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A Characterization of Some Weighted

Norm Inequalities for Maximal Operators
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Abstract. It is found class of pairs of exponents (p(·) , q(·)) such that for pairs
of Banach function spaces (Lp(·)(Rn) , Lq(·)(Rn)) weak Minkowski’s inequality holds.
Also some conditions which ensure the boundednness of maximal operator Mϕ :

Lp(·)(Rn) −→ L
q(·)
w (Rn) are found, when for the pair of Banach function spaces

(Lp(·)(Rn) , Lq(·)(Rn)) holds weak Minkowski’s inequality.
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1. Introduction

Let p(·) : R
n 7→ [1, +∞) be a measurable function. Denote by Lp(·)(Rn) the

space of functions f such that for some λ > 0

∫

Rn

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx < ∞,

with norm

‖f‖p(·) = inf

{
λ > 0;

∫

Rn

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
.

The Lebesgue spaces Lp(·)(Rn) with variable exponent and the corresponding
variable Sobolev spaces W k,p(·) are of interest for their applications to mod-
elling problems in physics, and to the study of variational integrals and partial
differential equations with non-standard growth condition (see [1,21]).

We suppose that the continuous increasing function ϕ : R+ 7→ R+ satisfies
the following condition:

ϕ

(∑

i

ti

)
≤ C

∑

i

ϕ(ti), ti ∈ R+, ϕ(0) = 0.
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The generalized maximal operator Mϕ is defined on the space of locally
integrable functions on R

n by the formula

Mϕf(x) = sup
1

ϕ(|Q|)

∫

Q

|f(t)| dt,

where the supremum is taken over all cubes Q containing x (|Q| denotes the
Lebesgue measure of the set Q).

If ϕ(t) = t, then Mϕ is the Hardy–Littlewood maximal operator which will
be denoted by M. If ϕ(t) = t1−

α
n , 0 < α < n, then Mϕ is the fractional maximal

operator which will be denoted by Mα.

Assume that p− = essinfx∈Rnp(x) and p+ = esssupx∈Rnp(x). Let P(Rn)
be the class of all functions p(·) (1 < p− ≤ p+ < ∞) for which the Hardy-
Littlewood maximal operator M is bounded on Lp(·)(Rn). This class has been a
focus of intense study in recent years. We refer to the papers [5]–[20], where sev-
eral results on maximal, potential and singular operators in variable Lebesgue
spaces were obtained. Note that an explicit description in terms of Mucken-
houpt type condition of general weights for which the maximal operator Mϕ is
bounded in the Lp(·) space still remains an open problem.

A certain subclass of general weights was considered in [12], where for the
case of bounded domain Ω in the Euclidian space, the boundedness of the max-
imal operator M in the space Lp(·)(Ω, ρ) was proved (under usual log-Hölder
condition). This subclass may be characterized as a class of radial type weights
which satisfy the Zygmund–Bari–Stechkin condition. Weight inequalities with
power-type weights for operator M in Lp(·) spaces have been established in [13].
Muckenhoupt-type condition governing the one-weight inequality for M in vari-
able exponent Lebesgue spaces was derived in [11]. Necessary and sufficient
condition on weight par (w, v) guaranteeing the boundedness of Mα from Lr

w

to L
q(·)
v (r is constant) were found in [9]. Note also that two-weight criteria for

Mα : L
p(·)
w (J) → L

p(·)
v (J) (J is interval) were found in [14].

In this paper we give a necessary and sufficient condition on weight w
guaranteeing the boundedness of the maximal operator Mϕ from Lp(·)(Rn) to

L
q(·)
w (Rn) provided that p(·), q(·) ∈ L(Rn) (see definition bellow) and p(x) ≤

q(x), x ∈ R
n (Theorem 4.7).

Finally, C will denote positive constant depending only on the dimension,
but whose value may change at each appearance.

