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Abstract. We consider an optimal control problem for the evolutionary flow of in-
compressible non-Newtonian fluids in a two-dimensional domain. The existence of
optimal controls is proven. Furthermore, we investigate first-order necessary as well
as second-order sufficient optimality conditions. The analysis relies on new results
providing solutions with bounded gradients for the flow equations.
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1. Introduction

We investigate an optimal control problem for the evolutionary flow for in-
compressible non-Newtonian fluids in a fixed bounded domain Ω ⊂ R

2 with a
fixed time horizon T . As a model problem we minimize the following quadratic
objective functional J

J(u, f) =
1

2

∫

Q

∣

∣u(x, t) − ud(x, t)
∣

∣

2
dx dt +

γ

2
‖f‖2

F (1.1)

subject to f ∈ F ⊂ F and to that (u, f) solves the initial-boundary-value
problem for the system of evolutionary equations

ut − div(σ(Du)) + (u · ∇)u + ∇π = f in Q

div u = 0 in Q

u = 0 on Σ

u(0) = u0 in Ω.



















(1.2)
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The optimization variables are the control f and the response, which consists of
the velocity field u and the pressure π. Moreover, we have denoted Q := Ω× I
and Σ := Γ×I with Γ being the C2+µ-boundary of Ω, µ > 0, and with I := (0, T )
with T > 0 being a fixed time horizon. Further, functions ud ∈ L2(Q; R2), and
u0 ∈ L2(Ω; R2) are given; as to u0, later we still need some regularity (2.10).
The parameter γ is a positive real number. The function space F , whose norm
occurs in the definition (1.1) of J , will be specified later, see (2.8). Here, it turns
out that existence of solutions can be proven in an L2-setting with respect to the
control. However, the representation of the derivative of the objective functional
by adjoint states will require the regularity ∇u ∈ L∞(Q; R2×2) for the state,
which can be achieved only for more regular controls F := F s, see the discussion
at the end of Section 2 below.

We denote by Du the symmetric gradient of a function u, i.e., Du :=
1
2

(

∇uT + ∇u
)

. The mapping σ is a mapping from R
2×2
sym to R

2×2
sym, the space

of all symmetric R
2×2-matrices. The precise assumptions on σ can be found in

Section 2.

The governing equations were first studied mathematically by Ladyzhen-
skaya [19, 20] and Lions [21], see the discussion in the monograph of Nečas,
Málek, Rokyta, and Růžička [24]. The resulting partial differential equations
are of the quasi-linear type. They generalize the Navier–Stokes equations, which
are semi-linear and contained as the special case σ(D) = νD, ν > 0.

Optimal control problems for non-Newtonian fluids are rarely investigated.
We mention the work of Slawig [25] for the stationary case. Control of a
parabolic equation with power-law differential operator was considered by White
[28]. An optimal control problem with temperature-dependent viscosity was
modeled by Kunisch and Marduel [18]. Numerical studies of shape optimiza-
tion problems with non-Newtonian fluids are considered by Abraham, Behr,
and Heinkenschloss in [2]. For related optimal control problems for the Navier–
Stokes equations, we refer to [1, 8, 9, 13–15, 26]. Necessary optimality condi-
tions for optimal control problems subject to quasilinear elliptic equations are
considered by Casas and Fernández [4], Casas and Yong [7], and Lou [22].
Recently, Casas and Tröltzsch [6] investigated sufficient optimality conditions.
Optimal control problems subject to parabolic equations were studied by Casas,
Fernández, and Yong [5], and Fernández [10,11].

We restrict the considerations to the two-dimensional case. This is due
the fact that known global-in-time regularity results, namely by Kaplický [16],
guarantee that the coefficients in the main part of the differential operator for
the linearized and the adjoint equations are in L∞(Q). Such a result is needed
for optimality conditions and not known for problems in three dimensions, for
which only existence of optimal controls can be proved.

The article is organized as follows. In Section 2 known results are collected.
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The existence of optimal controls is proven in Proposition 2.1. Section 3 deals
with the first-order necessary optimality conditions, which are finally proven in
Theorem 3.9. As pre-requisite, the control-to-state mapping and its continuity
and differentiability properties are analyzed. Second-order sufficient optimality
conditions are then investigated in Section 4, Theorem 4.3. Finally, in Section 5
we will comment on the three-dimensional case and prove existence of optimal
controls in a particular situation.

2. Notation and preliminary results

Let us summarize assumptions on the non-linearity σ as well as known existence
and regularity results for the state equation. We now assume that σ has a
potential Φ : R

2×2
sym → R

+, i.e., σij(D) = ∂ijΦ(|D|2) with ∂ij := ∂/∂Dij
. We

assume further that Φ is a C3 function with Φ(0) = 0 and ∂ijΦ(0) = 0 for all
i, j ∈ {1, 2}. Moreover, we require that, for some 2 ≤ p < 4 and for some
positive constants C1, C2, C3,

C1(1 + |D|2)
p−2
2 |D̃|2 ≤ ∂ijσkl(D)D̃ijD̃kl (2.1)

|∂ijσkl(D)| ≤ C2(1 + |D|2)
p−2
2 (2.2)

|∂ij∂mnσkl(D)| ≤ C3(1 + |D|2)
p−3
2 (2.3)

hold for all D, D̃ ∈ R
2×2
sym, i, j, k, l,m, n ∈ {1, 2}.

These assumptions except (2.3) are conventionally used in the literature, see
e.g. [16, 23, 24]. For existence of optimal controls it suffices to assume Φ ∈ C2

and (2.1)–(2.2). Since we want to deal with second-order derivatives of σ, we
assumed in addition that Φ is C3 and that we have the bound (2.3) for σ′′.
These assumptions on σ cover a wide range of applications in non-Newtonian
fluids, see [24]. For the special choice σ(D) = νD, p = 2, the mentioned case of
the Navier–Stokes equation for Newtonian fluids with viscosity coefficient ν > 0
is included. The assumptions (2.1)–(2.2) imply the monotonicity of σ:

∃C4 > 0, ∀D1, D2 ∈ R
2×2
sym : (σ(D1)−σ(D2)):(D1−D2) ≥ C4|D1−D2|

2, (2.4)

coercivity:

∃C5 > 0,∀D ∈ R
2×2
sym : σ(D):D ≥ C5(1 + |D|p−2)|D|2, (2.5)

as well as its boundedness:

∃C6 > 0, ∀D ∈ R
2×2
sym : |σ(D)| ≤ C6|D|p−1,

see [23, Lemma 2.1]; in (2.4)–(2.5), we used the convention A:B for a scalar
product of matrices, while later a · b will stand for a scalar product of vectors.
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We will use in the sequel the standard Sobolev spaces. To incorporate the
divergence-free condition, we will use

V := {v ∈ H1
0 (Ω; R2) : div v = 0}, H := {v ∈ L2(Ω; R2) : div v = 0}. (2.6)

Many of the quantities occuring in the article are vector-valued functions. For
the sake of brevity, we will use occasionally the same notations of norms of
function spaces for scalar-, vector-, and matrix-valued functions; e.g. ‖ · ‖L2(Ω)

will also mean ‖ · ‖L2(Ω;R2) or ‖ · ‖L2(Ω;R2×2), etc.

2.1. Unique solvability of state equation and existence of optimal

controls. We are looking for weak solutions of the intial-boundary value prob-
lem (1.2). Let an initial value u0 ∈ V and a right-hand side f ∈ L2(I; V ′) be
given. Then a function u ∈ Lp(I; V ∩W 1,p(Ω; R2)) with ut ∈ L2(I; V ′) is called
a weak solution, if it satisfies u(0) = u0 and

∫ T

0

〈ut, φ〉V ′,V dt +

∫

Q

σ(Du):Dφ + (u · ∇)u·φ dx dt =

∫ T

0

〈f, φ〉V ′,V dt

for all smooth and divergence-free test functions φ with 〈·, ·〉V ′,V being the
duality pairing between V ′ and V . Here, some implicit summations took place,
so let us write the second and third term explicitly:

∫

Q

σ(Du):Dφ + (u · ∇)u·φ dx dt =

∫

Q

2
∑

i,j=1

(

σij(Du)(Dφ)ij + ui
∂uj

∂xi

φj

)

dx dt.

