, ) —u(#, t),2)dz

~

= (/p<Z|SR+/Z|>R>J(z)E;(u(:%+z, i) —u(@, ), 2)dz

< / J(2) By (0(i + 2,8) — v(§,8) + p- (& — §), 2)dz
p<|z|[<R

+ (20 + 1) / J(2)dz

|z|>R

<[ IRE0 +55) — 0(d8), 8 — g+ 2)d:
p<|zI<R

+ (2C5 + 1) / J(2)dz + |p||z — 7| J(z)dz

|z|>R p<|z|<R

< / G — &+ 9)E; (0@ + v, 8) — v(§, 3), y)dy
p<|j—2+y|<R

+(202+1)/

|z|>R

J(z)dz + \p[y/ J(2)dz.

p<|z|<R
Setting
A={yeRY |p<|j—i+y| <R}, B={yeR"|[p<|y| <R}

for the moment, we observe that
/A (G — &+ 9)E; (@ +9.8) — v(d, ), y)dy
- / J)E; (v + 9,3) — (3, 8), y)dy
B

:/A](y)f(y)dy—/ J(y) f(y)dy

B

- / (I(y) — () F(y)dy + /
ANB

A\B

I(y)f(y)dy—/ J(y) f(y)dy

B\A
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< (201 +1) / 1(y) — J()ldy + (2C, + 1) / (1)) + 17 (w)])dy

(A\B)U(B\A)

< (202+1)/ T — &+ 2) — J(2)|dz
p<|z|<R

" <202 " 1) </pu§|z|§p+u " /Rzz§|z|§R+u) (|J(Q o Z)| * |J(Z)|)dz

Finally, noting by (4.19) that

[ R 0+ 208) ~ 03.9) )
p<|z|<R

< / B 005+ 2,3) —0(5,3), 2= + (20 + ) / J()d=

|z|>R
< M [o(-, 8)](5) + Cap™17 + (20, +1) / J(2)dz
|z|>R

and using (4.18), we obtain

M [u(-,0))(&) < 205" + M [v(-, 8)](5) + e(p, v, R), (4.22)
where
e(pv, ) = (2Cy + 1){2/ J(x)dz+  sup / I(h + 2) — J(2)|d=
|z|>R heB(0,v) J p<|z|<R
+ sup (/ +/ )(|J(h+z)|+|J(z)|)dz}
heB(0,v) p—v<|z|<p+v R—v<|z|<R+v
+ |plv J(2)dz.
p<|z|[<R

Note that limpg_,o lim, o4 e(p, v, R) = 0 for fixed p > 0.
Subtracting (4.21) from (4.20), we get

Y<2(e(@, )+ M) [u( 1))(@) (@ =) +02] =2(c(5, )+ M, [v(-, 8)] (@) la(@—)].
t—

Hence, using (4.22) and (4.17) and recalling that (|2 —g|+ [t — 5]) V (0|2]) < v,
we obtaln
< {le(@, €) = e(@, 8)| + My [u(-, £)](&) = My [v(, 3)](5) Ha(@ - 3)|

/\

(2
¥ (rc< D)+ My ut-, 1)](2)) 2]
< (well — g1+ [F = 8)) + 203" 9 4 e(p, v, R)) L

+ ( Nlelloo + C3p™ 77 4+ (205 + 1) / J<z)dz>u (4.23)

|z1>p

< (we(v) +2C5pN P 4 e(p,v, R)) L

+ ( clloo + C3p™N 1P 4+ (2C, + 1)/ J(z)dz) v,
|z[>p
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where w, denotes the modulus of continuity of the function c.

We now fix p € (0, po| so that 2C5Lp"*'# < 2 then R large enough so
that

. i
| L < —
Jim e(p,v, R)L < g

and finally v small enough so that

e(p,v, R)L <

)

0|2 o2

wel) L+ (lelloo + Cop™ ™ 4 (205 + 1) /

|zI>p

J (z)dz)u <
to conclude from (4.23) that v < 0, which is a contradiction. The proof is
complete. [l

Remark 4.3. One of main difficulties arises in the proof of Theorem 4.2 due

to the discontinuity of the function E. For this, we used an idea from [6,
Theorem 5.2] and [8, Theorem 4.4].

Proof of Theorem 4.1. Define the sup- and infconvolutions of u and v as follows:

u(z,t) := sup <U(y,t) Cpe(—y) — M>

. |z — yle™
oont)i= i, (o00) = p- (o =) + T,

where 0 < ¢ < 1 and K := 2||Dc¢||p(q,). It is a standard exercise to check that
u® and v, are solutions of (1.2) and of (1.3), respectively. Moreover, we have:

2 2
P p
HUEHOO < HUH‘X’ + |2| ) “UEHOO < ||U||oo + %7

u(x,t) \yu(z,t)  and wv.(z,t) S v(x,t) ase— 0.

