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A Characterization of Some Weighted
Norm Inequalities for Maximal Operators
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Abstract. It is found class of pairs of exponents (p(-), ¢(-)) such that for pairs
of Banach function spaces (LP()(R™), L90)(R™)) weak Minkowski’s inequality holds.
Also some conditions which ensure the boundednness of maximal operator M, :
Lp(')(R") — L?U(')(R”) are found, when for the pair of Banach function spaces
(LPO(R™), L2O)(R™)) holds weak Minkowski’s inequality.
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1. Introduction

Let p(-) : R™ + [1,+00) be a measurable function. Denote by LP()(R™) the
space of functions f such that for some A > 0

p(z)
/ @ dr < o0,
with norm »
p(x
1 llpe) = inf{A > 0;/ @ dr < 1}_

The Lebesgue spaces LP¢)(R") with variable exponent and the corresponding
variable Sobolev spaces W¥*P() are of interest for their applications to mod-
elling problems in physics, and to the study of variational integrals and partial
differential equations with non-standard growth condition (see [1,21]).

We suppose that the continuous increasing function ¢ : R, +— R, satisfies
the following condition:

(p(ztz) < Czw(tz), t; € R+, 90(0) = 0.
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The generalized maximal operator M, is defined on the space of locally
integrable functions on R™ by the formula

1
Mof(w) =sw o | 1ol
where the supremum is taken over all cubes ) containing x (|@| denotes the
Lebesgue measure of the set Q).
If ¢(t) =t, then M, is the Hardy-Littlewood maximal operator which will
be denoted by M. If o(t) = t!=», 0 < a < n, then M,, is the fractional maximal
operator which will be denoted by M,,.

Assume that p_ = essinf,cgnp(x) and p; = esssup,cpnp(x). Let P(R")
be the class of all functions p(-) (1 < p— < p; < oo) for which the Hardy-
Littlewood maximal operator M is bounded on LP()(R™). This class has been a
focus of intense study in recent years. We refer to the papers [5]-[20], where sev-
eral results on maximal, potential and singular operators in variable Lebesgue
spaces were obtained. Note that an explicit description in terms of Mucken-
houpt type condition of general weights for which the maximal operator M, is
bounded in the LP() space still remains an open problem.

A certain subclass of general weights was considered in [12], where for the
case of bounded domain 2 in the Euclidian space, the boundedness of the max-
imal operator M in the space LPO)(Q, p) was proved (under usual log-Hélder
condition). This subclass may be characterized as a class of radial type weights
which satisfy the Zygmund—Bari—Stechkin condition. Weight inequalities with
power-type weights for operator M in LP{") spaces have been established in [13].
Muckenhoupt-type condition governing the one-weight inequality for M in vari-
able exponent Lebesgue spaces was derived in [11]. Necessary and sufficient
condition on weight par (w, v) guaranteeing the boundedness of M, from LI
to LI (r is constant) were found in [9]. Note also that two-weight criteria for
M, : Lﬁ,(')(J) — Lf,(’)(J) (J is interval) were found in [14].

In this paper we give a necessary and sufficient condition on weight w
guaranteeing the boundedness of the maximal operator M, from LPO)(R™) to
LI (R™) provided that p(-),q(-) € L(R") (see definition bellow) and p(z) <
q(z), x € R" (Theorem 4.7).

Finally, C' will denote positive constant depending only on the dimension,
but whose value may change at each appearance.

2. Weak Minkovski’s inequality in Banach function spaces

Let (€2, ) be a complete o-finite measure space. By S we denote the collection
of all real-valued measurable function on 2. A Banach subspace F in §' is said
to be Banach function space (BFS) if:
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1) the norm ||f||g is defined for every measurable function f and f € E if

and only if ||f||g < oo, ||f|lz = 0 if and only if f =0 a.e;

) AHle = [If]le for all f € E;

3) i 0< f <gac, then | flls < lglle:

1) 0 < fu 1 aen then | fulls 1 1 flle:

5) if X is measurable subset of 2 such that pu(X) < co and xx is character-
istic function of X, then ||xx||z < oo;

2

6) for every rneasurable set X, u(X) < oo, there is a constant C'xy < oo such
that [, f(t)dt < Cx||flls.

Given a Banach function space E we can always consider its associate
space E’ consisting of those ¢ € S that f-g € L' for every f € E with
the norm ||g||g = sup{||f - gz : ||flle <1}. E'is a BFS on Q and a closed
norming subspace of conjugate space E*.

Let w be a weight (w(xz) > 0 a.e. on ). By E,, we denote BFS with norm
115, = Il flls.