Of course, in view of the definition of D, it holds (Du)ij = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
).

Note, that the pressure is eliminated in the weak formulation due to the use of
divergence-free test functions.

The existence and uniqueness of a weak solution for the two-dimensional
case and p ≥ 2 is due to Ladyzhenskaya [19, 20] and Lions [21]. In particular,
in [19] it is proven that for u0 ∈ W 1,p(Ω; R2)∩ V and f ∈ L2(Q; R2) the unique
weak solution of (1.2) satisfies

u ∈ Lp(I; W 1,p(Ω; R2) ∩ V ), ut ∈ L2(Q; R2)

together with corresponding a-priori bounds in these norms, which follow di-
rectly from the properties of σ, compare e.g. (2.5).

Proposition 2.1 (Existence of optimal controls). Let (2.1)–(2.2) be satisfied
with p ≥ 2. Let an initial value u0 ∈ W 1,p(Ω; R2) ∩ V be given. We assume
γ > 0 in (1.1). Then, if F is a non-empty, closed, and convex subset of
F = L2(Q; R2), there exists an optimal control f̄ ∈ F of the optimal control
problem (1.1)–(1.2).
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Proof. Obviously, the problem is feasible, since f 0 = 0 and the associated solu-
tion u0 = 0 of (1.2) is an admissible pair. If f 0 is already optimal nothing is to
prove.

If f 0 is not an optimal control, there must be controls f with lower values of
the objective functional. This allows us to restrict the optimal control problem
to the set

F0 =
{

f ∈ F : ‖f‖L2(Q) ≤
1
γ
‖u0 − ud‖

2
L2(Q)

}

.

Since the objective functional is bounded from below, there is a minimizing
sequence of controls fn with associated states un, with the property inf J =
limn→∞ J(un, fn). By construction, the sequence fn is bounded in L2(Q; R2).
Due to the a-priori bounds, the sequence un of corresponding solutions of the
state equation is bounded in Lp(I; W 1,p(Ω; R2)) ∩ H1(I; L2(Ω; R2)). After ex-
tracting subsequences, we have the existence of weak limits f̄ ∈ L2(Q; R2) and ū,
with fn ⇀ f̄ in L2(Q; R2) and un ⇀ ū in Lp(I; W 1,p(Ω; R2))∩H1(I; L2(Ω; R2)).
In the following, we will only apply the weak convergences ∇un ⇀ ∇ū in
Lp(Q; R2×2) and un,t ⇀ ūt in L2(Q; R2), respectively. It remains to prove that
ū is the solution of the state equation with control f̄ .

Let v ∈ Lp(I; W 1,p(Ω; R2)) be an arbitrary test function with div v = 0.
The assumptions (2.1)–(2.2) on σ imply the monotonicity of the associated
Nemytskĭı operator, see [24, Lemma 5.1.19]. Exploting this monotonicity of σ
we get

0 ≤

∫

Q

(σ(Dun) − σ(Dv)):D(un − v) dx dt

=

∫

Q

(fn − un,t − (un · ∇)un)·(un − v) − σ(Dv):D(un − v) dx dt.

(2.7)

Here, we used that un is the weak solution of the state equation. By compact
embeddings, we have the strong convergence un → ū in L2(Q; R2), which gives
∫

Q
(fn −un,t)un →

∫

Q
(f̄ − ūt)ū. Since un and ū are divergence free, we can pass

to the limit in the convective term:
∫

Q

(un · ∇)un·(un − v) dx dt = −

∫

Q

(un · ∇)un·v dx dt

=

∫

Q

(un · ∇)v·un dx dt

=

∫

Q

((un − u) · ∇)v·un + (u · ∇)v·(un − u) + (u · ∇)v·u dx dt

→

∫

Q

(u · ∇)v·u dx dt = −

∫

Q

(u · ∇)u·v dx dt

=

∫

Q

(u · ∇)u·(u − v) dx dt.
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So we can pass to the limit in (2.7) and obtain

0 ≤

∫

Q

(f̄ − ūt − (ū · ∇)ū)·(ū − v) − σ(Dv):D(ū − v) dx dt.

We finish by Minty’s trick. Setting v := ū+εw, ε > 0, w smooth with div w = 0,
we derive 0 ≤

∫

Q
(f̄ − ūt − (ū · ∇)ū)·(−εw) − σ(D(ū + εw)):D(−εw) dx dt.

Dividing by −ε and letting ε → 0, we obtain 0 ≥
∫

Q
(f̄ − ūt − (ū · ∇)ū)·w −

σ(Dū):D(w) dx dt. Here, we applied the continuity of σ, see Lemma 3.1 below.
Analogously, we get with v := ū − εw the reverse inequality 0 ≤

∫

Q
(f̄ − ūt −

(ū · ∇)ū)·w − σ(Dū):D(w) dx dt, which proves that ū is the weak solution to f̄
of (1.2), since the test function w was arbitrary. By lower semicontinuity of J ,
it follows by a standard argument, that (ū, f̄) is indeed optimal.

2.2. Global existence of regular solutions of the state equation. The
basic regularity of weak solutions made it possible to prove the existence of
solutions. For deriving first- and second-order optimality conditions, this regu-
larity is not sufficient, however. We will need higher regularity results to derive
an optimality system. It turns out that even ∇u ∈ L∞(Q; R2×2) is needed to
deal with first-order optimality conditions.

Higher regularity results for non-Newtonian fluids are difficult to obtain
in general. For optimal control, we unfortunately need very strong regularity,
namely boundedness of the velocity gradient. There are only few such results
known up to nowadays. For Dirichlet boundary conditions, we will base our con-
siderations on the a local-in-time regularity result of [3], see also Theorem 6.1,
and a global regularity result from [16]. A similar result for space-periodic
boundary condition can be found in [17]. As already mentioned, analogous
results for the spatially three-dimensional case do not seem to be available.

However, to ensure the global regularity of solutions, we have to resort to
a smaller control space than L2(Q; R2). Let us define for s ≥ 0

F s := W 1+s,2(I; L2(Ω; R2)) ∩ L2(I; W 1,2(Ω; R2)). (2.8)

Then, for f ∈ F 0, we obtain by [16] the regularity ∇u ∈ L∞(I; W 1,s̃(Ω; R2×2))
for some s̃ ≤ 2, which is not enough to conclude ∇u ∈ L∞(Q; R2×2). As it will
turn out, choosing s > 0 is sufficient to guarantee uniformly bounded solution
gradients.

Theorem 2.2. Let Ω ⊂ R
2 be a bounded domain with C2+µ boundary, µ > 0.

Let the assumptions (2.1)–(2.2) on σ hold with some p ∈ [2, 4). Let us assume
that the right-hand side f and the initial value u0 fulfill

f ∈ F s, s > 0,
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and

u0 ∈ W 2−2/q,q(Ω; R2) ∩ W r,2(Ω; R2) ∩ V, q > 4, r > 2 (r = 2 if p = 2). (2.9)

Then the unique weak solution u of (1.2) satisfies

∇u ∈ C(Ω̄ × Ī; R2×2). (2.10)

Proof. Let f ∈ F s, s > 0, and u0 satisfying (2.9) be given.

Due to the construction of F s, see (2.8), the function f belongs to the space
Lq(Q; R2) for some q > 4. Hence we can apply Theorem 6.1, which can be found
in the appendix, to conclude the existence of τ ∈ I such that

∇u ∈ C(Ω̄ × [0, τ ]; R2×2). (2.11)

In addition, the control f satisfies for some q̃ > 2

f ∈ L∞(I; Lq̃(Ω; R2)), ft ∈ Lq̃(I; W−1,q̃(Ω; R2)).

Then by [16, Theorem 1.1] the solution u satisfies

∇u ∈ C(Ω̄ × (ε, T ]; R2×2) ∀ε > 0. (2.12)

Choosing ε = τ
2

and combining (2.11) and (2.12), this yields the claim.

