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Abstract. We consider the unique positive solution to the equation ∆u = ur in Ω,
where r > 1 and Ω is a smooth bounded domain of R

N , under one of the boundary
conditions u = λ, ∂u

∂ν
= λ, ∂u

∂ν
= λu or ∂u

∂ν
= λu − uq on ∂Ω, q > 1. The main

interest is determining the exact layer behavior of this solution near ∂Ω in terms of
the parameter λ as λ → ∞. Our analysis is completed with the study of the same
type of problems involving the p-Laplacian operator.
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1. Introduction

In this paper we are interested in determining the exact asymptotic behav-
ior near the boundary of the unique positive solution to some reaction diffu-
sion equations posed in smooth bounded domains Ω of R

N , whose prototype is
∆u = ur for r > 1, and subject to a broad class of boundary conditions whose
characteristic feature is the presence of a control parameter λ. Our analysis
covers Dirichlet, Neumann and Robin conditions. In addition, a nonlinear flux
condition with a logistic type growth is also studied.
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To illustrate the issues we are interested in, consider first the Dirichlet
problem

{

∆u = ur in Ω

u = λ on ∂Ω.
(1.1)

It is well known that problem (1.1) has a unique positive solution for every
λ > 0, which will be denoted by uλ. It follows by uniqueness that uλ is increasing
in λ. On one hand, it is clear that uλ|∂Ω → ∞ as λ → ∞, while on the other
hand uλ stays bounded in the interior of Ω by the unique positive solution U
to the boundary blow-up problem

{

∆u = ur in Ω

u = ∞ on ∂Ω,
(1.2)

(cf. [1, 2, 10]). We have indeed that uλ → U uniformly on compact sets of Ω
together with its derivatives up to the second order. It is further known that
the solution U behaves like Ad(x)−α near ∂Ω, where d(x) := dist(x, ∂Ω), and
α = 2

r−1
, A = (α(α + 1))

1
r−1 . So the following question arises: how does this

singularity develop near ∂Ω as λ→ ∞? More precisely: which is the boundary
layer behavior of uλ on ∂Ω as λ becomes larger and larger?

It can be seen by comparison of uλ with suitable sub and supersolutions of
the form K(φ + C/λ

1
α )−α, K, C positive constants and φ the unique solution

to −∆φ = 1 in Ω subject to φ = 0 on ∂Ω, that there exist positive constants
K1, K2 such that

K1

(

d(x) +
1

λ
1
α

)−α

≤ uλ(x) ≤ K2

(

d(x) +
1

λ
1
α

)−α

in Ω for all λ ≥ 1 (say). In fact and due to Hopf’s principle, φ has been replaced
by the distance function d(x). This suggests that the behavior of the solution at

a (moving) point x should depend on whether d(x) is of the order of λ−
1
α or not.

Thus, this could be considered as a “critical scale”, and it could be expected that
if we approach the boundary at a larger scale, only the information furnished
by the equation is relevant, while if we move with λ at a smaller scale then only
the boundary condition matters.

This is actually the situation, as our first result shows. Moreover, if the
boundary is approached at the exact “boundary layer” scale ρ0λ

− 1
α , then the

asymptotic profile is affected by the coefficient ρ0.

As customary, we will use the following notations: for f(λ) and g(λ) defined

and positive in (a,∞) for large a, f ≫ g is a shorthand for limλ→∞
f(λ)
g(λ)

= ∞.

Similarly, f ∼ g means that limλ→∞
f(λ)
g(λ)

= l for a certain positive and finite l.
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Theorem 1.1 (Dirichlet Conditions). Let α = 2
r−1

and A = (α(α+1))
1

r−1 . Let

uλ be the unique solution to (1.1) for λ > 0. Then for every ε > 0 there exist

λ0 > 0, δ > 0, M > 0 such that

(A−ε)
(

d(x)+A
1
αλ−

1
α

)−α

−M ≤ uλ(x) ≤ (A+ε)
(

d(x)+A
1
αλ−

1
α

)−α

+M (1.3)

if d(x) ≤ δ and λ ≥ λ0. In particular:

– If ρ(λ) > 0 and ρ(λ) → ∞ as λ→ ∞, then d(x)αuλ(x) → A as d(x) → 0,

λ→ ∞, uniformly in d(x) ≥ ρ(λ)λ−
1
α .

– If ρ(λ) > 0 and ρ(λ) → 0 as λ→ ∞, then
uλ(x)
λ

→ 1 as λ→ ∞, uniformly

in d(x) ≤ ρ(λ)λ−
1
α .