Let & be some fixed family of sequences Q@ = {Q;} of disjoint measurable
subsets of €, u(Q;) > 0 such that = Ug,co@Q;i. We ignore the difference in
notation caused by a null set.

Everywhere below by lg we denote a Banach sequential space (BSS), mean-
ing that axioms 1) —6) are satisfied with respect to the count measure. Let {e;}
be standard unit vectors in lg.

Definition 2.1. Let | = {lg}ges be a family of BSSs. A BFS E is said to

satisfy a wuniformly upper (lower) l-estimate if there exists a constant C' > 0
such that for every f € E and Q € & we have

| (\ S el e

Q€9

Ifls < c‘ S ol

Q:€Q

< C||f||E> :

In case §2 = [0,400) Definition 2.1 was introduced in [16]. The notions of
uniformly upper (lower) [-estimates, when lg, = lg, for all Q;, Qs € & were in-
troduced by Berezhnoi (see [2]). Note that if the space F satisfies uniformly up-
per (lower) l-estimate, then the space E,, also satisfies uniformly upper (lower)
l-estimate for any weight w.

If BFS E simultaneously satisfies uniformly upper and lower [-estimates,
then for any f € F and Q € &

Z ||fXQz ol <
E

Hf”E < Cllflle- (1)

Qi€Q

Note also that if F satisfies upper (lower) | = {lg}ges estimates, then E’
satisfies lower (upper) ' = {l}oecs estimates (see [16, Theorem 2| for case
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2 = [0, +00), generalization for arbitrary {2 may be achieved in the similar way
and we omit its proof).

Let E = E, F' = F; be Banach function spaces on (€2, ). Under the spaces
with mixed norm E[F|, F[E] we mean the spaces consisting of all k(t,s) €
S(Q x Q, u x p) such that ||k(t, )|, € E and||k(-, s)||, € F with norms

el ey = [ 16 e g ellpz = || 1EC, )15 |-

It is known that F[F] and F[E] are Banach function spaces on © x Q.
In general case the spaces E[F] and F[E] are not isomorphic. According to
the theorem of Kolmogorov—Nagumo, if E[F| and F[E] are isomorphic, then E
and F' are isomorphic respectively to some Lf and L spaces 1 < p < oo or

both E, F are AM spaces (see [4]).

Definition 2.2. A pair of BFSs (E, F) is said to have the property M(S)
((E,F) € M(S)) if there exists a constant C' such that

<Ol Y ft)xa (g(s)xa.(s) e

F[E] Q;€Q

H S F(t)xe (D9(5)xa.(5)

1€Q

for any Q € & and every f € E, g € F.

Definition 2.2 was introduced in [16]. For any BFS F we have continuous em-
bedding L'[F] C F[L'] (generalized Minkowski’s inequality), and the property
M(J) may be interpreted as the weak Minkowski’s inequality for pair (E, F).
Note that a pair (£, F) of BFSs possesses the property M(S) if and only if there
exists family | = {lg}ges of BSSs for which the space F' has uniformly upper
l-estimate and the space E has uniformly lower [-estimate ([16,Theorem 2]).

Definition 2.3. A pair (F,F') of BFSs is said to have the property G(<)
((E,F) € G(9)) if there exists a constant C' such that

> fxells - lloxall, < ClIfl. - llgl,.
Qi€Q

for any sequence Q = {Q;}, Q € S and every f € F, g € I'.

In case Q2 = R™ Definition 2.3 was introduced by Berezhnoi (see [3]). Let
us remark that pair (L, L,) satisfies property G(S) if p < ¢. Conditions, when
the pair of BFSs (E, F') satisfies property G(&) in terms of ¢-concavity and
(-convexity (in this case g, = lg, for any Q;, Qs € ) can be found in [2].
Here (E, F) is a pair of symmetric spaces (Lebesgue, Lorentz, Marcinkewicz).
Note also that (E, F) € G(S) if and only if (£, F') € M(S) ([16,Theorem 2]).
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3. Weak Minkowski’s inequality in variable exponent
Lebesgue spaces

First we consider the cases 2 = [0, 1] and Q = R. By S we denote the family
of all sequences {Q;} of disjoint intervals from €.