3. First-order necessary optimality conditions

Due to the fact that σ is C2 we can write, for u1, u2 ∈ Lq(I; W 1,q(Ω; R2)) and
almost all ξ := (x, t) ∈ Q,

σ
(

Du1(ξ)
)

− σ
(

Du2(ξ)
)

=

∫ 1

0

σ′
(

Du2(ξ) + s(Du1(ξ) − Du2(ξ))
)(

Du1(ξ) − Du2(ξ)
)

ds
(3.1)

and

σ
(

Du1(ξ)
)

− σ
(

Du2(ξ)
)

− σ′
(

Du2(ξ)
)(

Du1(ξ) − Du2(ξ)
)

=

∫ 1

0

∫ s

0

σ′′
(

Du2(ξ) + τ(Du1(ξ) − Du2(ξ))
)(

Du1(ξ) − Du2(ξ)
)2

dτ ds.
(3.2)

These representations allow us to investigate the properties of the Nemytskĭı (or
superposition) operator induced by σ. In the sequel, we will denote by σ, σ′, σ′′

also the Nemytskĭı operators induced by the function σ, σ′, σ′′, respectively.

Lemma 3.1. Let (2.1)–(2.3) hold. Then:
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(i) The Nemytskĭı operator associated to σ and defined by

(σ(D))(x, t) = σ(D(x, t))

is continuous from Lr(I; Lq(Ω; R2×2
sym)) to L

r
p−1 (I; L

q
p−1 (Ω; R2×2

sym)) for q, r ≥
p − 1.

(ii) This Nemytskĭı operator is Fréchet differentiable from Lr(I; Lq(Ω; R2×2
sym))

to L
r

p−1 (I; L
q

p−1 (Ω; R2×2
sym)) for p > 3 and q, r ≥ p − 1.

For 2 ≤ p ≤ 3, it is Fréchet differentiable from Lr(I; Lq(Ω; R2×2
sym)) to

L
r
2 (I; L

q
2 (Ω; R2×2

sym)) for q, r ≥ 2.
Its Fréchet derivative is given by the Nemytskĭı operator induced by the
function σ′.

Proof. The assumptions (2.1)–(2.3) imply that the Nemytskĭı operator σ maps

the space Lr(I; Lq(Ω; R2×2
sym)) to L

r
p−1 (I; L

q
p−1 (Ω; R2×2

sym)), see [23, Lemma 2.1].
Thus, it is continuous.

The function σ is C2 by assumption, hence (3.2) holds for a.a. (x, t) ∈ Q.
This representation yields together with (2.3) that

∣

∣

∣
σ(D(x, t) + D̃(x, t)) − σ(D(x, t)) − σ′(D(x, t))D̃(x, t)

∣

∣

∣

≤
C3

2
|D̃(x, t)|2 ·

{

1 for p < 3

(1 + |D(x, t)| + |D̃(x, t)|)p−3 for p ≥ 3.

Hence we can estimate for p > 3

∥

∥σ(D+D̃) − σ(D) − σ′(D+D̃)D̃
∥

∥

Lr/(p−1)(I;Lq/(p−1)(Ω))

≤ c
(

1 + ‖D‖Lr(I;Lq(Ω)) + ‖D̃‖Lr(I;Lq(Ω))

)p−3
‖D̃‖2

Lr(I;Lq(Ω)).

For 2 ≤ p < 3 we have a uniform bound on σ′′, and it holds

∥

∥σ(D+D̃) − σ(D) − σ′(D+D̃)D̃
∥

∥

Lr/2(I;Lq/2(Ω))
≤ c‖D̃‖2

Lr(I;Lq(Ω)).

Both estimates allow us to proof that appropriate norms of the remainder
term σ(D + D̃) − σ(D) − σ′(D + D̃)D̃ divided by ‖D̃‖Lr(I;Lq(Ω)) vanishes as

‖D̃‖Lr(I;Lq(Ω)) tends to zero.

3.1. Lipschitz estimates and linearized equations. In order to prove dif-
ferentiability of the control-to-state mapping, we first investigate its local Lip-
schitz properties.
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Lemma 3.2. Let f1, f2 ∈ F s, s > 0, be given together with their respective
solutions u1, u2 of (1.2). Then it holds with some constant c depending on
u1, f1 but not on u2, f2:

∥

∥u1 − u2

∥

∥

L2(I;V )
+
∥

∥u1 − u2

∥

∥

L∞(I;H)
≤ c
∥

∥f1 − f2

∥

∥

L2(I;V ′)

with H and V again from (2.6). Furthermore it holds:

∥

∥u1,t − u2,t

∥

∥

L2(I;V ′)
≤ c̄
(

‖f1‖F s , ‖f2‖F s

)∥

∥f1 − f2

∥

∥

L2(I;V ′)

with a continuous function c̄ : R
2
+ → R+.

Proof. The first assertion follows immediately by the strong monotonicity of σ,
i.e.,

(σ(D1) − σ(D2)) : (D1 − D2) ≥ C1|D1 − D2|
2

for any D1, D2 ∈ R
2×2
sym with C1 from (2.1), and related estimates for the Navier–

Stokes equations, see e.g. [15]. Moreover, we can estimate the time derivative
of the difference u1 − u2 by writing

u1,t−u2,t = f1−f2 + div(σ(Du1)−σ(Du2)) − (u1·∇)(u1−u2) − ((u1−u2)·∇)u2

= f1−f2 + div σDu2
Du1

(Du1−Du2) − (u1·∇)(u1−u2) − ((u1−u2)·∇)u2,

where σDu2
Du1

=
∫ 1

0
σ′(Du2 + s(Du1 − Du2)) ds is given by (3.1). Now, we apply

the assumption (2.2) on σ′ to estimate

∣

∣(σDu2
Du1

(Du1 − Du2), Dφ)
∣

∣

≤
∥

∥σDu2
Du1

∥

∥

L∞(Q)
‖u1 − u2‖L2(I;V )‖φ‖L2(I;V )

≤ c
(

1 + ‖Du1‖
p−2
L∞(Q) + ‖Du2‖

p−2
L∞(Q)

)

‖u1 − u2‖L2(I;V )‖φ‖L2(I;V ).

Regarding the convective terms we do the following estimation:

∣

∣((u1 · ∇)(u1 − u2) − ((u1 − u2) · ∇)u2, φ)
∣

∣

≤ ‖u1‖L∞(Q)‖u1−u2‖L2(I;V )‖φ‖L2(I;V ) + ‖u1−u2‖L2(I;V )‖φ‖L2(I;V )‖u2‖L∞(Q).

Altogether, we find for the L2(I; V ′)-norm of the difference of the time deriva-
tives the estimate

‖u1,t − u2,t‖L2(I;V ′) ≤ c
(

1 + ‖Du1‖
p−2
L∞(Q) + ‖Du2‖

p−2
L∞(Q)

+ ‖u1‖L∞(Q) + ‖u2‖L∞(Q)

)

‖f1 − f2‖L2(I;V ′).
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In the proof, it was essential to use the regularity ∇ui ∈ L∞(Q; R2×2). If
the controls f1, f2 are only in F 0, then this regularity is not available, and one
gets a Lipschitz estimate for the time derivatives in weaker norms, i.e., only
with respect to W−1−ε,2(Ω)-norms, ε > 0.

Now let us investigate the linearized equation. To this end, let ū be a
solution of the nonlinear equation (1.2) that fulfills the regularity assertions of
Theorem 2.2, e.g. ∇u ∈ L∞(Q; R2×2). Then we are looking for solutions of the
following initial-boundary value problem with a given right-hand side h:

ut − div(σ′(Dū)Du) + (ū · ∇)u + (u · ∇)ū + ∇π = h in Q

div u = 0 in Q

u = 0 on Σ

u(0) = 0 in Ω.



















(3.3)

In the weak formulation of this problem it appears now the term σ′(Dū)Du:Dφ,
which is to be understood as

σ′(Dū)Du:Dφ =
2
∑

i,j,k,l=1

∂σij(Dū)

∂kl

(Du)kl(Dφ)ij. (3.4)

Lemma 3.3. Let us assume ∇ū ∈ L∞(Q; R2×2). Then for all h ∈ L2(I; V ′)
the linearized equation (3.3) admits a unique weak solution u ∈ L2(I; V ) with
ut ∈ L2(I; V ′). Moreover, there is a constant c > 0 independent of u such that
it holds:

∥

∥ut

∥

∥

L2(I;V ′)
+
∥

∥u
∥

∥

L2(I;V )
≤ c
∥

∥h
∥

∥

L2(I;V ′)
.