Note that the functions

|l,|2eKt
€ t ~-r -
u(z,t) + 5

|:L,|26Kt
and ve(z,t) + o
are convex in z for any ¢ € [0, T]. Furthermore, we fix any v > 0 and, in view
of (4.1), choose a § > 0 so that u(&,t) — v(n,s) < v for all £,n € RV, with
& —n| <4, and t,s € [0, §]. Then we select a constant K., > 0, depending on
7 through §, so that ||u| + ||v]|e < K02, and observe that u(&,t) —v(n, s) <
v+ K, |¢ —n]? for all &, n € RY and ¢, s € [0, 6]. Using this and noting that

€ —nP <3(E =2+ |z —yP+In—yl*) forallz,y,&neRY,
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we see that if K, + % < 6_157 then
u(z,t) — vy, s)

lz—&2 |y —n)?
< sup <7+Kvlf—n\2+|p\\€—n\— 5 T 22 + [pl]z -y

|p|? ( 1 1) 9 |z — y|?
< - _ — — -z
< sup (7+ 5 + K7+27 » € =" | + |pllx —y| + 5
2

|z —yl

for all 2,y € RN, t,5 € [0, 4].
2e

<+ ——+pllzr —y[ +

Hence, if ¢ is sufficiently small, then we have

2
i sup fu* (2. 1) (9, 5) | (2,0, (. 5) €@, la—y| V£ Vs < 1} < (14120,

We apply Theorem 4.2 to the functions u®(z,t) —v(1+ %) and v, to find that
ut(z,t) < ve(z,t) + (1 + @) for all (z,t) € Qr. Sending ¢ — 0 and then
v — 0 guarantees that u(x,t) < v(z,t) for all (z,t) € Q7. O

The above proof is easily modified to show the following theorem.

Theorem 4.4. Under the hypotheses of Theorem 4.1, there is a modulus w such
that
u(z,t) —v(y,t) <wl(|lz —yl) forallz,y €RY, t€0,T).

Proof. Let u® and v. be the sup- and infconvolutions as in the proof of Theorem
4.1. According to the proof of Theorem 4.1, for each v > 0 we can choose an
e =¢(y) > 0 so that

uf(x,t) — vz, t) <~ forall (z,t) € RN x [0, T),

which yields
oKT
u(z,t) —o(y,t) <y -+ 2—]:16 —y? forallz,yc RN t€[0,T). (4.24)
£

Setting

. KT |
wO(T)Zoi3£1 y—l—mr forr >0

and observing that wy(0) = 0 and wy € USC([0, 00)), we find that there is a
modulus w such that wy(r) < w(r) for all » > 0. We note by (4.24) that

u(z,t) —v(y,t) <w(lz —y|) forallz,ycRY, te0,T),

to complete the proof. O]
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5. An existence and uniqueness theorem

As usual we fix p € RY arbitrarily throughout this section.

Theorem 5.1. Let ug € BUC(RY). There exists a unique solution u € C(Q.)
of (1.1) for which u(-,0) = uy on RN and u € BUC(Qy) for any 0 < T < cc.

Proof. Uniqueness of a solution u € BUC(Q;) for every 0 < T < oo of the
initial value problem for (1.1) follows from Theorem 4.1.

In view of the uniqueness result, it is enough to show that for each 0 <71 < 0o,
there is a solution u € BUC(RY x [0, T)) of (1.1) satisfying u(-,0) = ug. We
fix any 0 < T < 0o. Let wy denote the modulus of continuity of ug. We define
the function ¢ € C*°(R) by ¢(r) = L. Note that the function ¢ and all its

derivatives are bounded on R. Noting that wy is bounded on [0, 0o0), we see
that for each € > 0 there is a constant A. > 0 such that wy(r) < e+ A.¢(r) for
all 7 > 0. If we set ¥(x) = ¢(|z|) for x € RN then ¢ € C*(RY) and 1 and all

its derivatives are bounded on RY. For any fixed (g,y) € (0,1) x RY, we set
fH() = fH(wse,y) = uoly) £ (e + Ad(|lz —y[))  for z € R,

Thanks to Lemma 2.5, for each € € (0, 1) there is a constant B, > 0 such that
for all (z,t) € Qr,

(cx,t) + M [ )(2) Ip+ DfF(z)| < B ifp+Dff(x) #0
(c(a,t) + M, [f7)(2)) Ip+ Df ()] > =B. ifp+ Df (z) #0.

Now, we define the functions F*(-;&,y) on Qp, with (,) € (0,1) x RY,
by
FE(x,t) = FE(x,t;e,9) = [ (2, t;e,y) £ B. t.

It follows from the above observations that functions F*(-;¢,y) and F~(-;¢€,v)
are, respectively, solutions of (1.3) and of (1.2) in Q. It is obvious that

F~(x,t;e,y) <uo(z) < F(x,t;e,y)  forall (z,t) € Qr,
and
F~(z,0;6,2) +¢ =up(w) = F*(,0;e,2) —e for all » € RY.
Next, we define the functions g on Q; by

gt (z,t) =inf {F(z,t;¢,9) | (c,y) € (0,1) x R}
g~ (z,t) = sup {F’(:c,t;e,y) | (e,9) € (0,1) x RN}.
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It follows that g and g~ are a sub- and supersolution of (1.1), respectively, and
that ¢~ (x,t) < up(x) < gt (w,t) for all (x,t) € Qp, g~ (,0) = ug(x) = g7 (z,0)
for all z € RY and g*, —¢g~ € USC(Qy). By Theorem 3.4 there is a solution u
of (1.1) such that g~ (z,t) < u(x,t) < g™ (x,t) for all (z,t) € Qr. Note that for
all z,y e RN ¢t € [0, T) and ) € (0, 1),

In particular, we find that lim; o, u(x,t) = up(z) uniformly for x € RY and
that w is bounded on Q7. By Theorem 4.1, we see that u* < wu, in Qr and
hence u € C(Qr). Because of the uniform convergence of u(x,t) to ug(x) as
t — 0+, we may extend u to a continuous function on RY x [0, T') by setting
u(r,0) = up(z) for all z € RY. We next apply Theorem 4.4 to u, to find a
modulus w such that

u(z,t) —u(y,t) <w(jz —y|) forallz,y e RN t€0,7).