Let £(]0,1]) denote the set of exponents p(-) : [0,1] — [1,400) with log-
Holder condition

|(p(2) = p(y))log |z —yl[ < C, 2,y [0,1], 2 #y. (2)

Proposition 3.1 ([16]). Let p(-), q(-) € £([0,1]) and p(z) < ¢(x), € [0,1].
Then the pair of BFSs (LPY([0,1]), L1)([0,1])) satisfies the property M(S1))-

By AC we denote the set of exponents p(-) : R — [1,+00) of the form
p(x) =p+ [ 1(u)du, where [ |I(u)|du < +o0.
Proposition 3.2. If p(-),q(-) € AC and p(z) < q(z), v € R, then (LPV)(R),
L(R)) € M(Sw).
Proof. Let p(z) = p+ [*_lLi(v)du and g(z) = g+ [ _lp(u)du. Let I(*) be a
positive function such that \ll( ), [la(z)| < I(x) on R and f_Jr;o u)du = a <

+00. Note that
/ [(z)dx| .

Let M(x L [* _l(u)du, and M(-) = (0,1) — R is the inverse function
p(:

1
of M. Deﬁnep()ﬂ() [ 1] = [1;+400) by p(-) = p(M~'(-)), a(-) = a(M~'(-)).
Define the weights

p(x2) = p(z1)l, lg(22) — q(z1)] <

Note that if y1,y2 € [0,1], then [p(y1) —P(y2)], [q(y1) —q(y2)] < alyr — v2l.
By Proposition 3.1 there exists family | = {lo}oes,,, of BSSs for which the

space LP0)([0,1]) satisfies uniformly lower [-estimate and the space L7)([0,1])
satisfies uniformly upper [-estimate. Consequently the space qu(l')([O, 1]) satisfies

uniformly lower [-estimate and the space LZ,(Q')([O; 1]) satisfies uniformly upper
l-estimate (here we are using the fact that for any BFS E and any weight we

have |[f|lz, = [lfwl|z)-
Let M(Sg) denote the family of all sequences M(Q) = {M(Q;)} where
Q = {Q;} € Sr. Note that M(Sgr) C Sjo1y. For Q € Qg let ZNQ = lg where
_I(Qg) = Q.
Note that the spaces LPO)(R) and L53([0, 1]), also the spaces L1O(R) and
L) ([0;1]) are isomorphic. Then, for the family I = {lo}oes, of BSSs, LP0) (R)

satisfies uniformly lower l-estimate and L10)(R) satisfies uniformly upper I-
estimate. Consequently (LPUO)(R), L9O(R)) € M(Sg). O
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Analogously we have
Proposition 3.3. Let for p(-), ¢(-) : R — [1
(0,1) of the form M(z) = [ I(t)dt, v € R, I
and q(M~1(")) satisfy (2). Then (LPO)(R), L¢

,+00) there exists M(-) : R —
(t) > 0 a.e., such that p(M~1(-))
'(R)) € M(\SR)

By L(R") we denote the set of exponents p(-) : — [1,400) with the
properties: 1 < p_ < p, < oo and p(-) satisfies the log Holder condition

C 1
p(x) —pW)| £ T~ forfz -yl <+ (3)

log (e + |miy|) 4
Ip(z) — poo| < —C for some py, € R (4)

co| X I SO 00 .
PRl = Togle + [al) g

Assume that 1 < p_ < p, < oo. In [7] L. Diening proved that if p(-)
satisfies the condition (3) and p(-) is a constant outside some compact set,
then p(-) € P(R™). The second condition on p(-), namely the behavior of p(-)
at infinity, was improved independently by D. Cruz—Uribe, A. Fiorenza and
C. Neugebauer [5], and A. Nekvinda [20]. It was shown in [5] that if p(-), satisfies
(3) and (4), then p(-) € P(R"). In [20] (4) is replaced by a slightly more general
integral condition.

By & we denote the family of all sequences {@;} of disjoint cubes from R".

Proposition 3.4. Ifp(-),q(-) € L(R") and p(x) <q(z),z € R", then (LPO(R"),
L1OR")) € M(S).

Proof. Let us consider the map ¢ : R” — )y in the following form:
g(x) =g(z1,...,2,) = (% arctan zq, .. ., % arctan xn) ,

where Qo = (—3, %)” By ¢(3) we denote the family of all sequences ¢g(Q) =

{9(Q;)} where Q@ = {Q;} € .

Let p(+) = p(g71(+)), () = q(g~'(*)). Note that there exist weights wl, Wo
on Qo such that the spaces LZZJ(I')(Q ) and LPU)(R™), also the spaces LY (QO)
and L) (R") are isomorphic.

We need to show that

|log [9(Q)[(P(x) — P(y))| < C ()
and
|log [9(Q)[(q(x) —g(y))| < C (6)
for all cubes @ C R" and z,y € g(Q).
Note that from (5), (6) it holds that the pair of BFSs (LP")(Qy), L1 (Qy))
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has property M(g(S)) and consequently the pair of BFSs (L1} (Qo), L?U(Q')(QO))
has property M(g(S)). The proof is exactly the same as Proposition 3.1 and
we can omit it. Thus it follows that the pair of BFSs (LPO)(R"), L10)(R™)) has
property M(S).