Proof. The proof is carried out by a standard Galerkin procedure. Let uN be
the solution of the approximate problem. It fulfills

‖uN‖L2(I;V ) + ‖uN‖L∞(I;H) ≤ c‖h‖L2(I;V ′), (3.5)

with a constant c independent of N and h. Here, we used assumption (2.1) on
the strong monotonicity of σ′(Dū) : R

2×2
sym → R

2×2
sym. With the same arguments

as in Lemma 3.2 above, one can prove for the time derivative

‖uN
t ‖L2(I;V ′) ≤ c‖h‖L2(I;V ′). (3.6)

Hence, there exists a weak limit u ∈ L2(I; V ) with ut ∈ L2(I; V ′) such that,
after extracting a subsequence if necessary, uN ⇀ u in L2(I; V ) and uN

t ⇀ ut

in L2(I; V ′). By the Aubin–Lions theorem the space L2(I; V ) ∩ W 1,2(I; V ′)
is compactly embedded in Lr(I; H) for every r < ∞. Hence, we have the
strong convergence uN → u in Lr(I; H), and we can pass to the limit in the
weak formulation. The solution u inherits the desired estimates from (3.5)
and (3.6).
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Here again, the regularity ∇ū ∈ L∞(Q; R2×2) was crucial. If this is not
fulfilled then the estimate of the time derivative ut in L2(I; V ′) is not available,
which implies that the time derivative is not in duality with the solution itself.
Hence, we cannot test the equation (3.3) by the solution to prove uniqueness.

Exploiting the regularity ∇ū ∈ L∞(Q; R2×2) allows us to apply a result of
Kaplický [16] for generalized Stokes equations. In fact, the result of [16] itself is
related to regularity proved by Gröger [12] but the method of the proof differs.
Consider the following system, which coincides with the linearized system (3.3)
except for the missing convective terms:

ut − div(σ′(Dū)Du) + ∇π = h in Q

div u = 0 in Q

u = 0 on Σ

u(0) = 0 in Ω.



















(3.7)

For the existence and regularity of solutions to that equation, we have the
following.

Proposition 3.4. There are positive constants C,L depending on Ω such that if
for q ∈ (2, 2 + δ), δ = LC1/{C2(1 + ‖∇ū‖L∞(Q))

p−2}, the right-hand side fulfills
h ∈ Lq(I; W−1,q(Ω; R2)), then the unique weak solution u of (3.7) satisfies

‖u‖Lq(I;W 1,q(Ω)) + ‖u‖L∞(I;Lq(Ω)) ≤ C
C

1
q

2

C1

(

1 + ‖∇ū‖L∞(Q)

)
p−2

q ‖h‖Lq(I;W−1,q(Ω)).

Here, C1, C2 are given by (2.1)–(2.2).

Proof. The proof follows immediately from [16, Proposition 2.4] using (2.1)–
(2.2) to compute uniform bounds of the smallest and largest eigenvalue of σ′.

With the previous result at hand, we can prove regularity of solutions
of (3.3) as well as a Lipschitz continuity result stronger than in Lemma 3.2.

Lemma 3.5. Let right-hand sides f1, f2 ∈ F s, s > 0 be given. Then for the
associated solutions u1, u2 of the nonlinear equation (1.2) there is a constant L
depending on Ω and a constant δ given by

δ = min
{

2, LC1C
−1
2

(

1 + ‖∇u1‖L∞(Q) + ‖∇u2‖L∞(Q)

)2−p
}

such that for every q ∈ (2, 2 + δ) it holds
∥

∥u1 − u2

∥

∥

Lq(I;W 1,q(Ω))
+
∥

∥u1 − u2

∥

∥

L∞(I;Lq(Ω))
≤ c(u1, u2)

∥

∥f1 − f2

∥

∥

Lq(I;W−1,q(Ω))

with a constant c that depends on u1, u2, and the dependence is continuously in
the norms ‖∇u1‖L∞(Q), ‖∇u2‖L∞(Q), ‖u1‖L∞(Q), and ‖u2‖L∞(Q).
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Proof. Obviously, the right-hand sides f1, f2 are in Lq(I; W−1,q(Ω; R2)) by as-
sumption. Let us denote by d the difference of u1 and u2, i.e., d := u1 − u2. By
construction, d fulfills the initial-boundary-value problem

dt − div σDu2
Du1

(Du1−Du2) + ∇π = f1−f2 − (u1·∇)d − (d·∇)u2 in Q

div d = 0 in Q

d = 0 on Σ

d(0) = 0 in Ω



















(3.8)

with σDu2
Du1

as in the proof of Lemma 3.2. Now, we use again the regularity result
[16, Proposition 2.4] for the generalized Stokes system with L∞-coefficients. To
apply this result, we have to derive uniform lower and upper eigenvalue bounds
γ1 and γ2 of σDu2

Du1
. By assumption (2.1), we have γ1 = C1 as a lower bound. For

the upper bound we use (2.2) and get γ2 = C2(1+‖∇u1‖L∞(Q)+‖∇u2‖L∞(Q))
p−2.

Hence, we obtain δ := Lγ1/γ2 = LC1/(C2(1+‖∇u1‖L∞(Q)+‖∇u2‖L∞(Q))
p−2) as

upper bound for the integrability exponent. Then the mentioned result of [16]
yields for q ∈ (2, 2 + δ) the following estimate for any solution to (3.8):

∥

∥d
∥

∥

Lq(I;W 1,q(Ω))
+
∥

∥d
∥

∥

L∞(I;Lq(Ω))

≤ C
(

1 + ‖∇u1‖L∞(Q) + ‖∇u2‖L∞(Q)

)
p−2

q

×
(

‖f1 − f2‖Lq(I;W−1,q(Ω)) + ‖(u1 · ∇)d + (d · ∇)u2‖Lq(I;W−1,q(Ω))

)

.

It remains to investigate the last addend on the right-hand side. We obtain
with integration by parts
∫

Q

((u1 · ∇)d + (d · ∇)u2) · φ dx dt =

∫

Q

−(u1 · ∇)φ · d − (d · ∇)φ · u2 dx dt.

Then for q ≤ 4, q′ = q
q−1

≥ 4
3

we can estimate

∣

∣

∣

∣

∫

Q

(u1 · ∇)φ · d + (d · ∇)φ · u2 dx dt

∣

∣

∣

∣

≤ c
(

‖u1‖L∞(Q) + ‖u2‖L∞(Q)

)

‖φ‖Lq′ (I;W 1,q′ (Ω))‖d‖L4(Q).

By Lemma 3.2, we have already ‖d‖L4(Q) ≤ c ‖f1 − f2‖L2(I;V ′), and the claimed
Lipschitz inequality is proven.

Corollary 3.6. Let ∇ū ∈ L∞(Q; R2×2) be satisfied. Then for every h in the
space Lq(I; W−1,q(Ω; R2)) with q ∈ [2, 2 + δ), where δ is as in Proposition 3.4,
the system (3.3) has a unique solution u that satisfies

∥

∥u
∥

∥

Lq(I;W 1,q(Ω))
+
∥

∥u
∥

∥

L∞(I;Lq(Ω))
≤ c
∥

∥h
∥

∥

Lq(I;W−1,q(Ω))

with a constant c > 0 depending on ū but not on h.
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Proof. By Lemma 3.3, we get the existence of a unique weak solution u in the
space L2(I; V ) with ut ∈ L2(I; V ′). Now we put the terms (ū · ∇)u + (u · ∇)ū
on the right-hand side, and estimate their Lq(I; W−1,q(Ω; R2))-norm as in the
proof of the previous lemma. Then the claim follows from Proposition 3.4.

3.2. Differentiability of the control-to-state mapping. We already know
that for each control right-hand side f the nonlinear state equation admits a
unique solution. Let us denote by S the underlying mapping from controls to
states, S(f) = u. In the previous sections we studied continuity properties
of that mapping. In order to prove necessary optimality conditions, we have
to investigate the differentiability of S. Although it would suffice for first-
order optimality conditions to have Gâteaux differentiability, we prove Fréchet
differentiability of S. We will show that the Fréchet derivative S ′(f̄)h is the
unique weak solution of the following system with ū = S(f̄)

ut − div(σ′(Dū)Du) + (ū · ∇)u + (u · ∇)ū + ∇π = h in Q

div u = 0 in Q

u = 0 on Σ

u(0) = 0 in Ω.



