[t remains to show that the family of functions u(x, -), with z € RY | is equi-
continuous on [0, 7). This can be done by adapting the above construction of
gF. Indeed, following the above argument with w in place of wy, we easily see
that for each € € (0, 1) there is a constant C. > 0 such that

lu(z,t) —u(z,s)| <e+C.ft —s| forallz € RN, st [0, T),

which guarantees the desired equi-continuity. The proof is complete. [l

6. One-dimensional case

In this section we always assume that N = 1 and show that the requirement,
B < N+ 1, in (J4) can be removed if N = 1. In what follows we replace
condition (J4) by the following.

(J4") There are constants 5 > 1 and Cy > 0 such that
Co
J(z) < —= forall z€[-1,0)U(0, 1].

We assume throughout this section that (c1)—(c2), (J1)—(J3) and (J4’) hold. We
fix p € R arbitrarily. In this section we use the notation: B(z,r) =[x —7r, z+7]
and ¢, (x,t) = Do(x,t).

In order to accommodate the higher singularity of the kernel J at the origin,
we introduce “admissible test functions” following for instance [10] and modify
the definition of sub-, super- and solutions of (1.1).
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Let 8 > 1 be the constant from (J4'). We denote by Fz(Qr) the space of
functions ¢ € C*(Qr) such that for each (y,s) € Qr, where ¢, vanishes, there
exist constants 6 > 0 and C' > 0 such that for all (x,t) € B((y, s),9),

[b(x,t) = 0y, 5) — Gely, s)(t — )| < Cllx — y|™ + ]t = s).

It is clear that the function ¢(x,t) := a|lz —y|?*! +4(t), with any a € R, y € R
and ¢ € C?((0,T)), belongs to F3(Q7).

We next define Fj,(Qr) as the space of all functions ¢(x,t) — pr on Qr,
with ¢ € F5(Qr). We note that for any ¢ € C*(Qr), we have ¢ € Fp,(Qr) if

and only if for each (y,s) € Qr satisfying ¢, (y, s) + p = 0 there are constants
d > 0 and C > 0 such that for all (z,t) € B((y, s),9),

[6(x,t) +plz —y) = &y, 3) = dely, s)(t = 5)| < Clw —y** + [t — s*). (6.1)

We say in this section that u € B(Qr) is a (viscosity) subsolution (resp.,
supersolution) of (1.1) if whenever (z,t, ¢) € Qr X Fp,(Qr) and u* — ¢ (resp.,
us — ¢) has a local maximum (resp., minimum) at (z,t), inequality (1.4) (resp.,
(1.5)) holds. As before, we call a subsolution (resp., supersolution) of (1.1) a
solution of (1.2) (resp., of (1.3)) as well. A function u € B(Qr) is called a
solution of (1.1) if it is both a subsolution and supersolution of (1.1). Remark
that if v € B(Qr) is a subsolution (resp., supersolution, solution) of (1.1) in
the sense of the previous sections, then it is a subsolution (resp., supersolution,
solution) of (1.1) in the current sense.

We set f(z) = |z|?*! for € R and observe that if |y — z| < |f’(m)|%, then
we have |f'(z)| = (8 + Dz|”, [/"(y)] = B(8 + 1)|y|”~", and

e e (@I
(O << tet v -t < (90 i

that is,

Br1

By the Taylor theorem, we find that for all z € R and z € B(x, \f’(:c)]%),

1 1 % B—1
f"(y)] < Cg’f’(z)‘l—ﬁ, with Cs:= (8 + 1)(1 + <_> > .

fo+2) = f(z) = F(@)z] < Cal f ()] 5.

Next fix y € R and set g(z) = f(z — y) — px for z € R. It follows from the
1
above inequality that for any z € R and z € B(z, |¢/(z) + p|?),

lg(x + 2) — g(x) — §'(2)2] < Cylg/ () + p| 7722 (6.2)

The above observation will be useful in our stability arguments.
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Lemma 6.1. Let u be a bounded measurable function on R. Let q, x € R, r > 0
and Cy > 0. Assume that 0 < |p+¢q| <1 and

1_l 2 1
u(w+z) <u(x)+q-z2+Cilp+q| 72 forall z€ B(0,r Alp+q|?).
Then there is a constant 0 < p < 1, depending only on C4, such that for any

1
0<d<rA(plp+al?),

M [u](x) < / J(2)Ef (u(z + 2) — u(z), z)dz.

|z|>8

Proof. We follow the proof of Lemma 2.1. We set v = p 4+ ¢ and note that
u(r +2) —u(x) + pz <wvz+ C’l|v|1_%z2 for all z € B(O, rA |v|%)

Hence, if v > 0, then

1
ol ®
u(x + z) —u(x) +pz <0 forallze(—r/\ Cl’O>’
and if v < 0, then
u(x + z) —u(x) +pz <0 forallzG(O 7‘/\‘U|B>

We set p = and note as before that p < 1 and that if |z| < p, then

20+17
-1 2 2
vz + Cilv| "5z < p+ Cip° < 1.

