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Abstract. In this paper we investigate some topological properties of solution sets
of an implicit differential equation of fractional order in Banach spaces.
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1. Introduction

Assume that I = [0, a], E is a Banach space, B = {x ∈ E : ‖x − x0‖ ≤ b}
and g : I × B × E 7→ E is a continuous function which satisfies the following
conditions:

1o ‖g(t, x, z)−g(t, x, y)‖ ≤ φ(‖z−y‖), where φ is a continuous nondecreasing
function such that φ(0) = 0, φ(u) < u for u > 0;

2o there exists a constant M0 such that ‖g(t, x, z)‖ ≤ M0 + k‖z‖, where
k < 1.

In this paper we prove an existence theorem for the nonlinear implicit dif-
ferential equation of fractional order:

Dβx = g(t, x,Dβx), x(0) = x0, (1)

where 0 < β < 1 and Dβ denotes the fractional derivative of order β in the
Caputo sense (cf.[5]). More precisely, we prove that the set of solutions of (1)
is a compact Rδ, i.e., it is homeomorphic to the intersection of a decreasing
sequence of compact absolute retracts. Obviously, any Rδ set is nonempty and
connected.

Let us mention that differential equations of fractional order create an in-
teresting and important branch of the theory of differential equations. The
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theory of such differential equations is developed intensively in recent years. It
is caused both by the intensive development of the theory of fractional calculus
itself and by the applications of such constructions in various sciences such as
physics, mechanics, chemistry, engineering, etc. as valuable tools to the mod-
eling of many different phenomena. For details, see [10, 12–14] and references
therein.

In principle, we may reduce such an equation to an integral equation with
weak singularity and apply to it basic techniques of nonlinear analysis.

2. Results

We define a mapping g̃ by the following:

g̃(z)(t, x) = g(t, x, z(t, x)),

where z : I × B 7→ E is a continuous function from I × B into E, so z ∈
C(I × B,E) with the norm ‖z‖C = sup(t,x)∈I×B ‖z(t, x)‖.

Lemma. There exists a unique point v ∈ C such that v = g̃(v) and v =
limn7→∞ vn, where (vn) is the sequence of successive approximations, i.e., v0 = 0,

vn+1 = g̃(vn).

Proof. Choose any z, z̃ in C(I × B,E). Then by 1o we obtain

‖g̃(z) − g̃(z̃)‖C = sup
(t,x)∈I×B

‖g(t, x, z(t, x)) − g(t, x, z̃(t, x))‖

≤ sup
(t,x)∈I×B

φ(‖z(t, x) − z̃(t, x)‖)

≤ φ
(

sup
(t,x)∈I×B

‖z(t, x) − z̃(t, x)‖
)

= φ(‖z − z̃‖C).

Hence, by applying the well known Browder fixed point principle for nonlinear
contractions [4, Theorem 1], we deduce that g̃ has the unique fixed point v,
where v is the limit of successive approximations (vn).

Let α denote the Kuratowski measure of noncompactness in E (cf. [3, 9]).
Assume that

3o α(g(t,X × Y )) ≤ max(ω(α(X)), α(Y )) for t ∈ I, X ⊂ B and bounded
Y ⊂ E, where ω : IR+ 7→ IR+ is a continuous nondecreasing function such
that ω(0) = 0, ω(t) > 0 for t > 0 and

∫ δ

0

1

s

[

s

ω(s)

]
1

β

ds = ∞ (δ > 0, 0 < β < 1). (2)
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The main result of this paper is the following:

Theorem. If g satisfies the assumptions 1o−3o, then the set of solutions of (1)
defined on J is a compact Rδ.

Proof. According to the above lemma, there exists a function f(t, x) such that
f(t, x) = g(t, x, f(t, x)), i.e., f = g̃(f), and

f(t, x) = lim
n→∞

fn(t, x) uniformly in (t, x) ∈ I × B, (3)

where the sequence of functions fn : I × B 7→ E is defined by

f0(t, x) = 0 and fn+1(t, x) = g(t, x, fn(t, x)) (t ∈ I, x ∈ B, n ∈ N).

From 2o it follows that ‖f(t, x)‖ ≤ M , where M = M0

1−k
. Moreover, by 3o

we obtain
α(fn(t,X)) ≤ ω(α(X)) for X ⊂ B and t ∈ I. (4)

Next, in view of (3) we have

f(t,X) ⊂ fn(t,X) + K(0, ε) for X ⊂ B, t ∈ I,

and for sufficiently large n ∈ N , where K(0, ε) is the ball with center 0 and
radius ε. Hence by (4)

α(f(t,X)) ≤ α(fn(t,X)) + 2ε ≤ ω(α(X)) + 2ε for each X ⊂ B and t ∈ I.

Since the above inequality holds for any ε > 0, we get

α(f(t,X)) ≤ ω(α(X)) for X ⊂ B and t ∈ I. (5)

Next, we choose a positive number d such that d ≤ a and Md1−r

(1−r)Γ(1−r)
≤ b.

We introduce the following notation: J = [0, d]; C = C(J,E) the Banach space
of continuous functions J 7→ E with the supremum norm ‖ · ‖C ; B̃ = {x ∈ C :
‖x(t) − x0‖ ≤ b, t ∈ J}.

Let us remark that a continuous function u : J 7→ B is a solution of the
Cauchy problem

Dβx = f(t, x) (0 < β < 1), x(0) = x0, (6)

if and only if u is a solution of (1), where f(t, x) is given at the beginning of
this proof.