(3.9)

Here, we heavily rely on the fact that the coefficients of σ′ in this linearized
equation are in L∞(Q; R2×2).

Lemma 3.7. Let the parameter s be greater than zero. Then the control-to-state
mapping S : f 7→ u is Fréchet differentiable from F s, see (2.8), to L2(I; V ) ∩
L∞(I; L2(Ω; R2)). Moreover, for each f̄ ∈ F s there is δ̄ > 0 such that the
mapping S is Fréchet differentiable at f̄ from F s to Lq(I; W 1,q(Ω; R2) ∩ V ) ∩
L∞(I; Lq(Ω; R2)) for all q ∈ [2, 2 + δ̄).

Proof. Let us only prove the local differentiability result. Fréchet differentiabil-
ity of S into L2(I; W 1,2(Ω; R2)) ∩ L∞(I; L2(Ω; R2)) follows by embedding argu-
ments.

Let us take f̄ ∈ F s and fix an open and bounded neighborhood B(f̄) in F s

and set B = B(f̄)∩F s. By Theorem 2.2, we have that the L∞(I; W 1,∞(Ω; R2))-
norms of the functions in S(B) are bounded. Let us denote this bound by
M , e.g. ‖∇u‖L∞(Q) < M for all u ∈ S(B). Furthermore, we define δ̄ by
δ̄ := min

{

2, LC1C
−1
2 (1 + 2M)−(p−2)

}

, compare with the expressions for δ in
Proposition 3.4 and Lemma 3.5.

Now let us take f from the neighborhood B and set h = f−f̄ . Let ū = S(f̄),
u = S(f̄ + h) be the weak solutions of the nonlinear equation. Let d = S ′(f̄)h
be the solution of (3.9), which exists and is unique by Corollary 3.6. Then the
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remainder r = u − ū − d fulfills the initial-boundary-value problem

rt−div(σ′(Dū)Dr)+∇π = −(d·∇)d−div σ′Du
DūD(u−ū)D(u−ū) in Q

div r = 0 in Q

r = 0 on Σ

r(0) = 0 in Ω



















(3.10)

with σ′Du
Dū =

∫ 1

0

∫ s1

0
σ′′(Dū + s2D(u − ū))) ds2 ds1, cf. (3.2). In order to apply

Proposition 3.4, we have to estimate the terms on the right-hand side. With
that proposition, we obtain a maximal integrability of the solution with respect
to some Lq-norms, q ∈ (2, 2+δ), where δ depends on bounds of the coefficients of
the differential operator. The above defined constant δ̄ fulfills the requirements
of Proposition 3.4. Hence, we can take q̃ ∈ (2, 2+δ̄) and set q̄ = 1

2

(

q̃ + 2 + δ̄
)

∈
(q̃, 2+δ̄).

We estimate the convective term on the right-hand side of (3.10) using
integration by parts. Applying the result of Corollary 3.6 we have, with q̄ > q̃,

∥

∥(d · ∇)d
∥

∥

Lq̃(I:W−1,q̃)(Ω)
≤ c
∥

∥d
∥

∥

2

L2q̃(Q)

≤ c
∥

∥d
∥

∥

L∞(I;Lq̄(Ω))

∥

∥d
∥

∥

Lq̄(I;L∞(Ω))
≤ c
∥

∥h
∥

∥

2

Lq̄(I;W−1,q̄(Ω))
.

The addend involving the second-order remainder term σ′Du
Dū is then estimated

by
∣

∣

∣

∣

∫

Q

(
∫ 1

0

∫ s1

0

σ′′(Dū + s2D(u − ū))) ds2 ds1

)

D(u − ū)D(u − ū)Dφ dx dt

∣

∣

∣

∣

≤ c
(

1 + ‖Dū‖p−3
L∞(Q) + ‖Du‖p−3

L∞(Q)

)

‖D(u − ū)‖2
L2q̃(Q)‖Dφ‖Lq̃′ (Q)

≤ c
(

1 + ‖Dū‖p−3
L∞(Q)+ ‖Du‖p−3

L∞(Q)

)

‖D(u−ū)‖2θ
Lq̄(Q)‖D(u−ū)‖2−2θ

L∞(Q)‖Dφ‖Lq̃′ (Q)

(3.11)

with θ = q̄
2q̃

, which satisfies θ > 1
2

by construction. Since ū, u are solutions of
the nonlinear equation, the factors on the right-hand side of (3.11) are bounded.
This proves that the right-hand side of (3.10) is in Lq̃(I; W−1,q̃(Ω; R2)). Fur-
thermore, Lemma 3.5 yields the Lipschitz-type estimate

‖D(u − ū)‖Lq̄(Q) ≤ c‖h‖Lq̄(I;W−1,q̄(Ω)).

Here again, the constant δ̄ fulfills the assumptions of that lemma. Now, we can
apply Proposition 3.4 to get

‖r‖Lq̃(I;W 1,q̃(Ω)) + ‖r‖L∞(I;Lq̃(Ω)) ≤ c
(

‖h‖2
Lq̄(I;W−1,q̄(Ω))

+
(

1 + ‖Dū‖p−3
L∞(Q) + ‖Du‖p−3

L∞(Q)

)

‖D(u−ū)‖2−2θ
L∞(Q)‖h‖

2θ
Lq̄(I;W−1,q̄(Ω))

)

.
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The constants involved in this estimate stay bounded as h → 0 in F . Hence it
holds

‖r‖Lq̃(I;W 1,q̃(Ω)) + ‖r‖L∞(I;Lq̃(Ω))

‖h‖Lq̄(I;W−1,q̄(Ω))

→ 0 as ‖h‖Lq̄(I;W−1,q̄(Ω)) → 0.

Thus, we proved Fréchet differentiability of the solution mapping S at f̄ from F
to the space Lq̃(I; W 1,q̃(Ω; R2)) ∩ L∞(I; Lq̃(Ω; R2)) for all q̃ ∈ (2, 2+δ̄).

Let us remark, that the proof for Fréchet differentiability of S mapping
to L2(I; W 1,2(Ω; R2)) ∩ L∞(I; L2(Ω; R2)) can not be proven directly using the
Lipschitz estimate for ‖D(u − ū)‖L2(Q) of Lemma 3.3. Then (3.11) holds only
with θ = 1

2
, which is not enough to prove that the remainder term vanishes as

h → 0. Hence, the detour via Lq-spaces was necessary.

It remains to investigate the adjoint operator of S ′(f̄). By Corollary 3.6
it is continuous from L2(I; V ′) to L2(I; V ) ∩ L∞(I; L2(Ω; R2)). The adjoint
operator S ′(f̄)∗ is then linear and continuous from the dual space of L2(I; V )∩
L∞(I; L2(Ω; R2)) to L2(I; V ). By transposition arguments as in [15, Prop. 3.3],
one finds that it is the solution operator of the so-called adjoint system

−wt − div(σ′(Dū)⊤Dw) − (ū·∇)w + (∇ū)⊤w + ∇µ = z in Q

div w = 0 in Q

w = 0 on Σ

w(T ) = 0 in Ω,



















(3.12)

given in the very weak formulation
∫ T

0

〈w, φt〉V ′,V dt +

∫

Q

σ′(Dū)⊤Dw:Dφ + (ū·∇)φ·w + (φ·∇)ū·w dx dt

=

∫ T

0

〈z, φ〉V ′,V dt

for all φ ∈ L2(I; V ) with φt ∈ L2(I; V ′) and φ(0) = 0. Likewise (3.4), the term
involving σ′ is to be understood as

σ′(Dū)⊤Dw:Dφ =
2
∑

i,j,k,l=1

∂σij(Dū)

∂kl

(Dφ)kl(Dw)ij = σ′(Dū)Dφ:Dw.

Let us finally consider the solvability of the system (3.12) and the regularity
of its solution.