2. Weak Minkovski’s inequality in Banach function spaces

Let (Ω, µ) be a complete σ-finite measure space. By S we denote the collection
of all real-valued measurable function on Ω. A Banach subspace E in S is said
to be Banach function space (BFS) if:
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1) the norm ‖f‖E is defined for every measurable function f and f ∈ E if
and only if ‖f‖E < ∞, ‖f‖E = 0 if and only if f = 0 a.e.;

2) ‖|f |‖E = ‖f‖E for all f ∈ E;

3) if 0 ≤ f ≤ g a.e., then ‖f‖E ≤ ‖g‖E;

4) if 0 ≤ fn ↑ f a.e., then ‖fn‖E ↑ ‖f‖E;

5) if X is measurable subset of Ω such that µ(X) < ∞ and χX is character-
istic function of X, then ‖χX‖E < ∞;

6) for every measurable set X, µ(X) < ∞, there is a constant CX < ∞ such
that

∫
X

f(t)dt ≤ CX‖f‖E.

Given a Banach function space E we can always consider its associate
space E ′ consisting of those g ∈ S that f · g ∈ L1 for every f ∈ E with
the norm ‖g‖E′ = sup {‖f · g‖L1 : ‖f‖E ≤ 1 }. E ′ is a BFS on Ω and a closed
norming subspace of conjugate space E∗.

Let w be a weight (w(x) > 0 a.e. on Ω). By Ew we denote BFS with norm
‖f‖Ew = ‖fw‖E.

Let ℑ be some fixed family of sequences Q = {Qi} of disjoint measurable
subsets of Ω, µ(Qi) > 0 such that Ω = ∪Qi∈QQi. We ignore the difference in
notation caused by a null set.

Everywhere below by lQ we denote a Banach sequential space (BSS), mean-
ing that axioms 1) – 6) are satisfied with respect to the count measure. Let {ek}
be standard unit vectors in lQ.

Definition 2.1. Let l = {lQ}Q∈ℑ be a family of BSSs. A BFS E is said to
satisfy a uniformly upper (lower) l-estimate if there exists a constant C > 0
such that for every f ∈ E and Q ∈ ℑ we have

‖f‖E ≤ C

∥∥∥∥
∑

Qi∈Q

‖fχQi
‖E · ei

∥∥∥∥
lQ

(∥∥∥∥
∑

Qi∈Q

‖fχQi
‖E · ei

∥∥∥∥
lQ

≤ C‖f‖E

)
.

In case Ω = [0, +∞) Definition 2.1 was introduced in [16]. The notions of
uniformly upper (lower) l-estimates, when lQ1 = lQ2 for all Q1,Q2 ∈ ℑ were in-
troduced by Berezhnoi (see [2]). Note that if the space E satisfies uniformly up-
per (lower) l-estimate, then the space Ew also satisfies uniformly upper (lower)
l-estimate for any weight w.

If BFS E simultaneously satisfies uniformly upper and lower l-estimates,
then for any f ∈ E and Q ∈ ℑ

1

C
‖f‖E ≤

∥∥∥∥∥
∑

Qi∈Q

‖fχQi
‖E

‖χQi
‖E

χQi

∥∥∥∥∥
E

≤ C‖f‖E. (1)

Note also that if E satisfies upper (lower) l = {lQ}Q∈ℑ estimates, then E ′

satisfies lower (upper) l′ = {l′Q}Q∈ℑ estimates (see [16, Theorem 2] for case
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Ω = [0, +∞), generalization for arbitrary Ω may be achieved in the similar way
and we omit its proof).

Let E = Et, F = Fs be Banach function spaces on (Ω, µ). Under the spaces
with mixed norm E[F ], F [E] we mean the spaces consisting of all k(t, s) ∈
S(Ω × Ω, µ × µ) such that ‖k(t, ·)‖

F
∈ E and‖k(·, s)‖

E
∈ F with norms

‖k‖E[F ] =
∥∥ ‖k(t, ·)‖

F

∥∥
E
, ‖k‖F [E] =

∥∥ ‖k(·, s)‖
E

∥∥
F
.

It is known that F [E] and F [E] are Banach function spaces on Ω × Ω.
In general case the spaces E[F ] and F [E] are not isomorphic. According to
the theorem of Kolmogorov–Nagumo, if E[F ] and F [E] are isomorphic, then E
and F are isomorphic respectively to some Lp

w1
and Lp

w2
spaces 1 ≤ p < ∞ or

both E,F are AM spaces (see [4]).