– If ρ0 > 0 and d(x)λ
1
α → ρ0, then d(x)αuλ(x) → A(1 + A

1
αρ−1

0 )−α as

λ→ ∞.

Similar considerations can be made for the same equation under Neumann
boundary conditions, that is, for the problem







∆z = zr in Ω

∂z

∂ν
= λ on ∂Ω.

(1.4)

We have the following result:

Theorem 1.2 (Neumann Conditions). Let α = 2
r−1

and A = (α(α + 1))
1

r−1 .

Consider the unique positive solution zλ to (1.4) which exists for every λ > 0.
Then, for every ε > 0 there are positive values λ0, δ and M such that for λ ≥ λ0,

the solution zλ is estimated in the region 0 < d(x) < δ as follows:

(A− ε)
(

d(x) + (αA)
1

α+1λ−
1

α+1

)−α

−M

≤ zλ(x) ≤ (A+ ε)
(

d(x) + (αA)
1

α+1λ−
1

α+1

)−α

+M.
(1.5)

Therefore,

– limλ→∞ d(x)αzλ=A provided that δ≫d(x)≫λ−
1

α+1 uniformly as λ→∞,

– limλ→∞ λ−
α

α+1 zλ =
(

A
αα

)
α

α+1 provided d(x) ≪ λ−
1

α+1 as λ→ ∞,

– and finally, limλ→∞ d(x)αzλ(x) → A(1 + (αA)
1

α+1ρ−1
0 )−α as λ → ∞ if

d(x) ∼ ρ0λ
− 1

α+1 as λ→ ∞.

The results in Theorems 1.1 and 1.2 concerning problems (1.1) and (1.4)
are proved by comparing uλ and zλ with suitable sub- and supersolutions in
terms of d(x) near the boundary, a technique which is usual when dealing with
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boundary blow-up problems like (1.2) (see for example [2] or [5]). With similar
computations, we are also able to analyze the Robin type problem







∆v = vr in Ω

∂v

∂ν
= λv on ∂Ω

(1.6)

which was considered in [6] for r > 1 (also in [7] for 0 < r < 1). It was shown
there that the positive solution vλ is unique and later proved in [9, Theorem 7]
that there exist positive constants K1, K2 such that

K1

(

d(x) +
1

λ

)−α

≤ vλ(x) ≤ K2

(

d(x) +
1

λ

)−α

(1.7)

in Ω if λ ≥ 1. Thus similar results as for problems (1.1) and (1.4) may be
expected, with a different “critical scale” of order λ−1.

Theorem 1.3 (Robin Conditions). Let vλ be the unique solution to (1.6) for

λ > 0. Then for every ε > 0 there exist λ0 > 0, δ > 0, M > 0 such that

(A−ε)

(

d(x) +
α+ ε

λ

)−α

−M ≤ vλ(x) ≤ (A+ε)

(

d(x) +
α− ε

λ

)−α

+M (1.8)

if d(x) ≤ δ, λ ≥ λ0. In particular:

– If ρ(λ) > 0 and ρ(λ) → ∞ as λ→ ∞, then d(x)αvλ(x) → A as d(x) → 0,
λ→ ∞, uniformly in d(x) ≥ ρ(λ)λ−1.

– If ρ(λ) > 0 and ρ(λ) → 0 as λ → ∞, then
vλ(x)
λα → Aα−α as λ → ∞,

uniformly in d(x) ≤ ρ(λ)λ−1.

– If ρ0 > 0 and d(x)λ→ ρ0, then d(x)αvλ(x) → A(1 + αρ−1
0 )−α as λ→ ∞.

Finally, we further consider the following perturbation of problem (1.6),







∆w = wr in Ω

∂w

∂ν
= λw − wq on ∂Ω,

(1.9)

where q > 1. Such problem can be regarded as the competition between two
reactions of orders r and q respectively. The former is volumetric and takes
place in the whole of Ω while the latter, which is represented by the term −wq,
is a surface reaction on ∂Ω. Such processes are coupled with diffusion in Ω
while in addition the reaction on ∂Ω is coupled to a source linear term with flux
intensity λ. In other words, a logistic type flux regulates w on ∂Ω.

The question now is whether the presence of the surface sink term wq may
change the behavior of solutions as λ → ∞ with respect to that given by
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Theorem 1.3. Indeed, observe that this problem has a unique positive solution
for all λ > 0, as a consequence of [8, Theorem 1]. It will be denoted by wλ.
A self-contained proof of this fact and additional features of wλ are delayed to
Section 2 (see the proof of Theorem 1.4 and Section 3 for the study of the same
questions in a more general context).