Corollary 3.8. Let ∇ū ∈ L∞(Q; R2×2) be given. Then, for each right-hand side
z ∈ Lq(I; W−1,q(Ω; R2)) with q ∈ [2, 2+ δ), where δ is as in Proposition 3.4, the
system (3.12) has a unique solution w that satisfies

‖w‖Lq(I;W 1,q(Ω)) + ‖w‖L∞(I;Lq(Ω)) ≤ c‖z‖Lq(I;W−1,q(Ω))

with a constant c > 0 depending on ū but not on z.
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The proof is identical to the proof of Corollary 3.6, since Kaplický’s re-
sult [16] works also for the ‘transposed’ coefficients σ(Dū)⊤ in the differential
operator. Here, again the boundedness of ∇ū in L∞(Q; R2×2) is essential.

3.3. Necessary optimality conditions. Now, we have everything at hand
to investigate necessary optimality conditions. Let us define the reduced cost
functional using the control-to-state mapping S by

Φ(f) = J(S(f), f).

Obviously, the minimization of J subject to the state equation is equivalent to
minimize Φ over all admissible controls.

Now, let f̄ be a locally optimal control in F s, s > 0, with associated state
ū = S(f̄). Then f̄ is also a local minimum of the reduced cost function Φ. The
first-order necessary optimality condition is given by

Φ′(f̄)h = 0 ∀h ∈ F s.

Let S ′(f̄)h be the solution of the linearized equation (3.9) with right-hand side
h. Further, let us denote the embedding F s → L2(I; V ′) by E. Then the
derivative Φ′ can be written explicitly as

Φ′(f̄)h =
(

ū − ud, S ′(f̄)Eh
)

L2(Q)
+
(

f̄ , h
)

F s = 0.

Using the method of transposition, we can write

〈Eh, S ′(f̄)∗(ū − ud)〉L2(I;V ′),L2(I;V ) = (w,Eh) =

∫

Q

wh dx dt,

where w is the very weak solution of (3.12) with right-hand side z = ū − ud.
Summarizing these arguments, we proved the following.

Theorem 3.9. Let f̄ be a locally optimal control in F s, s > 0, with associated
state ū = S(f̄). Then there is an adjoint state w̄ ∈ L2(I; V ) as the unique very
weak solution of the adjoint system

−wt − div(σ′(Dū)⊤Dw) − (ū·∇)w + (∇ū)⊤w + ∇µ = ū−ud in Q

div w = 0 in Q

w = 0 on Σ

w(T ) = 0 in Ω,



















(3.13)

where µ denotes the adjoint pressure. Moreover, the condition
∫

Q

w·h dx dt + (f̄ , h)F s = 0

is fulfilled for all h ∈ F s.
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This necessary optimality conditions can be expressed equivalently in terms
of the Langrangian functional, which we define by

L(u, f, w) = J(u, f) −

∫ T

0

〈ut, w〉V ′,V dt

−

∫

Q

σ(Du)Dw + (u·∇)u·w + f ·w dx dt.

The adjoint state w, solving (3.13), plays now the role of a Lagrangian multi-
plier to the state equation constraint. Then the statement of Theorem 3.9 is
equivalent to:

Corollary 3.10. Let (ū, f̄) be a pair of locally optimal control and state. Then
it is necessary that there exists a multiplier w ∈ L2(I; V ) such that

L′
u(ū, f̄ , w̄)φ = 0 ∀φ ∈ L2(I; V ) ∩ H1(I; V ′)

L′
f (ū, f̄ , w̄)h = 0 ∀h ∈ F s.

4. Second-order sufficient optimality conditions

In this section, we will briefly discuss sufficient optimality conditions. Let f̄ ∈
F s, s > 0 be given such that (ū, f̄ , w̄) fulfill optimality system of Theorem 3.9.
Additionally, let us assume the following coercivity condition on the second
derivative of the Lagrangian: there exists α > 0 such that for all h ∈ F s with
associated z = S ′(f̄)h it holds

L′′(ū, f̄ , w̄)[(z, h)2] ≥ α‖h‖2
F s . (4.1)

For convenience we write this second derivative explicitly as

L′′(ū, f̄ , w̄)[(z, h)2]

= ‖z‖2
L2(Q)+ γ‖h‖2

F s−

∫

Q

σ′′(Dū)[Dz, Dz]:Dw̄ + 2(z·∇)z·w̄ dxdt

with

σ′′(Dū)[Dz1, Dz2]:Dw =
2
∑

i,j,k,l,m,n=1

∂2σij(Dū)

∂kl∂mn

· (Dz1)kl(Dz2)mn(Dw)ij.

Here, one can see that new difficulties arise: the integral of this quantities must
exist. Hence, we need higher regularity of solutions of the linearized as well as
the adjoint equations. On Q the gradient Dū is essentially bounded. Thus, the
regularity Dz, Dw ∈ L3(Q; R2×2) would be sufficient to obtain the integrability



368 D. Wachsmuth and T. Roub́ıček

σ′′(Dū)[Dz, Dz]Dw ∈ L1(Q; R2×2). If Dw ∈ L∞(Q; R2×2) holds, we can estimate
for instance

∣

∣

∣

∫

Q

σ′′(Dū)[Dz1, Dz2]:Dw dx dt
∣

∣

∣

≤ c
(

‖Dū‖L∞(Q)

)∥

∥Dz1

∥

∥

L2(Q)

∥

∥Dz2

∥

∥

L2(Q)

∥

∥Dw
∥

∥

L∞(Q)
.

(4.2)

4.1. Higher regularity results. Before analyzing the sufficient second-order
condition, let us prove higher regularity of the solutions of the linearized and
of the adjoint system, we will rely on a recently published result by Bothe and
Prüss [3] concerning maximal regularity of generalized Stokes systems. The key
assumption is that the coefficients in the main part of the differential operator
are continuous. This is indeed satisfied in our case: Theorem 2.2 gives ∇ū ∈
C(Q̄; R2×2) and hence σ′(Dū) ∈ C(Q̄; R2×2).

Lemma 4.1. Let ∇ū ∈ C(Q̄; R2×2) be given. Then the solution u of the lin-
earized system (3.9) for h ∈ F s, s ≥ 0, satisfies ∇u ∈ L∞(Q; R2×2).

Proof. We want to show that the solution u belongs to the function space of
maximal regularity W 1,q(I; Lq(Ω; R2)) ∩ Lq(I; W 2,q(Ω; R2)) for some q > 2.
Then u is also continuous on Ī with values in W 2−2/q,q(Ω; R2). The latter
space is continuously imbedded in W 1,∞(Ω; R2) for q > 4, which gives us
∇u ∈ L∞(Q; R2×2).

The maximal solution regularity is provided by [3, Theorem 4.1] under the
assumption that h − (ū · ∇)u − (u · ∇)ū belongs to Lq(Q; R2), q > 4.

For s ≥ 0, we have that F s →֒ H1(Q; R2). Due to Sobolev embeddings, we
have F s →֒ L6(Q; R2).

It remains to investigate the Lq(Q; R2)-norm of (ū · ∇)u + (u · ∇)ū. From
the regularity of u provided by Corollary 3.6 and ∇ū ∈ L∞(Q; R2×2) it follows
(ū · ∇)u + (u · ∇)ū ∈ L2(Q; R2) immediately. The claim follows as in the proof
of [27, Theorem 2.7], where a bootstrapping procedure is carried out to prove a
similar result for the linearized Navier-Stokes equations. In each step one has
to apply the above mentioned result of [3] instead of the analogon for the Stokes
system, which was used in [27].

In the analysis of the second-order optimality conditions it will turn out
that the regularity Dw ∈ L∞(Q; R2×2) would be benefitial, see below in the
proof of Theorem 4.3 the discussion of the remainder term r̃2.

Corollary 4.2. Let ū with ∇ū ∈ C(Q̄; R2×2) and ud ∈ Lq(Q; R2) with some
q > 4 be given. Then the solution w of the adjoint system satisfies Dw ∈
L∞(Q; R2×2).
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Proof. The right-hand side ū− ud of the adjoint equations is in Lq(Q; R2) with
q > 4. By a similar bootstrapping technique as in the proof of the previous
lemma, we can prove the result following the lines of the analogous result [27,
Theorem 3.3].