Definition 2.2. A pair of BFSs (E, F) is said to have the property M(ℑ)
((E,F ) ∈ M(ℑ)) if there exists a constant C such that

∥∥∥∥
∑

Qi∈Q

f(t)χQi
(t)g(s)χQi

(s)

∥∥∥∥
F [E]

≤ C‖
∑

Qi∈Q

f(t)χQi
(t)g(s)χQi

(s)‖E[F ]

for any Q ∈ ℑ and every f ∈ E, g ∈ F.

Definition 2.2 was introduced in [16]. For any BFS F we have continuous em-
bedding L1[F ] ⊂ F [L1] (generalized Minkowski’s inequality), and the property
M(ℑ) may be interpreted as the weak Minkowski’s inequality for pair (E,F ).
Note that a pair (E,F ) of BFSs possesses the property M(ℑ) if and only if there
exists family l = {lQ}Q∈ℑ of BSSs for which the space F has uniformly upper
l-estimate and the space E has uniformly lower l-estimate ([16,Theorem 2]).

Definition 2.3. A pair (E,F ) of BFSs is said to have the property G(ℑ)
((E,F ) ∈ G(ℑ)) if there exists a constant C such that

∑

Qi∈Q

‖fχQi
‖

E
· ‖gχQi

‖
F ′ ≤ C‖f‖

E
· ‖g‖

F ′

for any sequence Q = {Qi}, Q ∈ ℑ and every f ∈ E, g ∈ F ′.

In case Ω = R
n Definition 2.3 was introduced by Berezhnoi (see [3]). Let

us remark that pair (Lp, Lq) satisfies property G(ℑ) if p ≤ q. Conditions, when
the pair of BFSs (E,F ) satisfies property G(ℑ) in terms of ℓ-concavity and
ℓ-convexity (in this case ℓQ1 = ℓQ2 for any Q1,Q2 ∈ ℑ) can be found in [2].
Here (E,F ) is a pair of symmetric spaces (Lebesgue, Lorentz, Marcinkewicz).
Note also that (E,F ) ∈ G(ℑ) if and only if (E,F ) ∈ M(ℑ) ([16,Theorem 2]).
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3. Weak Minkowski’s inequality in variable exponent
Lebesgue spaces

First we consider the cases Ω = [0, 1] and Ω = R. By ℑΩ we denote the family
of all sequences {Qi} of disjoint intervals from Ω.

Let L([0, 1]) denote the set of exponents p(·) : [0, 1] → [1, +∞) with log-
Hölder condition

|(p(x) − p(y)) log |x − y|| ≤ C, x, y ∈ [0, 1], x 6= y. (2)

Proposition 3.1 ([16]). Let p(·), q(·) ∈ L([0, 1]) and p(x) ≤ q(x), x ∈ [0, 1].
Then the pair of BFSs (Lp(·)([0, 1]), Lq(·)([0, 1])) satisfies the property M(ℑ[0,1]).

By AC we denote the set of exponents p(·) : R → [1, +∞) of the form
p(x) = p +

∫ x

−∞
l(u)du, where

∫ +∞

−∞
|l(u)|du < +∞.

Proposition 3.2. If p(·), q(·) ∈ AC and p(x) ≤ q(x), x ∈ R, then (Lp(·)(R),
Lq(·)(R)) ∈ M(ℑR).

Proof. Let p(x) = p +
∫ x

−∞
l1(u)du and q(x) = q +

∫ x

−∞
l2(u)du. Let l(·) be a

positive function such that |l1(x)|, |l2(x)| ≤ l(x) on R and
∫ +∞

−∞
l(u)du = a <

+∞. Note that

|p(x2) − p(x1)|, |q(x2) − q(x1)| ≤

∣∣∣∣
∫ x2

x1

l(x)dx

∣∣∣∣ .

Let M(x) = 1
a

∫ x

−∞
l(u)du, and M−1(·) : (0, 1) → R is the inverse function

of M. Define p(·), q(·) : [0; 1] → [1; +∞) by p(·) = p(M−1(·)), q(·) = q(M−1(·)).
Define the weights

w1(·) =
(
(M−1)′(·)

) 1
p(·) , w2(·) =

(
(M−1)′(·)

) 1
q(·) .