We find that two regimes are possible, depending on which of the two re-
action mechanisms dominates the consumption of u. Such a dominance is ex-
pressed in terms of the orders r, q of the reactions. When q is no too big with
respect to r, that is, q ≤ r+1

2
, the asymptotic behavior essentially coincides

with that of problem (1.6). Indeed, the critical scale is the same, although the
constants in the profile change in the borderline case q = r+1

2
. Under q ≤ r+1

2
,

the volumetric reaction −wr prevails over the surface reaction −wq.

On the contrary, when q > r+1
2

, solutions undergo a qualitative change in
their behavior and are affected by the presence of the q power. This is just
the case where surface reaction is the leading degradation process. As a first
approximation, it can be shown that

K1

(

d(x) +
1

λ

)− 1
q−1

≤ wλ(x) ≤ λ
1

q−1 (1.10)

in Ω for a positive constant K1 and λ ≥ 1. The leftmost inequality in (1.10)
follows by constructing a subsolution while the rightmost is a consequence of
Hopf’s boundary lemma. These inequalities say in particular that wλ is compa-

rable on ∂Ω with λ
1

q−1 , and therefore wλ is comparable in Ω, via the maximum

principle, with u
λ

1
q−1

(the solution to (1.1) with λ replaced by λ
1

q−1 ). Hence

from (1.7) we arrive at

K1

(

d(x) +
1

λτ

)−α

≤ vλ(x) ≤ K2

(

d(x) +
1

λτ

)−α

in Ω for λ ≥ 1, where τ = r−1
2(q−1)

. This shows that the critical scale is modified

and becomes of the order of λ−τ as λ → ∞. Hence, we obtain a similar result
to those in Theorems 1.1, 1.2 and 1.3.

Theorem 1.4. Let wλ be the unique solution to (1.9) for λ > 0.

A) Assume q ≤ r+1
2

. Then for every ε > 0 there exist λ0 > 0, δ > 0, M > 0
such that

(A− ε)
(

d(x) + γ−ε λ
− 1

α

)−α

−M

≤ wλ(x) ≤ (A+ ε)
(

d(x) + γ+
ε λ

− 1
α

)−α

+M
(1.11)

if d(x) ≤ δ, λ ≥ λ0, where γ±ε = α∓ε if q < r+1
2

and γ±ε = α+Aq−1 when

q = r+1
2

. Setting γ = γ±ε |ε=0, the following properties hold:
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– If ρ(λ) > 0 and ρ(λ) → ∞ as λ → ∞, then d(x)αwλ(x) → A as

d(x) → 0, λ→ ∞, uniformly in d(x) ≥ ρ(λ)λ−1.

– If ρ(λ) > 0 and ρ(λ) → 0 as λ→ ∞, then
wλ(x)
λα → Aγ−α as λ→ ∞,

uniformly in d(x) ≤ ρ(λ)λ−1.

– If ρ0 > 0 and d(x)λ → ρ0, then d(x)αwλ(x) → A(1 + γρ−1
0 )−α as

λ→ ∞.

B) Suppose, on the contrary, q > r+1
2

. Then the solution wλ verifies

(A− ε)
(

d(x) + A
1
αλ−τ

)−α

−M

≤ wλ(x) ≤ (A+ ε)
(

d(x) + A
1
αλ−τ

)−α

+M
(1.12)

if d(x) ≤ δ, λ ≥ λ0. Hence:

– If ρ(λ) > 0 and ρ(λ) → ∞ as λ → ∞, then d(x)αwλ(x) → A as

d(x) → 0, λ→ ∞, uniformly in d(x) ≥ ρ(λ)λ−τ .

– If ρ(λ) > 0 and ρ(λ) → 0 as λ → ∞, then
wλ(x)

λ
1

q−1
→ 1 as λ → ∞,

uniformly in d(x) ≤ ρ(λ)λ−τ .

– If ρ0 > 0 and d(x)λτ → ρ0, then d(x)αwλ(x) → A(1 + A
1
αρ−1

0 )−α as

λ→ ∞.

Finally, we also consider briefly the nonlinear diffusion version of the prob-
lems which have been studied before, namely

{

∆pu = ur x ∈ Ω

Bp(u, λ) = 0 x ∈ ∂Ω,
(1.13)

where ∆p stands for the p-Laplacian, which is weakly defined in W 1,p(Ω) as
∆pu = div(|∇u|p−2∇u), p > 1, r > p − 1 and Bp(u, λ) stands for the natural
generalization of each of the previous boundary conditions. See Section 3 for
the statement of the corresponding results.