Fixany 0 < d <rA (p|v\%). If v > 0, then we get

1
—3 for —0<2z<0
E*(u(z + 2) — u(x) 4+ pz) < 1
3 for 0 < z <.
If v <0, then
1
3 for —0<2z2<0
E*(u(x + z) — u(z) 4+ pz) < 1
—3 for 0 < z < 6.

Consequently, we obtain

M [u](z) = hggtjp (/6< o /|>5> (u(x + z) —u(z), z)dz
< /|z>6 J(2)E} (u(z + 2) — u(z), 2)dz,

which completes the proof. n
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The following is a one-dimensional version of Lemma 2.1. Its proof parallels
that of Lemma 2.1, once the one-dimensionality is taken into account as in the
previous proof. We omit here giving the proof.

Lemma 6.2. Let u be a bounded measurable function on R. Let q,x € R, r > 0,
A >0 and Cy > 0. Assume that 0 < |p+¢q| < A and

u(z +2) <ulz)+q-z+Ci2°  forall z € B0, 7).

Then there is a constant p > 0, depending only on Cy, r, A, such that for any

p+d|

M ul(x) < / J(2)E(u(z + 2) — u(x), 2)d=.

|z|>d

Lemma 6.3. Let u be a bounded measurable function on R. Let q, z € R,
r>0,Cy >0 and Cy > 0. Assume that 0 < |p+q| < 1, |u(2)| < Cy for all
z € R and

w(x+2) <ulx)+q-2+Cilp+ q|1_%22 forall z€ B(0,r A|p+ q|%),

Then there is a constant C' > 0, depending only on v, ||J||11(1,00), B, Co, C1 and
Cs, such that

MFul(z) |p+q] < Clp+q|7.

Proof. Let p€ (0, 1) be the constant from Lemma 6.1. Setting 6 =rA (,0|p+q|%),
we have

M [u](z) < J(2)Ef (u(x + 2) — u(x), z)dx

|z|>0

_ </6<Z|<1+/|Z|>1)J(2)E;r(u(x+z) — u(z), 2)dz

1
< (20, +1)(260 [ =7+ 21
d

Coo' 7
g—1

< 2(205,+1) < + ||J||L1<1,oo)) :

Hence,

MF[ul(z) [p+ql < Cs(lp+ ¢l +|p+q|) < (Cs+1)lp+q|7,

where C3 > 0 is a constant depending only on 7, ||J||11(1,00), 8, Co, C1 and Cs.
This proves our claim. [l
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We state stability, comparison and existence results in one dimension, which
are parallel to the corresponding results in general dimensions.

Theorem 6.4. Let Sy be a non-empty set of solutions of (1.2). Assume that the
family Sy is uniformly bounded on Q. for any 0 < 7 < T. Define the function
u € B(Qr) by u(x, t) = sup{v(x, t) | v € So}. Then the envelope u* is a
solution of (1.2).

Proof. Let (2, 1) € Qr, 7 >0 and ¢ € F5,(Qr), and assume that B((&,1),2r)
C Qr and u* — ¢ attains a strict maximum at (#,¢) over B((#,1),2r). By the
definition of u*, there are sequences {(z,,t,)} C B((2,%),2r) and {v,} C So
such that v, (2, t,) — u*(2,t) and (2,t,) — (2,f) as n — oco. By the
definition of u, we have v}, < u* in Q7.

For any n € N let (y,,s,) € B((#,1),2r) be a maximum point, over
B((#,1),2r), of the function v} — ¢. As usual we see that v (yn, s,) — u*(2,1)
and (Y, 5,) — (&,1) as n — oo. Passing to a subsequence if necessary, we may
assume that (y,,s,) € B((#,t),r) for all n. Since v, is a subsolution of (1.1),
we have

0t(Yn, Sn) < (c(Yn, Sn) + M (07, 50)](Yn)) P+ @2 (Yns 50)] (6.3)
if p+ ©2(Yn, sn) # 0, and
@e(Yn, $0) <0 3 p+ @u(Yns sn) = 0. (6.4)
We note that for any z € B(0, r) and n € N,
Un(Yn + 2, 80) = 05 (Uns Sn) < ©(Yn + 2, 80) = @(Yn, 5n)- (6.5)

We treat the following two cases differently.