Note that if y1, y2 ∈ [0, 1], then |p(y1) − p(y2)|, |q(y1) − q(y2)| ≤ a|y1 − y2|.

By Proposition 3.1 there exists family l = {lQ}Q∈ℑ[0,1]
of BSSs for which the

space Lp(·)([0, 1]) satisfies uniformly lower l-estimate and the space Lq(·)([0, 1])

satisfies uniformly upper l-estimate. Consequently the space L
p(·)
w1 ([0, 1]) satisfies

uniformly lower l-estimate and the space L
q(·)
w2 ([0; 1]) satisfies uniformly upper

l-estimate (here we are using the fact that for any BFS E and any weight we
have ‖f‖Ew = ‖fw‖E).

Let M(ℑR) denote the family of all sequences M(Q) = {M(Qi)} where

Q = {Qi} ∈ ℑR. Note that M(ℑR) ⊂ ℑ[0,1]. For Q ∈ ℑR let l̃Q = lQ′ where
M−1(Q′

i) = Qi.

Note that the spaces Lp(·)(R) and L
p(·)
w1 ([0, 1]), also the spaces Lq(·)(R) and

L
q(·)
w2 ([0; 1]) are isomorphic. Then, for the family l̃ = {l̃Q}Q∈ℑR

of BSSs, Lp(·)(R)

satisfies uniformly lower l̃-estimate and Lq(·)(R) satisfies uniformly upper l̃-
estimate. Consequently (Lp(·)(R), Lq(·)(R)) ∈ M(ℑR).
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Analogously we have

Proposition 3.3. Let for p(·), q(·) : R → [1, +∞) there exists M(·) : R →
(0, 1) of the form M(x) =

∫ x

−∞
l(t)dt, x ∈ R, l(t) > 0 a.e., such that p(M−1(·))

and q(M−1(·)) satisfy (2). Then (Lp(·)(R), Lq(·)(R)) ∈ M(ℑR).

By L(Rn) we denote the set of exponents p(·) : R
n → [1, +∞) with the

properties: 1 ≤ p− ≤ p+ < ∞ and p(·) satisfies the log-Hölder condition

|p(x) − p(y)| ≤
C

log
(
e + 1

|x−y|

) for |x − y| <
1

4
(3)

|p(x) − p∞| ≤
C

log(e + |x|)
for some p∞ ∈ R. (4)

Assume that 1 < p− ≤ p+ < ∞. In [7] L. Diening proved that if p(·)
satisfies the condition (3) and p(·) is a constant outside some compact set,
then p(·) ∈ P(Rn). The second condition on p(·), namely the behavior of p(·)
at infinity, was improved independently by D. Cruz–Uribe, A. Fiorenza and
C. Neugebauer [5], and A. Nekvinda [20]. It was shown in [5] that if p(·), satisfies
(3) and (4), then p(·) ∈ P(Rn). In [20] (4) is replaced by a slightly more general
integral condition.

By ℑ we denote the family of all sequences {Qi} of disjoint cubes from R
n.

Proposition 3.4. If p(·), q(·) ∈ L(Rn) and p(x)≤q(x), x ∈ R
n, then (Lp(·)(Rn),

Lq(·)(Rn)) ∈ M(ℑ).

Proof. Let us consider the map g : R
n → Q0 in the following form:

g(x) = g(x1, . . . , xn) =
(

1
π

arctan x1, . . . ,
1
π

arctan xn

)
,

where Q0 = (−1
2
, 1

2
)n. By g(ℑ) we denote the family of all sequences g(Q) =

{g(Qi)} where Q = {Qi} ∈ ℑ.

Let p(·) = p(g−1(·)), q(·) = q(g−1(·)). Note that there exist weights w1, w2

on Q0 such that the spaces L
p(·)
w1 (Q0) and Lp(·)(Rn), also the spaces L

q(·)
w2 (Q0)

and Lq(·)(Rn) are isomorphic.

We need to show that

| log |g(Q)|(p(x) − p(y))| ≤ C (5)

and
| log |g(Q)|(q(x) − q(y))| ≤ C (6)

for all cubes Q ⊂ R
n and x, y ∈ g(Q).