The rest of the paper is organized as follows: in Section 2 we prove Theo-
rems 1.1, 1.2, 1.3 and 1.4, while the analysis of the nonlinear diffusion problem
(1.13) is developed in Section 3.

2. Linear diffusion

In this section we prove Theorems 1.1, 1.2, 1.3 and 1.4. In all cases we look
at the unique solution u to the problem under consideration, i.e., (1.1), (1.4),
(1.6) and (1.9), respectively, as the unique solution ψ to an auxiliary problem
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near the boundary. Namely,










∆ψ = ψr 0 < d(x) < δ

ψ = u d(x) = δ

B(ψ, λ) = 0 x ∈ ∂Ω,

(2.1)

for δ > 0 small, where B = B(ψ, λ) stands for the corresponding boundary
operator in each case, i. e. B(ψ, λ) = ψ−λ, B(ψ, λ) = ∂ψ

∂ν
−λ, B(ψ, λ) = ∂ψ

∂ν
−λψ

and B(ψ, λ) = ∂ψ

∂ν
−λψ+ψq, respectively. Then, we are looking for appropriate

sub- and supersolutions to (2.1) to obtain the desired estimates.

Proof of Theorem 1.1. We begin with the Dirichlet problem (1.1) which, as al-
ready mentioned, has a unique solution uλ for every λ > 0 which is increasing
in λ and stays finite in Ω as λ → ∞ ( [1, 5]). Recall in addition that since Ω
is C2, there exists δ0 > 0 such that d is C2 in d(x) < δ0, with |∇d| = 1 there.
To find a suitable supersolution choose ε > 0 and let

u(x) = (A+ ε)
(

d(x) + A
1
αλ−

1
α

)−α

+M

for M > 0. We claim that u is a supersolution to (1.1) if d < δ and λ ≥ λ0,
where δ < δ0 is small and λ0 is large (both depending on ε). This will hold
provided

α(α + 1)(A+ ε)
(

d(x) + A
1
αλ−

1
α

)−α−2

− α(A+ ε)
(

d(x) + A
1
αλ−

1
α

)−α−1

∆d

≤

(

(A+ ε)
(

d(x) + A
1
αλ−

1
α

)−α

+M

)r

in d(x) < δ. In particular, it is enough to have

α(α + 1) − α
(

d(x) + A
1
αλ−

1
α

)

∆d ≤ (A+ ε)r−1

in d(x) < δ, which is always possible if λ is large enough and δ small enough,
since α(α + 1) = Ar−1. On the other hand, notice that u = λ on ∂Ω. Since M
can be selected so that M ≥ uλ on d(x) = δ for large λ (recall that uλ stays
finite on d = δ as λ→ ∞), we obtain by comparison that uλ ≤ u in d(x) < δ.

It is analogously shown that u = (A − ε)
(

d(x) + A
1
αλ−

1
α

)−α
− M is a

subsolution in d(x) < δ with u = λ on ∂Ω and u ≤ uλ on d(x) = δ if M is
chosen appropriately. Thus u ≤ uλ in d(x) < δ and (1.3) is proved.

To conclude the proof, notice that if x ∈ Ω (depending on λ) is such that

d(x) → 0 and d(x)λ
1
α → ∞ as λ → ∞ then according to (1.3) we have, for

every ε > 0,

d(x)αuλ(x) ≤ (A+ ε)

(

1 + A
1
α

(

d(x)λ
1
α

)−1
)−α

+Md(x)α
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and thus lim sup d(x)αuλ(x) ≤ A. The lower inequality follows similarly, as well
as the remaining assertions of the theorem.

Proof of Theorem 1.2. Let us consider now problem (1.4). Its main features
are next described for the sake of completeness (see also Section 3). First,
(1.4) can only admit a unique positive solution for λ > 0. To get existence, a
supersolution (whose structure is suitable for our purposes here) is provided by

z̄ = B(φ+ µ)−α,

with α = 2
r−1

, µ =
(

− α{min∂Ω
∂φ

∂ν
}B
λ

)
1

α+1 and φ(x) the function introduced in

Section 1, and where B+ = (φmax + αµ)
1

r−1 and φmax = maxΩ{α(α+ 1)|∇φ|2 +
αφ}. A subsolution is similarly found in the form

z = B(φ+ µ)−α,

where now µ =
(

− α{max∂Ω
∂φ

∂ν
}B
λ

)
1

α+1 and B− = (φmin + αµ)
1

r−1 , with φmin =
minΩ{α(α + 1)|∇φ|2 + αφ}.