Let us observe that the regularity requirement on ū of that corollary is
fulfilled if ū is a strong solution according to Theorem 2.2.

4.2. Sufficiency. Finally, we state and prove that the coercivity condition (4.1)
is sufficient for local optimality.

Theorem 4.3. Let (ū, f̄ , w̄) fulfill the optimality system of Theorem 3.9. Sup-
pose further that there is a constant α > 0 such that the coercivity assump-
tion (4.1) is satisfied. Moreover, let us assume that σ is of class C3 in addition
to the assumptions of Section 2. Let the desired state ud be in Lq(Q; R2), q > 4.
Then there are constants ρ > 0 and β > 0 such that the quadratic growth
conditions

J(u, f) ≥ J(ū, f̄) + β‖f − f̄‖2
F s

holds for all f ∈ F s with ‖f − f̄‖F s < ρ and u = S(f), which implies that the
control f̄ is locally optimal.

Proof. Let (ū, f̄ , w̄) be given according to the assumptions. Let us choose a pos-
itive radius ρ0 > 0. Let f ∈ F s be another feasible control with ‖f − f̄‖F s < ρ0.
Define u := S(f). We then have J(ū, f̄) = L(ū, f̄ , w̄) and J(u, f) = L(u, f, w̄),
since both ū and u are solutions of the state equation. Taylor expansion of the
Lagrangian then yields

L(u, f, w̄) − L(ū, f̄ , w̄) = L′
u(ū, f̄ , w̄)(u−ū) + L′

f (ū, f̄ , w̄)(f−f̄)

+
1

2
L′′(ū, f̄ , w̄)

[

(u−ū, f−f̄)2
]

+ r2.
(4.3)

Due to the optimality conditions, the first two addends vanish, see e.g. Corol-
lary 3.10.

The remainder term in the expansion above is given by

r2 = −

∫

Q

∫ 1

0

∫ s1

0

∫ s2

0

σ′′′(Dū + s3D(u − ū))(D(u−ū))3Dw̄ ds3 ds2 ds1 dx dt.

The argument of σ′′′ is in L∞(Q; R2×2), since f, f̄ and thus Dū, Du lie in bounded
sets in F and L∞(Q; R2), respectively. Since σ is of class C3, we have |σ′′′(Dū+
s3D(u − ū))| < M for all s3 ∈ (0, 1) a.e. on Q. Moreover, it holds Dw̄ ∈
L∞(Q; R2×2) by Corollary 4.2. Thus, we can estimate the remainder term r2 as

|r2| ≤
1

6
M‖D(u − ū)‖3

L3(Q).
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Analogously to the discussion in Lemma 3.7, there is a δ > 0 such that the
Lipschitz estimate of Lemma 3.5 holds for all q ∈ (2, 2 + δ) and all f in the
neigborhood of f̄ . This allows us to estimate for some q > 2

|r2| ≤
M

6
‖D(u − ū)‖q

Lq(Q)‖D(u − ū)‖3−q
L∞(Q) ≤ c‖f − f̄‖q

F s .

Let us denote by v the solution of the linearized equation with the right-hand
side f − f̄ , i.e., v = S ′(f̄)(f − f̄). If we use v instead of u− ū, we will introduce
an additional error r1 := (u− ū)−v = S(f)−S(f̄)−S ′(f̄)(f − f̄). The solution
mapping S is Fréchet differentiable from F s to L2(I; V ) by Lemma 3.7, which
yields

‖r1‖L2(I;V ) = o
(

‖f−f̄‖F s

)

for ‖f−f̄‖F s → 0. (4.4)

Now, let us replace the argument u − ū of L′′ in (4.3) by v + r1. We obtain

1

2
L′′(ū, f̄ , w̄)

[

(u−ū, f−f̄)2
]

=
1

2
L′′(ū, f̄ , w̄)

[

(v, f−f̄)2
]

+ r̃2

with r̃2 :=L′′
u(ū, f̄ , w̄)[v, r1] +

1

2
L′′

u(ū, f̄ , w̄)[r1, r1].

Then the first addend fulfills the coercivity requirement (4.1). Let us prove
that r̃2 is o

(

‖f−f̄‖2
F s

)

for f → f̄ in F s. We know Dū, Dw ∈ L∞(Q; R2×2)
by Theorem 2.2 and Corollary 4.2, respectively. By Corollary 3.8, we know
‖v‖L2(I;V ) ≤ c‖f − f̄‖F s . Hence it follows from the property (4.4) of r1 and the
bound on L′′ in (4.2), |r̃2| = o

(

‖f−f̄‖2
F s

)

for ‖f−f̄‖F s → 0. Merging all these
estimates, we finally obtain

J(u, f) − J(ū, f̄) ≥
α

2
‖f − f̄‖2

F s − |r2| − |r̃2|.

Since both |r2| and |r̃2| are of size o(‖f−f̄‖2
F s), there is ρ1 > 0 such that

|r2|+ |r̃2| ≤
α
4
‖f−f̄‖2

F s holds for all ‖f−f̄‖F s < ρ1. Thus, the quadratic growth
holds with β := α

4
and ρ := min{ρ0, ρ1}.

5. Concluding remarks

We investigated optimal control problems for non-Newtonian fluids. The exis-
tence of optimal controls was proven. Here, it was important to be able to pass
to the limit in the state equation. For the development of optimality conditions,
it was essential that a solution theory providing Du ∈ L∞ was available.

Let us now comment on two other situations: the case of periodic boundary
condition and a possible extension of our work to the three-dimensional case.
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5.1. Space-periodic boundary conditions. Based on the regularity results
of Kaplický, Málek, Stará [17] we could reformulate our results for spatially
periodic boundary conditions on a square domain. Furthermore, this result is
available for a wider range of exponents p in the assumptions on the nonlinearity,
namely it was proven for p > 4

3
. Under similar assumptions on the controls f

as in Theorem 2.2, they prove the regularity u ∈ C1,α(Q̄; R2). Here, again the
parameter s in the definition of the control space is required to be positive.
With these results at hand, one can prove existence of optimal controls as well
as necessary and sufficient optimality conditions following the lines of the proofs
of Proposition 2.1 and Theorems 3.9 and 4.3, respectively.

5.2. The three-dimensional case. Existence of a unique solution of the equa-
tion holds for p ≥ 9

4
, cf. [24]. This is a tremendous benefit from considering

non-Newtonian fluids, because such uniqueness result is not available for New-
tonian fluids, where it was selected by Clay Mathematical Institute as one out of
seven most challenging mathematical “Millennium problems”. In time of writ-
ing this article this problem was still waiting for its (affirmative or not) answer.
On the other hand, although some regularity results are available for 9

4
≤ p < 3,

see [23], even first-order optimality conditions are still not available. It seems
that the Gâteaux differentiability of the solution mapping requires L∞(Q; R3×3)-
estimate for ∇u or ∇w (not available up to nowadays knowledge), a strategy
we applied to the two-dimensional case in this article. Rather it indicates that
the control-to-state mapping is not differentiable in the three-dimensional case,
and some non-smooth methods are to be applied.

On the other hand, we can easily prove existence of optimal controls in
L2(Q; R3) for p ≥ 9

4
. Let us fix the assumptions for the rest of this section: Let

Ω ⊂ R
3 be a bounded domain with a C3-boundary.

Proposition 5.1. Let the conditions (2.1)–(2.2) on σ be satisfied with p ≥ 9
4
.

Let an initial value u0 ∈ W 1,p(Ω; R2)∩V be given. Furthermore, let γ > 0, and
F be a non-empty, convex, and closed subset of L2(Q; R3). Then there exists
an optimal control f̄ ∈ L2(Q; R3) for the optimal control problem (1.1)–(1.2).

Proof. The proof follows the lines of the proof of Proposition 2.1. The unique-
ness of solutions of (1.2) for p ≥ 5

2
goes back to Ladyzhenskaya [19]. This result

was later improved in [23] to allow for p ∈ [9
4
, 3).