Case 1: p+ ¢.(#,1) = 0. In view of (6.1) and (6.2), by replacing ¢ by the
function
(2,t) = —pr + (2, 0)t + C(|lz — 2| + |t — ]?),

with C' > 0 sufficiently large, we may assume that for all (z,t) € Qr and
1
2€ B0, |p + ¢u(a,1)]7),

o + 2,8) — p(a,) < pu(,1)z + Colp + ()| 7522

Wl

)

_1
Qp(yn + Z, Sn) - Qo(ym Sn) < @x(ym Sn)z + Cy |]) + 902<yn> Sn)’1 CES

Accordingly, we have for any n € N and z € B(0, [p + ¢4 (Yn, sn)|
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In this case we have p + ¢, (Yn, Sn) — 0 as n — oo. In particular, we may
1
assume that [p+ @, (yn, $,)|7 < min{l, r} for all n € N. Hence, using (6.5), we
1
have for any n € N and z € B(0, [p + ¢z(Yn, 50)|7),

_1
O (Yn + 2, 80) — V(Y 50) < ©e(Yn, 50)2 + C1lp + 0o (yn, 50) |7 2%

By replacing ' by a larger number if necessary, we may assume moreover that
|on(x, 8,)] < Cy for all z € R and n € N.

According to Lemma 6.3, there is a constant Cy > 0, which does not depend
on n, such that if |p + @, (yn, sn)| < 1,
1
M [0 (5 8)1 ()P + @2 (Yns sn)| < Colp + o (Yn, 50)]7.

We combine this with (6.3) and (6.4) and send n — oo, to see that ¢, (#,%) < 0.

Case 2: p+ @ (@,1) # 0. By selecting a subsequence if necessary, we may
assume that |p+ @ (Yn, Sn)| > A for all n and for some constant A > 0. Note by
(6.5) that there is a constant Cy > 0 such that for all z € B(0,7) and n € N,

U (Un + 2,50) = Un(Un, Sn) < Qa(Yn, Sn)z + Coz?.
We apply Lemma 6.2, to find that there is a constant p € (0, 1) such that for
any 0 < ¢ < p,
VTG solln) < [ GBS 03 +2) i), )=
z|>6

By the definition of u, we see that for all x € R,

Jim sup {v}(y, ) [ n >k, y € B, k)}

< lim sup {u*(y, sa) [ n > k, y € Blz, k™) }

< u*(z,t).
We now apply Lemma 3.1, to get for any § € (0, pl,

lim sup M; (05 (<) $n)](Yn)

n—oo

~

< / J(2)Ef (u (@ + 2,t) —u*(2,), 2)dz.
|z|>0

Thus we get
limsup M, [v7, (-, $0)](yn) < M [u"(-, £)](2),

n—oo

and conclude from (6.3) that

iy £) < (cl@,F) + Myfu (-, D))(@) [p + al, 7).
That is, u* is a solution of (1.2). O
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Theorem 6.5. Let {u,} be a sequence of solutions of (1.2). Assume that the
collection {u,} is uniformly bounded on Q. for any 0 < 7 < T. Define u €

B(QT) by

u(z,t) = ]jirilosup {un(y,s) | (y,s) € B((z,t), k"), n > k}.

Then u is a solution of (1.2).

Proof. We note that u € USC(Qr). Let (&, %) € Qr and ¢ € F5,(Qr), and
assume that u — ¢ attains a strict maximum at (#,#). As in the proof of
Theorem 3.3, we can choose sequences {n;} C N, diverging to infinity, and
{(zk,tr)} C Qr so that u} (zy,tx) — w(Z,{) and (24, ;) — (&,1) as k — oo,
and for any £ € N, the function u; — ¢ attains a local maximum at (z, ;).
The rest of the proof parallels the last part of the proof of Theorem 6.4. [

Theorem 6.6. Let f € LSC(Qr) and g € USC(Qr) be a subsolution and
supersolution of (1.1), respectively. Assume that f < g in Qp. Set

u(z,t) = sup {v(z,t) | v is a subsolution of (1.1), f <v < g in Qr}.
Then u is a solution of (1.1).

The proof of Theorem 3.3 is easily adapted to that of the above theorem,
and we leave it to the reader to check the details.

Theorem 6.7. Let 0 < T < 0o. Let u and v be solutions of (1.2) and of (1.3),
respectively. Assume that u and —v are upper semicontinuous and bounded on
R x [0, T') and that

li%isup {u(z,t) —v(y,s) | (z,1),(y,s) €ERx[0,T), |z —y|ViVs<r} <O0.

Then uw < v on R x [0, T'). Moreover there is a modulus w such that
u(z,t) —v(y,t) <w(lx—y|) foralz,yeR, tel0,T).

Outline of proof. We follow the proof of Theorems 4.1 and 4.2 with small vari-
ations.

As in the proof of Theorem 4.2, we introduce sup- and infconvolutions of «
and v as follows:

B+ Kt

u(z,t) = yek (u(%t) —p(@-y) - %)
1B+ Kt

vl 1) = inf (”@,t) “pee -yt %) |
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where 0 < ¢ < 1 and K := (8 + 1)||Dcl|z(qp)- It is easy to check that v and
ve are solutions of (1.2) and of (1.3), respectively. Noting that for any z,y € R
and 0 <t <T,

eKtx_yﬂ+1 ﬂ
pllz —yl < Sore Iy 7

+
28+ 1)e B
eft|p — y|PH1 p+1
2B+ 1)e
eKt|gy — g0+

2B+ 1)e

(1o (2271 7) 7

we find that

u (@, t) < Jlullos + 2(Ip +1)%,

eKt|I _ y|6+1
u(x,t) = sup (u y,t) — —>
(@:1) yEB(z,R) 1) (B+1)e

for some constant R > 0. Using these observations, we see that u® is bounded on
R x [0, T') and u(z,t) is semi-convex in  uniformly in ¢ € [0, 7). Similarly, we
find that v, is bounded on R x [0, T') and v.(x, ) is semi-concave in z uniformly
int € [0, T). Moreover, it is easily seen that for every (z,t) € R x [0, T),