Since θz is, for small 0 < θ < 1, a subsolution smaller than z̄ we find a
unique solution zλ satisfying θz ≤ zλ ≤ z̄. The same reasoning allows us to
show that the solution zλ satisfies z ≤ zλ ≤ z̄ for all λ > 0 (notice that both z,
z̄ depend on λ).

On the other hand observe that B± → ∞ as λ→ 0 while B± → B±(∞) as
λ→ ∞, where B±(∞) are the values obtained by solving the equations for B±

when setting µ = 0. Two conclusions can be obtained from this fact. The first
one is that zλ bifurcates from zero as λ → 0 while the second one is that zλ,
which is increasing in λ, keeps finite in Ω as λ→ ∞, with limit z∞ = limλ→∞ zλ
satisfying

B−(∞)

φα
≤ z∞ ≤

B+(∞)

φα
,

in Ω. Furthermore, by standard Lp estimates and bootstrapping it follows that
z∞ coincides with U , the solution to the blow-up problem (1.2).

We can now proceed to prove estimate (1.5). By arguing as before one finds
that for every ε > 0 there exist positive M and δ such that

z̄λ := (A+ ε)
(

d+ (αA)
1

α+1λ−
1

α+1

)−α

+M,

defines a subsolution to problem (2.1) while

zλ := (A− ε)
(

d+ (αA)
1

α+1λ−
1

α+1

)−α

−M,
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constitutes a comparable subsolution. Therefore, the solution to (1.4) satisfies

(A− ε)
(

d+ (αA)
1

α+1λ−
1

α+1

)−α

−M ≤ zλ ≤ (A+ ε)
(

d+ (αA)
1

α+1λ−
1

α+1

)−α

+M

in 0 < d(x) < δ. From this inequality, which is just (1.5), the remaining
assertions follow.

Proof of Theorem 1.3. First recall that the features on existence, uniqueness
and increasing character of a positive solution vλ to (1.6), together with its
finiteness as λ → ∞ are contained in [6]. Next, for small ε > 0 we look for a
supersolution to (2.1) of the form:

v̄ = (A+ ε)(d+ µ)α +M,

with a small δ > 0 and having in mind that µ → 0 as λ → ∞. Setting
η = (A + ε)r−1 − Ar−1, δ is chosen so that sup0<d<δ α|∆d| <

η

2
. This gives a

supersolution to the equation provided that

sup
0<d<δ

µ|∆d| <
η

2
. (2.2)

Regarding the boundary condition one needs

αµ−1 ≥ λ

(

1 +
M

A+ ε
µα

)

(2.3)

for a small µ, where M is considered a parameter. Then we set µ = α−ε
λ

and
(2.3) holds for large λ (depending on ε and M). Now, M is chosen such that

vλ ≤ (A+ ε)

(

d+
α− ε

λ

)

+M

on d(x) = δ for λ greater than a certain amount. Finally, its size is also chosen
so that (2.2) is satisfied. In this way the construction of the supersolution v̄ is
accomplished and we have vλ ≤ v̄.

The subsolution is given by v = (A− ε)(d(x) + α+ε
λ

)−α −M , and a similar
argument gives (1.8). The remaining assertions of the theorem easily follow.

Proof of Theorem 1.4. We are postponing the detailed discussion of the features
of problem (1.9) to the end of the proof. So, let us begin with the case q < r+1

2

whose analysis follows the general lines of Theorem 1.3. We seek a supersolution
to (2.1) in the form

w = (A+ ε) (d(x) + µ)−α +M,
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for δ > 0 small. Then the computations run as in Theorem 1.3 but, in order to
adjust the boundary condition, equation (2.3) reads now

αµ−α−1 + (A+ ε)q−1µ−αq ≥ λµ−α

(

1 +
M

A+ ε
µα

)

, (2.4)

where µ is going to vanish as λ → ∞. Now α + 1 > αq if q < r+1
2

thus (2.4) is
better expressed as

(

α+ (A+ ε)q−1µα+1−αq
)

µ−1 ≥ λ

(

1 +
M

A+ ε
µα

)

, (2.5)

and choosing µ = α−ε
λ

then (2.5) holds if λ is large (depending on ε and M).
The remaining details leading to estimate (1.11) –particularly the production
of a corresponding subsolution to (2.1)– coincide with those in Theorem 1.3.

In the case q = r+1
2

, both the supersolution and the subsolution need to be
slightly modified. In fact, (2.5) becomes

(

α+ (A+ ε)q−1
)

µ−1 ≥ λ

(

1 +
M

A+ ε
µα

)

,

and the suitable supersolution is given by

w = (A+ ε)

(

d(x) +
α+ Aq−1

λ

)−α

+M,

being the corresponding subsolution accordingly corrected. We leave the details
to the reader.