Note that from (5), (6) it holds that the pair of BFSs (Lp(·)(Q0), L
q(·)(Q0))
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has property M(g(ℑ)) and consequently the pair of BFSs (L
p(·)
w1 (Q0), L

q(·)
w2 (Q0))

has property M(g(ℑ)). The proof is exactly the same as Proposition 3.1 and
we can omit it. Thus it follows that the pair of BFSs (Lp(·)(Rn), Lq(·)(Rn)) has
property M(ℑ).

The proof of (5) and (6) are similar, so we will prove only (5). We start with
large cubes. Let Q be a cube with property |g(Q)| ≥ 1

4
. Then (5) is obvious.

Now, let Q = [a1, a1 + h] × · · · × [an, an + h], where h > 0 and |g(Q)| < 1
4
.

Firstly assume that ai ≥ 0 for all i. Denote a0 = maxi ai. It is clear that
1 > 1

π
(arctan(ai + h) − arctan ai) ≥

1
π
(arctan(a0 + h) − arctan a0) > 0 for all i

and consequently

| log g(Q)| ≤ C
∣∣ log

(
π−1(arctan(a0 + h) − arctan a0)

)∣∣. (7)

For the proof of (5) we will consider three cases.

Case 1. Let a0 > 100 and h ∈
[

k
a0

, k+1
a0

)
for some k ∈ N. Note that for

x ≥ 0 arctan x + arctan 1
x

= π
2

and

arctan
1

a0

− arctan
1

a0 + h
= arctan′ ξ

(
1

a0

−
1

a0 + h

)
≤ C

k

a0(a2
0 + k)

.

From this we have

D =

∣∣∣∣log

(
1

π
(arctan(a0 + h) − arctan a0)

)∣∣∣∣

=

∣∣∣∣log

(
1

π
(arctan

1

a0 + h
− arctan

1

a0

)

)∣∣∣∣

≍

∣∣∣∣log
k

a0(a2
0 + k)

∣∣∣∣ .

If k > 2a2
0, then k

a2
0+k

≍ C and D ≍ log a0. If 1 ≤ k ≤ 2a2
0, then 1

3a3
0
≤ k

a0(a2
0+k))

≤
2
a0

, and consequently D ≍ log a0. From (4) and (7) we obtain (5).

Case 2. Let a0 > 100 and h ∈
(
0, 1

a0

)
. Then it follows by (3), (4) that

|(p̃(x) − p̃(y)) log a0| ≤ C (8)

and
|(p̂(x) − p̃(y)) log h| ≤ C, x, y ∈ g(Q). (9)

Since 1
a0

, 1
a0+h

< 1
100

we have

arctan
1

a0

− arctan
1

a0 + h
= arctan′ ξ

(
1

a0

−
1

a0 + h

)
≍

h

a2
0

. (10)

Combining estimates (7), (8), (9), (10) we get (5).
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Case 3. Let a0 ≤ 100 and h ≤ 1
2
. Note that arctan(a0 + h) − arctan a0 =

h arctan′ ξ. By using (3), (7) we obtain (5). If a0 ≤ 100 and h > 1
2
, then

g(Q) ≥ C and (5) is obvious.

Let the origin be an interior point of Q. Denote by Q̃ the smallest cube
containing Q and centered at the origin. Denote Q̃i = Q̃ ∩ R

n
i i = 1, . . . , 2n,

where R
n
i are octants of R

n. We have g(Q) ≍ g(Q̃) and g(Q̃) = ∪2n

i=1g(Q̃i). Using

above method for g(Q̃i), i = 1, . . . , 2n we obtain (3.4) for Q. Analogously we
may consider remaining cases.

Let p(·) ∈ P(Rn). For any Q ∈ ℑ we define the space lQ,p(·) by

lQ,p(·) :=

{
t = {tQ}Q∈Q :

∑

Q∈Q

|tQ|
pQ < ∞

}
,

equipped with the Luxemburg’s norm, where 1
pQ

= 1
|Q|

∫
Q

1
p(x)

dx. Analogously

we define the space lQ,p′(·) where 1
p(t)

+ 1
p′(t)

= 1, t ∈ R
n.

Note that if p(·) ∈ P(Rn) then for simple functions we have uniformly lower
and upper l = {lQ,p(·)}Q∈ℑ estimates.