51i%l+u (x,t) =u(x,t) and Elir&r v(z,t) = v(x,t)

and that

. . 8 _ Y _ < < .
Jim Tim sup {u(z, ) —ve(y, ) | (1), (y5) € Qp, |r —y[ VIV <} <0

Fix any p > 0 and choose an gy € (0, 1) such that for all £ € (0, ),

lir(r)lJrsup {wi(z,t) —ve(y,s) | (z,1), (y,8) € Qp, |z —y|VEVs<r} <p

As before, in order to prove the theorem, we need only to show that u® —v. <
on R x [0, T') for any ¢ € (0, g9). Thus we may assume by replacing v and
v by v — p and wv., respectively, that the functions u(z,t) and —v(x,t) are
semi-convex in z uniformly in ¢t € [0, T).

We argue by contradiction and hence suppose that supg, o (v —v) > 0.

We may assume that « and v are defined on Q. Moreover, arguing as in the
first part of the proof of Theorem 4.1, we may assume that there is a small

constant v > 0 such that for any (z,t,y,s) € @;, if

cither |z —y|ViVvs<y or |z—y|lV([—t)V(T—-s)<nr,
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then
u(z,t) —v(y,s) <0, (6.6)

and that u is a solution of
u + v < (c+ Mpu(-,t)](z))|lp+ Du| in Qr, (6.7)
We set
w(z,t) = u(z,t) +p-r and o(x,t) =v(zx,t) +p-x for (z,t) € Q.

In view of (6.6), replacing v > 0 by a smaller number if necessary, we may
assume that for any (z,t,y,s) € @;’ if

either |z —y|VtVvs<~y or |z—ylV{T—-t)V(T—s)<n,

then
a(z,t) —0(y,s) < 0. (6.8)

Let a > 1 be a large constant to be selected later and define the function
d =, on @TQ by
q)<x>ta Y, S) - 11(:1:, t) - 6(y7 S) - a]a: - y|ﬂ+1 - Oé’t - $|2'

We set 0 =6, := supg 2 @ and note that 6 > supg_(4—0) =supg_(u—v) > 0.
Choose a constant Cy > 0 so that |u| V [v| < C on Q7 and observe that if
O(x,t,y,s) >0, then

20y > —p - (z —y) +alz —y[”" +alt — s
p 1+4 1 B+1 B+1 2
> - B— T — + o |z — +t—s
2 gl Lt (lz =yl [t —sl”)
1 [0
> " H + 5 (= P o).

Fix a constant Ry > 0 so that RET A RZ > 4C, + 2\p[1+%, and note that for
any (:I:7 t’ y’ 8) E @’1—‘27

(aﬁ\x - y\) Vv (valt—s)) < Ry it B(x,t,y,5) > 0. (6.9)
We define R,, C [0, 00) as the set of all » > 0 which satisfy

0 =sup {®(z,t,y,5) | (z,t,5,5) € Q7. alz —y|* <1},

and set A, = inf R,. We note that 0 < A, < 0.

We divide our argument into two cases.
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Case 1: liminf, .. A\, = 0. Let n > 0 be a small constant. We choose an v > 1
so that A, < n. There is a sequence {(x,, %y, Yn, Sn)} C @; such that

1
(2, tn, Yn, Sn) > 9(1 — —) and |z, —y.|® <.
n

We may assume, by choosing « large enough if needed, that R,/ aF < 2
that |z, — yn| V |t — sn| < 3 by (6.9) and, by (6.8),

7, 80
t s € <%T—%> for all n € N,

(6.10)
By taking a subsequence if necessary, we may assume that (t,, s,) — (£, §)
for some ¢,5 € [2, T — 3] as n — oo. We choose a maximum point (&, 7,) of
the function

(1) — @z, t) — (@ + a%) 2 — ya]®* — alt — sul? — alt — £
We have

on Q.
D(xp, oy Yn, Sn) — a%|xn — yn\ﬁﬂ —alt, — f|2
S CD(Sme yna Sn) - Oé%’gn - yn|ﬁ+l - @‘Tn - t |2

1 .
<0 —aslé — " = alr, — ]2
Hence, we get

a%\gn - yn|6+1 + al|r, — f\2 <0 —D(xn, by, Yn, Sn)