The proof of (5) and (6) are similar, so we will prove only (5). We start with
large cubes. Let Q be a cube with property |g(Q)| > 1. Then (5) is obvious.

Now, let @ = [a1,a1 + h] X - -+ X [ay, a, + h], where h > 0 and |g(Q)| < 5.
Firstly assume that a; > 0 for all 7. Denote ay = max; a;. It is clear that
1> L(arctan(a; + h) — arctana;) > X(arctan(ag + h) — arctanag) > 0 for all ¢
and consequently

|log g(Q)| < C|log (7' (arctan(ag + h) — arctan ag))|. (7)

For the proof of (5) we will consider three cases.
Case 1. Let ap > 100 and h € [k w) for some k£ € N. Note that for

a0’ ao
x> 0 arctanz + arctan% = 5 and

1 1 , 1 k
arctan — — arctan = arctan’ £ [ — — <C——5—~.
ao ag -+ h ay ap+h ao(ag + k)

From this we have

1
D = |log (—(arctan(ao + h) — arctan ao)) ‘
T

1 1
= |log | —(arctan — arctan —)
™ ap + ao

)

= [log ————
gao(ag—i—k)

Ifk > 2a(2), thenagﬁ =Cand D <logag. If 1 <k < Za?),thenﬁ < m <
%, and consequently D < log ag. From (4) and (7) we obtain (5).

Case 2. Let ag > 100 and h € (0, %) Then it follows by (3), (4) that

[(p(x) — p(y)) logag| < C (8)

and
|(p(x) —p(y))logh| < C,  x,y € g(Q). (9)

. 11 1
Since w0 arn < 100 We have

1
arctan — — arctan

1 1 1 h
= arctan’§ | — — = —. 10
” i h arc anf( ) (10)

agp ag + h
Combining estimates (7), (8), (9), (10) we get (5).
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Case 3. Let qp < 100 and h < % Note that arctan(ag + h) — arctanag =
harctan’ . By using (3), (7) we obtain (5). If ap < 100 and h > 3, then
g(Q) > C and (5) is obvious.

Let the origin be an interior point of (). Denote by~@ the smallest cube
containing () and centered at the origin. Denote ); = Q NR: =1,...,2",
where R are octants of R". We have g(Q) =< 9(Q) and g(Q) = U2”19<QZ) Using
above method for g(@i), i =1,...,2" we obtain (3.4) for (). Analogously we
may consider remaining cases. O

Let p(-) € P(R"). For any Q € & we define the space [270) by

1970 {t = {tolgen: Y ltol™ < 00},

QeQ
equipped with the Luxemburg’s norm, Where pL @l QI /. 0 p1 dzx. Analogously
we define the space 127'0) where () + ,() =1, teR™

Note that if p(-) € P(R™) then for simple functions we have uniformly lower
and upper [ = {1970} 5.4 estimates.

Theorem 3.5. Let p(-) € P(R"), then uniformly

> tQXQ = 1> tallxallye

QeQ QeQ

(11)

12.p(+)

(12)

Theorem 3.5 is another version of necessary part of Diening’s Theorem 4.2
in [6] (proof may be found in [17]). We will prove that conditions(11) and (12) in
general do not imply p(-) € P(R"). Our proof relies on the example constructed
by Lerner in [19].

Indeed, let E = J;5,(e*’, ekS@l/kQ) and po(z) = [ jz7Xe(t)dt. There exist

a>1and B (£ < f < 1) such that po(-) + @ € P(R) and SBy(po(-) + @)
€P(R) (see [19], Theorem 1.7). By Proposition 3.2 we have (L) (R), LP0)(R)) €
M(S) where p(-) = po(:) + «, and consequently there exists family | = {lg}geg
of BSSs for which LPU)(R) satisfies uniformly lower and upper [-estimate. From
(11) we have lg =2 [2P0) and consequently

Z HfXQHp()

QeQ

ZfQXQ =
()

QeQ

H S tallally

QeQ

Q,p'(+)

[fllp() = (13)

Q,p(+)
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Note that for all 1 > 3 > p%

1|18
i = . 14
1721, = 141y (14
and 5
[ttt = [{Fal? }| o, (15)
From (13), (14), (15) we have
ol = | 3 ool
Bp(-) Z Qllsp(-) -

QeQ

for g € LPPO)(R) and the space LP()(R) satisfies uniformly lower and upper
[P-estimates where lg = [200),

1 1 _ Q.6p()y — 12.Bp())
Note that 52 + @Gyg = | and ({<PPL)Y = [2PPL)" Thus the space

(LPPO(R))’ satisfies uniformly lower and upper (I°)-estimates where (lﬁ)’g =
120P0)" and (11), (12) are valid for any £p(-), (Bp(-))" where 1 > 3 >
Consequently for exponent Gyp(+) (11) and (12) are valid but, Gop(-) ¢ P(R

.