6. Appendix

The following local regularity result is analogous to [3] where equations with a
differential operator of the type div(µ(|Du|)Du) were considered with a scalar
function µ : R

2×2
sym → R. For the sake of completeness, we extend this result to

the equation considered here.
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Theorem 6.1. Let Ω ⊂ R
2 be a bounded domain with C2+µ boundary. Let the

assumptions (2.1)–(2.2) on σ hold with some p ≥ 2. Let us assume that the
right-hand side f and the initial value u0 fulfill, for some q > 4,

f ∈ Lq(Q; R2) and u0 ∈ W 2−2/q,q(Ω; R2) ∩ V.

Then there is τ > 0 (depending possibly on f and u0) such that the unique weak
solution u of (1.2) satisfies

u ∈ Lq(0, τ ; W 2,q(Ω; R2) ∩ V ), ut ∈ Lq(0, τ ; Lq(Ω; R2)). (6.1)

Note that, due to embeddings, every function u satisfying (6.1) is also in
C([0, τ ]; W 2−2/q,q(Ω; R2)), which means ∇u ∈ C(Ω̄ × [0, τ ]; R2×2) since q > 4.

Proof. The proof follows the lines of [3, Section 9].

Let us take τ ∈ (0, T
2
]. For q > 4, let us define the spaces

Z(τ) :=
{

u ∈ Lq(0, τ ; W 2,q(Ω; R2) ∩ V ) : ut ∈ Lq(0, τ ; Lq(Ω; R2))
}

,

X(τ) := Lq(0, τ ; Lq(Ω; R2)).

Note, that we have the embedding Z(τ) →֒ C([0, τ ]; W 2−2/q,q(Ω; R2)∩V ). How-
ever, the embedding constant blows up as τ goes to zero, which is not the case
for the restriction to zero time traces at t = 0:

Z0(τ) := {u ∈ Z(τ) : u(0) = 0}.

Let us briefly show that there is indeed a constant c independent of τ ∈ I such
that

∥

∥u
∥

∥

L∞(0,τ ;W 2−2/q,q(Ω))
≤ c
∥

∥u
∥

∥

Z(τ)
∀u ∈ Z0(τ).

To this goal, let us define for u ∈ Z0(τ) the extension operator E : Z0(τ) →
Z0(T ) by

(Eu)(t) =











u(t) if 0 ≤ t ≤ τ

u(2τ−t) if τ < t ≤ 2τ

0 if 2τ < t.

Then we have ‖Eu‖Z(T ) ≤ 2‖u‖Z(τ). Applying the continuity of the embedding
Z(T ) →֒ L∞(I; W 2−2/q,q(Ω; R2)) for the fixed end time T , we obtain

∥

∥u
∥

∥

L∞(0,τ ;W 2−2/q,q(Ω))
=
∥

∥Eu
∥

∥

L∞(I;W 2−2/q,q(Ω))
≤ c
∥

∥Eu
∥

∥

Z(T )
≤ 2c

∥

∥u
∥

∥

Z(τ)
, (6.2)

where the constant c is independent of τ .
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Now let us take the solution (u∗, π∗) of the Stokes equation on the time
interval (0, T

2
):

ut − ∆u + ∇π = f in Ω × (0, T
2
)

div u = 0 in Ω × (0, T
2
)

u = 0 on Γ × (0, T
2
)

u(0) = u0 in Ω.























(6.3)

for f ∈ Lq(Q; R2) and u0 ∈ W 2−2/q,q(Ω; R2) ∩ V for some q > 4. Due to [3,
Theorem 4.1], the mapping (f, u0) 7→ (u∗, π∗) is linear and continuous from
Lq(Q; R2)×(W 2−2/q,q(Ω; R2)∩V ) to Z(T

2
)×X(T

2
). The mapping f 7→ u∗ for the

homogenous initial condition will be denoted by L. It is linear and continuous
from X(T

2
) to Z0(

T
2
).

In the sequel, we will employ the following quasi-linear representation of
the operator div(σ(Du)):

[div(σ(Du))]i =
2
∑

j=1

∂

∂xj

σij(Du)

=
2
∑

j,k,l=1

∂klσij(Du)
∂

∂xj

(

∂uk

∂xl

+
∂ul

∂xl

)

=
2
∑

j,k,l=1

(

∂klσij(Du) + ∂lkσij(Du)
) ∂

∂xj

∂uk

∂xl

=
2
∑

j,k,l=1

2∂klσij(Du)
∂

∂xj

∂uk

∂xl

=
2
∑

k=1

(

2
∑

j,l=1

2∂klσij(Du)
∂2

∂xj∂xl

)

uk

= A(u)u

(6.4)

for A(u) := 2σ′(Du)∇2.

Let us suppose that (u, π) is a solution of the non-linear equation (1.2) on
the time interval (0, τ). Then the difference (v, ρ) := (u−u∗, π−π∗) satisfies the
equations

vt − A(u∗)v + ∇ρ = f∗ + F (v) in Ω × (0, τ)

div v = 0 in Ω × (0, τ)

v = 0 on Γ × (0, τ)

v(0) = 0 in Ω



















(6.5)



374 D. Wachsmuth and T. Roub́ıček

with f∗ := A(u∗)u∗ − ∆u∗ + (u∗ · ∇)u∗ ∈ X(T
2
) and

F (v) = F1(v) + F2(v) := [A(u∗) − A(u∗ + v)] (u∗ + v)

− [(u∗ · ∇)v + (v · ∇)u∗ + (v · ∇)v] .

If we can show that this system is solvable in v, then u := u∗ + v will be a
solution of (1.2). The system (6.5) is equivalent to the fixed point equation in
Z(τ):

v = L(f∗ + F (v)),

where L : X(τ) → Z0(τ) is the solution mapping associated with the Stokes
equation (6.3). We will now prove that LF is a contraction on the closed ball
Br,τ := {u ∈ Z0(τ) : ‖u‖Z(τ) ≤ r} if we choose the numbers r and τ small
enough.

As argued above, see (6.2), there is a constant c > 0 independent of τ , such
that

‖∇v‖L∞(Ω×(0,τ)) ≤ c‖v‖Z0(τ). (6.6)

Let us take v, w ∈ Br,τ . Then we write

F1(v) − F1(w) = A(u∗)(v−w) + A(u∗+v)(u∗+v) − A(u∗+w)(u∗+w)

=
(

A(u∗)−A(u∗ + v)
)

(v−w) +
(

A(u∗+v) − A(u∗+w)
)

(u∗+w)

to estimate in view of (6.4), (6.6), and (2.2)–(2.3)

∥

∥F1(v) − F1(w)
∥

∥

X(τ)
≤ c
(

1 + ‖∇u∗‖L∞(Q) + r
)p−3

r‖v−w‖Z(τ)

+ c
(

1 + ‖∇u∗‖L∞(Q) + r
)p−3

‖v−w‖Z(τ)

(

‖u∗‖Z(τ) + r
)

≤ c
(

1 + ‖u∗‖Z(τ) + r
)p−3(

‖u∗‖Z(τ) + r
)

‖v−w‖Z(τ)

with c independent of r, τ . Since ‖u∗‖Z(τ) → 0 for τ → 0, we can choose r, τ
small enough to obtain ‖F1(v) − F1(w)‖X(τ) ≤ 1

3‖L‖
‖v−w‖Z(τ). Similarly, we

estimate
∥

∥F2(v) − F2(v)
∥

∥

X(τ)
=
∥

∥((u∗+w) · ∇)(v−w) + ((v−w) · ∇)(u∗+v)
∥

∥

X(τ)

≤ c
(

‖u∗‖Z(τ) + r
)

‖v−w‖Z(τ) ≤
1

3‖L‖
‖v−w‖Z(τ)

for r, τ chosen small enough. This implies ‖LF (v)−LF (w)‖Z(τ) ≤
2
3
‖v−w‖Z(τ),

which proves that the mapping v 7→ L(f̄ +F (v)) is a contraction on Br,τ . Thus,
there exists a unique fixed point v = L(f̄ +F (v)) that solves the equation (6.5).
Moreover, u∗ + v is the solution of the non-linear equation on (0, τ). Since the
non-linear equation is uniquely solvable for p ≥ 2 with solution u this solution
has the same regularity as u∗ + v, which means u ∈ Z(τ).
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(MŠMT ČR), and from the research plan AV0Z20760514 (ČR).
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