Hence it only remains to consider the case q > r+1
2

. In this range αq > α+1
and (2.4) should be better written as

(

(A+ ε)q−1 + αµαq−α−1
)

µ−αq ≥ λµ−α

(

1 +
M

A+ ε
µα

)

. (2.6)

Thus (2.6) is satisfied for λ large provided that µ =
(

Aq−1

λ

)
1

α(q−1) = A
1
α

λτ , with
τ = r−1

2(q−1)
. By repeating the steps in Theorem 1.3 we conclude that

w = (A+ ε)

(

d(x) +
A

1
α

λτ

)−α

+M

defines a supersolution to (2.1) for a suitable choice of M (which depends on
that of ε). Similarly, a comparable subsolution is provided by

w = (A− ε)

(

d(x) +
A

1
α

λτ

)−α

+M
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and the proof of estimate (1.12) in part B) is completed.

To finish the proof, let us include a self contained account on problem (1.9)
(see also Section 3). We are only borrowing from [8] the uniqueness of a positive
solution. To get existence observe that the solution vλ to (1.6) provide us with
a supersolution. A subsolution is produced by using once again the ansatz

w = B(φ+ µ)−α.

To get ∆w ≥ wr in Ω it suffices with

Br−1 − αµ ≤ φmin, (2.7)

where φmin = minΩ{α(α + 1)|∇φ|2 + αφ}. The corresponding inequality with
the boundary condition is achieved if

λ ≥
α

(

−∂φ

∂ν

)

max
+Bq−1µ1−α(q−1)

µ
(2.8)

when q ≤ r+1
2

or

λ ≥
Bq−1 + α

(

−∂φ

∂ν

)

max
µα(q−1)−1

µα(q−1)
(2.9)

for q > r+1
2

. The subsolution w is obtained in the case q ≤ r+1
2

by taking

equalities in both (2.7) and (2.8), setting µ = Bq−1−φmin

α
and substituting in

(2.8) to get a decreasing smooth function B = B(λ) such that B → ∞ as
λ→ 0 while B → B(∞) := φr−1

min as λ→ ∞. Thus, such subsolution w satisfies
limλ→0w = 0, uniformly in Ω while w → B(∞)φ−α uniformly on compacts of Ω
as λ→ ∞. A subsolution w with entirely the same properties is also constructed
in this way when q > r+1

2
. Finally and using the uniqueness together with the

fact that θw and Mvλ define a sub and a supersolution provided 0 < θ ≤ 1 and
M ≥ 1, respectively, we find a solution wλ to (1.9) satisfying w ≤ wλ ≤ vλ.
This gives both the bifurcation of wλ from zero at λ = 0 and its finiteness as
λ→ ∞. The increasing, and indeed, continuous character of wλ with respect λ
is a consequence of the fact that wλ1 defines a supersolution to (1.9) if λ1 ≥ λ.
Finally, and just as in the previous problems limλ→∞wλ = U in C2(Ω) where
U is the solution to (1.2).

3. Nonlinear diffusion

In the present section we are extending the previous results to the framework
of nonlinear diffusion. Specifically, we are dealing with the class of problems
(1.13)

{

∆pu = ur x ∈ Ω

Bp(u, λ) = 0 x ∈ ∂Ω,
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where ∆p , p > 1, stands for the p-Laplacian operator. It will be assumed that
r > p − 1 while the boundary conditions cover the natural extensions of all of
those considered in the previous sections. Namely,

Bp(u, λ) = u− λ (Dirichlet)

Bp(u, λ) = |∇u|p−2∂u

∂ν
− λ (Neumann)

Bp(u, λ) = |∇u|p−2∂u

∂ν
− λup−1 (Robin-type)

and the nonlinear flux condition under logistic growth

Bp(u, λ) = |∇u|p−2∂u

∂ν
− λup−1 + uq

with q > p − 1. In all cases, λ will be considered as a positive parameter. We
are labeling the problem (1.13) under those boundary conditions as (D), (N),
(R) and (L) respectively.

That problem (1.13) admits, when subject to Dirichlet conditions, a unique
weak positive solution uλ ∈ W 1,p(Ω) ∩ L∞(Ω) which increases with λ ∈ (0,∞),
bifurcates from zero at λ = 0 and keeps finite in Ω as λ→ ∞, are all essentially
well-known facts. Moreover, limλ→∞ uλ = Up where u = Up is the unique
solution to the problem

{

∆pu = ur in Ω

u = ∞ on ∂Ω.
(3.1)

See [4, 13] where the existence and uniqueness of a solution to (3.1) is studied.