Theorem 3.5. Let p(·) ∈ P(Rn), then uniformly

∥∥∥∥
∑

Q∈Q

tQχQ

∥∥∥∥
p(·)

≍

∥∥∥∥
∑

Q∈Q

tQ‖χQ‖p(·)

∥∥∥∥
lQ,p(·)

(11)

and ∥∥∥∥
∑

Q∈Q

tQχQ

∥∥∥∥
p′(·)

≍

∥∥∥∥
∑

Q∈Q

tQ‖χQ‖p′(·)

∥∥∥∥
lQ,p′(·)

. (12)

Theorem 3.5 is another version of necessary part of Diening’s Theorem 4.2
in [6] (proof may be found in [17]). We will prove that conditions(11) and (12) in
general do not imply p(·) ∈ P(Rn). Our proof relies on the example constructed
by Lerner in [19].

Indeed, let E =
⋃

k≥1(e
k3

, ek3e1/k2

) and p0(x) =
∫∞

|x|
1

t log t
χE(t)dt. There exist

α > 1 and β0 ( 1
α

< β0 < 1) such that p0(·) + α ∈ P(R) and β0(p0(·) + α)
∈P(R) (see [19], Theorem 1.7). By Proposition 3.2 we have (Lp(·)(R), Lp(·)(R)) ∈
M(ℑ) where p(·) = p0(·) + α, and consequently there exists family l = {lQ}Q∈ℑ

of BSSs for which Lp(·)(R) satisfies uniformly lower and upper l-estimate. From
(11) we have lQ ∼= lQ,p(·) and consequently

‖f‖p(·) ≍

∥∥∥∥
∑

Q∈Q

‖fχQ‖p(·)

∥∥∥∥
lQ,p(·)

. (13)
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Note that for all 1 > β > 1
p−

∥∥∥f
1
β

∥∥∥
β

βp(·)
= ‖f‖p(·) (14)

and ∥∥{tQ}
∥∥

lQ,p(·) =
∥∥∥
{
|tQ|

1
β

}∥∥∥
β

lQ,βp(·)
. (15)

From (13), (14), (15) we have

‖g‖βp(·) ≍

∥∥∥∥
∑

Q∈Q

‖gχQ‖βp(·)

∥∥∥∥
lQ,βp(·)

for g ∈ Lβp(·)(R) and the space Lβp(·)(R) satisfies uniformly lower and upper
lβ-estimates where lβQ = lQ,βp(·).

Note that 1
(βp(·))Q

+ 1
((βp(·))′)Q

= 1 and (lQ,βp(·))′ = lQ,(βp(·))′ . Thus the space

(Lβp(·)(R))′ satisfies uniformly lower and upper (lβ)′-estimates where (lβ)′Q =
lQ,(βp(·))′ and (11), (12) are valid for any βp(·), (βp(·))′ where 1 > β > 1

p−
.

Consequently for exponent β0p(·) (11) and (12) are valid but, β0p(·) /∈ P(R).

4. Some applications

The result from Section 3 can be applied to study boundedness of some classical
operators of analysis in Lp(·) spaces.

In [6] L. Diening showed that p ∈ P(Rn) if and only if there exists C > 0
such that for any family of pairwise disjoint cubes π and any f ∈ Lp(·)(Rn),

∥∥∥∥
∑

Q∈π

(|fQ|)χQ

∥∥∥∥
p(·)

≤ C‖f‖p(·), (16)

where fQ = 1
|Q|

∫
Q

f.

We say that dx satisfies the condition Ap(·) (dx ∈ Ap(·)) if 1 < p− ≤ p+ < ∞
and there exists C > 0 such that for any cube Q and any f ∈ Lp(·)(Rn),

|f |Q‖χQ‖p(·) ≤ C‖fχQ‖p(·).

It is easy to see that dx ∈ Ap(·) if and only if supQ A(Q) < ∞, where A(Q) =
1
|Q|

‖χQ‖p(·)‖χQ‖p′(·) and p′(x) = p(x)
p(x)−1

. (Note that this condition could be con-
sidered as a full analogue of the classical Muckenhoupt Ap condition in the
context of variable Lebesgue spaces.)