4. Some applications

The result from Section 3 can be applied to study boundedness of some classical
operators of analysis in LP() spaces.

In [6] L. Diening showed that p € P(R") if and only if there exists C' > 0
such that for any family of pairwise disjoint cubes 7 and any f € LPO)(R™),

| sebve

Qem

< O fllpeys (16)
p(°)

_ 1
where fo = @fQ f.

We say that dx satisfies the condition Ay (dz € Ay)) if 1 <p_ <p, < o0
and there exists C' > 0 such that for any cube @ and any f € LPO(R"),

| flellxellse) < Cllifxellp)-

It is easy to see that dz € A, if and only if supgy A(Q) < oo, where A(Q) =
Wa|’XQ||p(~)||XQ||p’(-) and p/(x) = p(paf)zzl. (Note that this condition could be con-
sidered as a full analogue of the classical Muckenhoupt A, condition in the
context of variable Lebesgue spaces.)

It is natural to ask whether (16) can be replaced by dz € A,. In [15] was
proved that if p(-) is a constant outside some ball, then p(-) € P(R") if and
only if dz € A,y. A. Lerner proved in [19] the following
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Theorem 4.1. Let dv € Ay, and let E C R" be a measurable set of positive

measure. Then there exists a constant C' > 0 depending on p(-),n and E such
that for any f € LPO)(R™),

1M F)xellpey < CllfXElbeo-

Given a function p(-), we say that M is weak type (p(-),p(+)) if there exists
C > 0 such that for any f € LPU)(R™),

Sli%a||X{:p:Mf(z)>a}Hp(-) < O fllpey-

It is easy to see that weak (p(-),p(-)) property of M implies dz € A,.).
A. Lerner [19] proved following

Theorem 4.2. Let p(-) be a radially decreasing function with 1 < p_ < p, < oo.
Then M is of weak (p(-),p(-)) type if and only if dx € Ap.

In [18] is proved following

Theorem 4.3. Let n > 2. There exists a exponent p(-) such that:
1) dr € Ap(.);
2) p(-) ¢ P(R");
3) operator M is not weak (p(-),p(+)) type;
4) dx ¢ Aap(y for any o where—<a<1

5) dx & Ap(y—a for any a where()<a<p_ 1.

Note 4.4. Note that the following propositions are equivalent:
1) p() € PR"), and
2) ap(-) € P(R™) for some p% < a <1 (see [6]).
Note also that the example for p(-) ¢ P(R") and dx € A,y was given in [8].

The next theorem can be viewed as an analogue of Muckenhoupt’s charac-
terization of the weighted L? boundedness of M in terms of the A, condition.

Theorem 4.5. Let 1 < p_ < p, < oo and (LPO(R™), LPO(R™)) € M(S). The
following assertions are equivalent:

1) M is weak type (p(-),p(+));

2) M fllpey < Cllflpey;
3) dx € Ap(.).

Proof. 1t is easy to see that 1)= 3), 2)= 3) and 2)= 1). Let dx € Ap,). Using
Holder’s inequality we get

||fXQ||p(
1al / F@ldr < O

Combining this with (1) we obtain (16). O
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An important role in our results will play the following

Theorem 4.6 ([3]). Let a pair (X,Y) of BFSs on R™ satisfies the property
G(S). If the operator M is bounded from X, into X, then M, is bounded
from X, into Y, if and only if

1
sup ———[[oxelly|[w ™ xq|| x < o0 (17)
o e(Qn" lxellx

We are in a position to prove following result.

Theorem 4.7. Let p,q € L(R"), p_ > 1 and q(t) < p(t), t € R*. Then M, is
bounded from LY ) (R™) into LZ}(')(R") if and only if

1
sup ——=[[wxell Lo Ixell o < o0, (18)

Q ¢(lQf)

1 1 1 n
wherem+m—1,q(t)+q,(t)—1,tER.

Proof. In first note that it is possible in Theorem 4.7 ¢/, = oo. The pair of BFSs
(LIO(R™), LP®(R™)) satisfies property M(J) and consequently the pair of BFSs
(LP"C)(R™), LY (R™)) satisfies the property M(S). According to condition (17)
we have that M, is bounded from LP')(R™) into LZ:(')(R”) if and only if (18) is
fulfilled. O
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