+ a2, — gl 4 alt, — 2

B (s try Yns Sn) < P(Eny Ty Yy Sn) + a%\xn — P+ alt, — 2
and consequently

lim sup (a%|§n — [P+ alr, — f|2> < limsup Oé%|$n — " <
n—oo

1+

Ui
n—oo

«
1+3
liminf ®(&,, 7, Yn, Sn) = 0 —

«a
have

Reselecting o large enough if necessary and choosing n € N large enough, we

X 9 1+5
<a%|§n — yn|ﬁ+1 +alr, —t |2> < (21)

and (&, T, Yns Sn) >
Note that al¢, — ya|® < 27 and a|r, — | < (2n)2*25,

N D
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Once again, reselecting « large enough if needed, we may assume that

|~

(2_77>é L (@2

(0% «

[SIE
@

g
< —
27
and, by (6.10), we have 0 < 7, < T. Setting
o) =—p-a+(at+ad)|z—y | +alt— s P+ alt—2  for (x,t) € Qp

and noting that ¢ € F3,(Qr) and u is a solution of (6.7) in Qr, we get

@i(&n, ) +7 < (C<£n> o) + M;[“(ﬂ—n)](gn)) P+ 02(&n, )| (6.11)
if . (&n, 1) # 0, and otherwise
et(ns Ta) +7 < 0. (6.12)

Note that for any z € R, (u — ¢)(& + 2,7) < (v — ¢)(&n, 7o) and for any
(l’, t) € QT7

1
[+ @o(, )] = (@ +aP) (B + 1)z — yul” < 20(8+ 1)z — yal”.
Hence, if |z| < |p+ @w(gn,m)]%, then

u(én + z, Tn) - u(gna Tn) < @x(fnﬂ—n) Tz
+ (0 +a?) (B4 1)B(& — yal + [21)° 7|2
< 0ullns )2 + Ci|p + 0, )| 75 22,

where C3 > 0 is a constant depending only on a and 3. By Lemma 6.3, there
is a modulus w, independent of n, such that if 0 < [p + ¢, (&,, 7,)| < 1, then

M;[u('a 7)](§n) [P+ 02(Eny )| S WP+ 02(&n, T)|) < w(4(8 + 1)n).

This together with (6.11) and (6.12) yields ¢¢(&,, 7) +7 < w(4(6+ 1)n) if n is
large enough. Hence, for n sufficiently large, we have

‘ =

v < wd(B+ 1)n) — 20(f — s,) + 4(2)7 7.
Sending n — oo, we get
v < w(d(B+ 1)) + 2a(5 — ) + 4(2n)7 725 (6.13)

Choosing a minimum point of the function

(y,5) = 0y, ) + (o + aF) |z — yI* +alt, — s>+ als — 82 on Qp
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and repeating an argument similar to the above, we get
0> —w(4(3 + 1)) — 4(2n)7 +2a(3 — 1)

Subtracting this from (6.13), we obtain v < 2w(4(8 + 1)n) + 8(277)%%, which
gives a contradiction by selecting n > 0 small enough.

Case 2: liminf, .. A, > 0. The argument for Case 2 of the proof of Theorem 4.1
applies to get a contradiction only with obvious modifications caused by the

term |z — y|°*1 in the definition of ®,. We leave it to the interested reader to
check the details. H

The same proposition as Theorem 5.1 holds under our current assumptions.

Theorem 6.8. Let ug € BUC(R). Then there is a unique solution u € C(Q.,)
of (1.1) such that u(-,0) = ug and v € BUC(Qr) for any 0 < T < cc.

Proof. The uniqueness assertion is a direct consequence of Theorem 6.7.

To prove the existence of a solution, we will utilize Theorem 6.6. Hence, we
have to build appropriate sub- and supersolutions of (1.1).

Fix any € > 0. Let A > 0 and observe that for any x € R,

1+% A
—px Z . ﬁ|p| - |.T”B+1
B+1As Pl
and hence
Blpl"s  BA
—px + Az > — T+ £l
(B+1)A7  B+1
1+1
We fix A = A(e) > 0 so large that ¢ > M, and consequently,
(B+1)AP
A
2¢ — pr + Alz|PT > e+ %MBH for all x € R.

Let wy be the modulus of continuity of the function uy. By replacing A by
a larger number if necessary, we may assume that wo(r) < e+ %rﬁﬂ for all
r > 0. We have

up(z) —up(y) < e —p(x —y) + Alx —y/°* forall z,y € R.
We choose a constant C; > 0 so that |ug(x)| < C; for all z € R. We set
Vi(w,y,€) = (uo(y) + 2¢ = p(z — y) + Ale)le = y[**) A Cy
for (z,y,e) € R? x (0,1). Observe that for all (x,y,¢) € R? x (0,1),
U(x,x,e) = (up(z) +26) ANCy and  ug(x) < ¢y (z,y,¢), (6.14)
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and that for each ¢ € (0, 1), the functions ¢;(-,y,¢), with y € R, are equi-
Lipschitz continuous on R.

Let (z,y,¢) € R? x (0,1) be such that ¢ (z,y,¢) < C;. As observed before,
setting V(&) = AJ€ — y|?TL, there exists a constant Cy > 0 such that

Ua(@ + 2) < o) + Y(2)2 + Colgh(a) 7722 for all 2 € B(0, [1h(x)]?).

1

Hence, if |z| < |p + ¢1.(x,y,¢)|?, we have

_1
’17/)1(2? + Zay75) S ?/)1(957?/75) + 77/}1790(1‘,:%5)2’ + C(2|p + 1/)1,a:($7%5|1 ﬁZQ‘

On the other hand, since ¥ (-,y,¢) is semi-concave, there is a constant C3 > 0
such that

Vi(x+ z,y,¢) < Ui(z,y,€) + Y1.(z,y,6)z + C32*  for all z € R.