Notice that the problem (6) is equivalent to the integral equation

x(t) = x0 +
1

Γ(β)

∫ t

0

(t − s)β−1f(s, x(s))ds, (0 < β < 1). (7)
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Putting in (7) r = 1 − β we obtain

x(t) = x0 +
1

Γ(1 − r)

∫ t

0

f(s, x(s))

(t − s)r
ds.

We introduce an operator F defined by

F (x)(t) = x0 +
1

Γ(1 − r)

∫ t

0

f(s, x(s))

(t − s)r
ds for x ∈ B̃, t ∈ J.

Observe that F is an operator acting from B̃ into itself. Indeed, for x ∈ B̃ we
have

‖F (x)(t) − x0‖ =

∥

∥

∥

∥

1

Γ(1 − r)

∫ t

0

f(s, x(s))

(t − s)r
ds

∥

∥

∥

∥

≤
1

Γ(1 − r)
·
Md1−r

(1 − r)
≤ b.

Put f̄(t, x) = f(t, r(x)), where

r(x) =

{

x for x ∈ B

x0 + (x−x0)b
‖x−x0‖

for x /∈ B,

and define a mapping F̃ by

F̃ (x)(t) = x0 +
1

Γ(1 − r)

∫ t

0

f̄(s, x(s))

(t − s)r
ds (x ∈ C, t ∈ J).

Let us recall that ‖f̄(t, x)‖ ≤ M for t ∈ J , x ∈ E. In the same way as in [8] (cf.
also [1, 16]) we can prove that the set F̃ (C) is equiuniformly continuous and F̃
is a continuous mapping from C into itself.

Now we shall show that I − F̃ is a proper mapping , i.e., (I − F̃ )−1(Z)
is relatively compact for each relatively compact subset Z of C (I denotes the
identity map).

Let Z be a given relatively compact subset of C and let (un) be a sequence
in (I − F̃ )−1(Z). Put V = {un : n ∈ N}. Then the set (I − F̃ )(V ) ⊂ Z is
relatively compact. As V ⊂ (I − F̃ )(V ) + F̃ (V ), the set V is equicontinuous
and the function t 7→ v(t) = α(V (t)) is continuous on J . From the inclusion
r(X) ⊂ x0 +

⋃

0≤λ≤1 λ(X − x0) it follows that

α(r(X)) ≤ α

(

⋃

0≤λ≤1

λ(X − x0)

)

≤ α(X − x0) = α(X).
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Since V (t) ⊂ (I − F̃ )(V )(t) + F̃ (V )(t), by (5), Heinz’s lemma [7] and the
corresponding properties of α we obtain

α(V (t)) ≤ α((I − F̃ )(V )(t)) + α(F̃ (V )(t))

= α(F̃ (V )(t))

= α

(

1

Γ(1 − r)

∫ t

0

f̄(s, x(s))

(t − s)r
ds : x ∈ V

)

≤
2

Γ(1 − r)

∫ t

0

1

(t − s)r
α
(

f̄(s, V (s))
)

ds

≤
2

Γ(1 − r)

∫ t

0

1

(t − s)r
ω
(

α(V (s))
)

ds,

i.e.,

v(t) ≤
2

Γ(1 − r)

∫ t

0

1

(t − s)r
ω(v(s))ds for t ∈ J.

Moreover, ω satisfies (2). Applying the Mydlarczyk–Gripenberg theorem [11]
with α = 1 − r and theorem on integral inequalities [2, Theorem 2], from this
we deduce that v(t) = 0 for t ∈ J . Thus α(V (t)) = 0 for t ∈ J . Therefore
for each t ∈ J the set V (t) is relatively compact in E, and by Ascoli’s theorem
the set V is relatively compact in C. Hence we can find a subsequence (unk

)
of (un) which converges in C. Consequently, the set (I − F̃ )−1(Z) is relatively
compact.

Notice that if x = F̃ (x), then x ∈ B̃. Indeed,

‖x(t) − x0‖ = ‖F̃ (x)(t) − x0‖

=

∥

∥

∥

∥

1

Γ(1 − r)

∫ t

0

f̄(s, x(s))

(t − s)r
ds

∥

∥

∥

∥

≤
1

Γ(1 − r)

∫ t

0

‖f̄(s, x(s))‖

(t − s)r
ds

≤
1

Γ(1 − r)
M

d1−r

1 − r

≤ b.

Thus x(t)∈B, so that x∈B̃. Applying nowVidossich’s theorem [17, Theorem 1.1]
(see also [15, Theorem 5]) we conclude that the set of all solutions of (1) on J
is a compact Rδ.

Example. As an important example, which illustrate the assumptions related
to (6), we consider the function ω(ξ) = ξ| ln ξ|β for 0 < ξ ≤ e−β, 0 < β < 1,
and ω(0) = 0. It can be easily verified that ω is continuous, nondecreasing and

|ω(ξ) − ω(η)| ≤ ω(|ξ − η|) for 0 ≤ ξ, η ≤ e−β. (8)
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Moreover,
∫

0+

1

s

[

s

ω(s)

]
1

β

=

∫

0+

ds

s| ln s|
= ∞.

Let E = C(0, 1) and B = {x ∈ E :‖ x ‖≤ 1
2
e−β}. We define a function

f1 : B 7→ E by

f1(x)(τ) = ω(|x(τ)|) for τ ∈ [0, 1] and x ∈ B.

By (8) we get ‖ f1(x) − f1(y) ‖≤ ω(‖ x − y ‖) for x, y ∈ B. From this we
deduce that for a given completely continuous function f2 : B 7→ E the function
f = f1 + f2 satisfies the inequality α (f(X)) ≤ ω(α(X)) for X ⊂ B. Therefore,
our equation has the form

Dβx = f(x), 0 < β < 1.
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