It is natural to ask whether (16) can be replaced by dx ∈ Ap(·). In [15] was
proved that if p(·) is a constant outside some ball, then p(·) ∈ P(Rn) if and
only if dx ∈ Ap(·). A. Lerner proved in [19] the following
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Theorem 4.1. Let dx ∈ Ap(·), and let E ⊂ R
n be a measurable set of positive

measure. Then there exists a constant C > 0 depending on p(·), n and E such

that for any f ∈ Lp(·)(Rn),

‖(Mf)χE‖p(·) ≤ C‖fχE‖p(·).

Given a function p(·), we say that M is weak type (p(·), p(·)) if there exists
C > 0 such that for any f ∈ Lp(·)(Rn),

sup
α>0

α‖χ{x: Mf(x)>α}‖p(·) ≤ C‖f‖p(·).

It is easy to see that weak (p(·), p(·)) property of M implies dx ∈ Ap(·).
A. Lerner [19] proved following

Theorem 4.2. Let p(·) be a radially decreasing function with 1 < p− ≤ p+ < ∞.
Then M is of weak (p(·), p(·)) type if and only if dx ∈ Ap(·).

In [18] is proved following

Theorem 4.3. Let n ≥ 2. There exists a exponent p(·) such that:

1) dx ∈ Ap(·);

2) p(·) /∈ P(Rn);

3) operator M is not weak (p(·), p(·)) type;

4) dx /∈ Aαp(·) for any α where 1
p−

< α < 1;

5) dx /∈ Ap(·)−α for any α where 0 < α < p− − 1.

Note 4.4. Note that the following propositions are equivalent:

1) p(·) ∈ P(Rn), and

2) αp(·) ∈ P(Rn) for some 1
p−

< α < 1 (see [6]).

Note also that the example for p(·) /∈ P(Rn) and dx ∈ Ap(·) was given in [8].

The next theorem can be viewed as an analogue of Muckenhoupt’s charac-
terization of the weighted Lp

w boundedness of M in terms of the Ap condition.

Theorem 4.5. Let 1 < p− ≤ p+ < ∞ and (Lp(·)(Rn), Lp(·)(Rn)) ∈ M(ℑ). The

following assertions are equivalent:

1) M is weak type (p(·), p(·));

2) ‖Mf‖p(·) ≤ C‖f‖p(·);

3) dx ∈ Ap(·).

Proof. It is easy to see that 1)⇒ 3), 2)⇒ 3) and 2)⇒ 1). Let dx ∈ Ap(·). Using
Hölder’s inequality we get

1

|Q|

∫

Q

|f(x)|dx ≤ C
‖fχQ‖p(·)

‖χQ‖p(·)

.

Combining this with (1) we obtain (16).
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An important role in our results will play the following

Theorem 4.6 ([3]). Let a pair (X,Y ) of BFSs on R
n satisfies the property

G(ℑ). If the operator M is bounded from Xw into Xw, then Mϕ is bounded

from Xw into Yv if and only if

sup
Q

1

ϕ(|Q|)
‖vχQ‖Y

∥∥w−1χQ

∥∥
X′ < ∞. (17)

We are in a position to prove following result.

Theorem 4.7. Let p, q ∈ L(Rn), p− > 1 and q(t) ≤ p(t), t ∈ R
n. Then Mϕ is

bounded from Lp′(·)(Rn) into L
q′(·)
w (Rn) if and only if

sup
Q

1

ϕ(|Q|)
‖wχQ‖Lq′(·)‖χQ‖Lp(·) < ∞, (18)

where 1
p(t)

+ 1
p′(t)

= 1, 1
q(t)

+ 1
q′(t)

= 1, t ∈ R
n.

Proof. In first note that it is possible in Theorem 4.7 q′+ = ∞. The pair of BFSs
(Lq(t)(Rn), Lp(t)(Rn)) satisfies property M(ℑ) and consequently the pair of BFSs
(Lp′(·)(Rn), Lq′(·)(Rn)) satisfies the property M(ℑ). According to condition (17)

we have that Mϕ is bounded from Lp′(·)(Rn) into L
q′(·)
w (Rn) if and only if (18) is

fulfilled.
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