However, the properties of existence, uniqueness, behavior in λ – specially
the limit values at λ = 0,∞ – for the remaining cases of the boundary value
problem (1.13), i.e., (N), (R) and (L), need to be properly stated. Being our
final goal the study of the boundary layer formation for all those problems, we
are next giving a self contained account on the former properties, leaving the
layer analysis for a final subsection. Thus we proceed to deal with all these
questions in turn.

3.1. Uniqueness. The uniqueness of a positive weak solution to (N) is stan-
dard. However, this is not the case for problems (N) and (L). In both cases,
the proof in Lemma 13 of [8] can be adapted to the the p-Laplacian framework
by employing the approach in Lemma 3.1 of [12].

3.2. Existence. A first useful remark is that provided u, u ∈W 1,p(Ω)∩L∞(Ω)
is a sub and supersolution pair to (1.13) with either of the boundary conditions
listed above, then θu, Mu is a new such pair whenever 0 < θ ≤ 1 ≤ M . This
allows us to produce comparable sub- and supersolutions by starting on any
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arbitrary pair u, u. On the other hand, for its immediate use in the constructions
that follow it is convenient to introduce the function φp ∈ W 1,p(Ω) ∩ L∞(Ω)
which is the unique weak solution to

{

−∆pu = 1 x ∈ Ω

u = 0 x ∈ ∂Ω.

It can be shown that φp ∈ C1,γ(Ω) for a certain 0 < γ < 1 ( [3,11,14]). Moreover,
due to the strong maximum principle ( [15]) it follows that φp > 0 together with
∇φp 6= 0 for all x ∈ Ω such that d(x) = dist(x, ∂Ω) ≤ δ (for a small δ > 0).

Thus, it is possible to construct weak positive sub and supersolutions w,
w ∈ W 1,p(Ω) ∩ L∞(Ω) to (1.13) (under all boundary conditions) in the form

w = B−(φp + µ−)−β, w = B+(φp + µ+)−β,

with β = p

r−p+1
, where µ±, B± are decreasing functions of λ ∈ (0,∞) which

depend on the boundary conditions. They satisfy

lim
λ→0

µ± = ∞ , lim
λ→∞

µ± = 0 (3.2)

lim
λ→0

B± = ∞ , lim
λ→∞

B± = Bp,±(∞), (3.3)

being Bp,−(∞) = {φp,min}
1

r−p+1 and Bp,+(∞) = {φp,max}
1

r−p+1 , and where

φp,min = min
Ω

{

(p− 1)βp−1(β + 1)|∇φp|
p + βp−1φp

}

φp,max = max
Ω

{

(p− 1)βp−1(β + 1)|∇φp|
p + βp−1φp

}

.

Furthermore, the functions B and µ are related through the expressions

Br−p+1
− − βp−1µ = φp,min , Br−p+1

+ − βp−1µ = φp,max. (3.4)

A detailed proof of previous assertions is omitted for brevity. On the other
hand, it is important to point out that when checking that w and w are a sub-
and a supersolution, computations must be necessarily performed in a weak
sense since, in general, φp does not have two classical derivatives.

Therefore, and by employing the previous remark, it is possible to find a
unique positive weak solution uλ ∈ W 1,p(Ω) ∩ L∞(Ω) to problem (1.13) with
either of the boundary conditions (D), (N), (R) and (L), and this solution
satisfies the inequalities

w ≤ uλ ≤ w. (3.5)

Moreover, in view of the results in [11], we have uλ ∈ C1,γ(Ω) for a certain
0 < γ < 1.
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3.3. Limit behavior as λ → 0, λ → ∞. That the solution uλ to (1.13) ob-
tained in the preceding paragraph increases in λ ∈ (0,∞), follows from unique-
ness and the fact that uλ constitutes a subsolution to problem (1.13)λ′ whenever
λ′ ≥ λ. On the other hand, relations (3.4) together with (3.2) and (3.3) imply
that both w → 0, w → 0 uniformly in Ω as λ → 0. In virtue of (3.5) the same
happens to uλ and it bifurcates from zero at λ = 0.

As for the finiteness of uλ as λ → ∞ we can conclude from (3.5) and the
expression for w, w and (3.3) that the limit u∞ = limλ→∞ uλ, holds uniformly
on compacts of Ω. Furthermore, in view of the C1,γ estimates in [11] it also
holds in C1,γ(Ω) for a certain γ ∈ (0, 1). Moreover,

Bp,−(∞)

φβp
≤ u∞ ≤

Bp,+(∞)

φβp
.