Note here that the constants Cy, C3 can be chosen independently of y € R.
Thus, applying Lemma 6.3 if 0 < |p + 91 .(x,y,¢)| < 1 and and Lemma 6.2 if
Ip + U1 .(x,y,e)| > 1, we find a constant Cy > 0, independent of y, such that

M;[wl(Wy7€)](x)’p+wl,m<x,y,5)| < 04.

Next, let (z,y,¢) € R? x (0,1) be such that ¢ (x,y,¢) = C; and (-, y,€)
is subdifferentiable at x. Clearly, we have 9, ,(z,y,e) = 0. If p = 0, then we
have p + ¢ .(z,y,€) = 0. Assume for the moment that p > 0 and observe that

.

1 . 1
——pz f0<z<—
2 p
1 1
E+(¢1(-’E‘|‘Z7ya5)—"401(5”7.%5),2’)S _§—p2 if ——<2z2<0
p
1
- for all z € R.
\ 2
Accordingly, we have
1
M @+ vl < 5 [ I
21> 15 (6.15)

< [plI L1 (B(0,1/1pl)e)-

Similarly, we have (6.15) also in the case where p < 0. We may assume by
replacing C5 by a larger number if necessary that if p + ¢4 ,(x,y,€) # 0, then

MF (-, y,€)(@)|p + t10(z,y,€)| < Cy
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We now set
o(x,t,y,e) = V1(x,y,¢) + Cs(e)t  for all (z,t,y,¢) € Q, x R x (0,1),

where the symbol C5(¢) is used to emphasize the dependence of C3 on ¢, and
observe that for each (y,¢), the function (x,t) — @(z,t,y, ) is a supersolution
of (1.1).

Now, we define the function f+ € USC(Q.,) by

[Tz, t) = inf{p(z,t,y,¢) | (y,e) € R x (01)}.

By a proposition valid for supersolutions analogous to Theorem 6.7, we see
that f* is a supersolution of (1.1). Moreover we observe by (6.14) that for all

(z,t,€) € Que x (0,1),

fr(,)

, oz, t,z,e) = P1(z,x,e) + C3(e)t = ug(x) + 26 + Cs(e)t
[ (z,t)

up ().

(AVARIVAN

Similarly to the above, we can find a function f~ € USC(Q,.) having the
properties: f~ is a subsolution of (1.1) and

up() > (2, t) > up(x) — 26 — C3(e)t  for all (w,t,e) € Q. x (0,1).

Now, applying Theorem 6.6, with f = f~ and g = fT, we see that there
is a solution u, defined on @, of (1.1) such that f~(z,t) < u(x,t) < fH(z,t)
for all (v,t) € Q.. It is clear that u(x,0) = ug(x) for all z € R and u is
bounded on @ for any 0 < T' < oo. Since ug is uniformly continuous on R and
lu(z,t) — up(x)| < 2 + Cs(e)t for all (z,t,€) € Q.,, we have

rllgﬂrsup {u(z,t) —u(y,s) | [z —y|vivs<r}=0.

Using Theorem 6.7, we find that u € C(Q,). Moreover, we see that for each
0 < T < oo there is a modulus wr such that |u(z,t) — u(y,t)| < wr(jz —y|) for
all (z,y,t) € R* x [0, T1.

Let 0 < 7 < T < oo. Similarly to the construction of f*, we can build
functions fF, starting with wy in place of wy, such that f+ and f- are super-
and subsolutions of (1.1) in R x (7, c0), respectively, and that for all (z,¢,¢) €
R x [, o0) x (0,1) and for some constant C7(e) > 0,

(1) < fH(x,t) <wul(x,7) + e+ Cr(e)
’ > [ (x,t) > u(z,7) —e — Cr(e)(t — 7).

It is now obvious that u € BUC(Q;) for any 0 < T < oo. O
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Appendix

Proposition A.1. Let f be a real-valued function on RY. Let C > 0 and
assume that | f(z)] < C for allx € RN and that the function: z — f(z)+ C|z|?
is convex in RY. Then we have

\f(z) — f(y)| <4C|x —y|  for all z,y € RY.

Proof. Fix any y € R™ and set g(z) = f(z) + Clx — y|*> for z € RY. Note
that the function g(z) = f(z) + Clz|* — 2Cy - z + C|y|? is also convex in RY,
g(x) < 2C for all z € B(y,1) and ¢g(y) = f(y). Fix any = € B(y,1) \ {y}, set
= (r—y)/|lr—y|l € 0B(0,1) and observe by the convexity of g that

9(z) =gy + |z —yl§)
< (1 =lzr—=ylgly) + |z —ylg(y + &)
< (I —=lz—yDfly) +2Cz -yl

That is, we have

fle)+Cle—yl? <A —lz—y)f(y)+2C|z -y
< f(y) +3C[|x —y| forallxe B(y,1)\{y},

which is obviously valid for = y. Thus, for any z,y € RY, we have

f(z) = fly) <4Clz —y| if [z —y| <1,

which implies that |f(z) — f(y)| < 4C|z — y| for all z,y € RV, O
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