Since this implies that limd(x)→0 u∞ = ∞ then u∞ defines a positive weak solu-
tion to (3.1) and thus it coincides with Up.

3.4. Boundary layer behavior as λ → ∞. Once the existence and unique-
ness of a positive solution uλ to (1.13) together with its finiteness as λ → ∞
have been settled down for all boundary conditions (D), (N), (R), and (L), the
boundary layer behavior of uλ near ∂Ω can be analyzed.

We are next stating the extensions of the results in Sections 1, 2 to the case
of the p-Laplacian. As in Section 2, such results are obtained by introducing
the natural extension of the auxiliary boundary value problem (2.1). Namely,











∆pu = ur 0 < d(x) < δ

u = uλ d(x) = δ

Bp(u, λ) = 0 x ∈ ∂Ω,

which exhibits u = uλ as its unique positive solution. Thus one proceeds to
produce a suitable pair of sub- and supersolution u, u for each one of the
boundary conditions. Such sub and supersolutions have the form

u = (Ap − ε)(d+ µ−)−β, u = (Ap + ε)(d+ µ+)−β,

where A = Ap satisfies Aq−p+1 = (p − 1)βp−1(β + 1) and µ± = µ±(λ) are
appropriate functions of λ which depend on the boundary conditions and which
are explicitly given below. Computations, which are entirely similar to the ones
in Section 2, are going to be omitted for brevity. The boundary layer features
corresponding to each problem are now listed in turn. Recall that β = p

r−p+1
,

and Ap is given by Aq−p+1
p = (p− 1)βp−1(β + 1).
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Dirichlet problem. For every ε > 0, there exist positive δ = δ(ε), λ(ε) and
M = M(ε) such that the solution uλ to (D) satisfies

Ap − ε
(

d(x) + A
1
β
p λ

− 1
β

)β
−M ≤ uλ ≤

Ap + ε
(

d(x) + A
1
β
p λ

− 1
β

)β
+M,

for d(x) < δ and λ ≥ λ(ε). Then, the critical scale is λ−
1
β and

uλ ∼
Ap
d(x)β

, (3.6)

for 1 ≫ d(x) ≫ λ−
1
β as λ → ∞. In addition, uλ ∼ λ provided d(x) ≪ λ−

1
β as

λ→ ∞.

Neumann problem. The positive solution uλ to (N) satisfies the estimates

Ap − ε
(

d(x)+(βAp)
1

β+1λ−
1

(p−1)(β+1)

)β
−M ≤ uλ ≤

Ap + ε
(

d(x)+(βAp)
1

β+1λ−
1

(p−1)(β+1)

)β
+M,

for every prefixed ε > 0, provided that d(x) < δ ≤ δ(ε), λ ≥ λ(ε) and

M = M(ε). That is why the critical scale becomes λ−
1

(p−1)(β+1) and the in-

ner approximation (3.6) holds provided 1 ≫ d(x) ≫ λ−
1

(p−1)(β+1) as λ → ∞.
While,

uλ ∼

(

Ap
ββ

)
1

β+1

λ
β

(p−1)(β+1)

whenever d(x) ≪ λ−
1

(p−1)(β+1) as λ→ ∞.

Robin-type problem. For each ε > 0, the positive solution uλ to (R) satisfies the
estimates

Ap − ε
(

d(x) + (β + ε)λ−
1

p−1

)β
−M ≤ uλ ≤

Ap + ε
(

d(x) + (β − ε)λ−
1

p−1

)β
+M, (3.7)

if x lies in the strip 0 < d(x) < δ, M = M(ε) and λ becomes arbitrarily

large. The critical scale becomes λ−
1

p−1 and the inner estimate (3.6) holds if

1 ≫ d(x) ≫ λ−
1

p−1 as λ→ ∞. In addition,

uλ ∼
Ap
ββ
λ

β

p−1

provided that d(x) ≪ λ−
1

p−1 as λ→ ∞.
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Nonlinear flux problem: logistic growth. Just as in the linear diffusion case (1.9),
problem (L) exhibits two regimes: A) q ≤ r+1

p′
, p′ = p

p−1
, corresponding to

volumetric reaction dominance and B) q > r+1
p′

, which means the prevalence of
the surface reaction.

In case A) the boundary estimates and layer behavior of the solution uλ to
(L) becomes exactly the same as in the case of the Robin-type problem if q < r+1

p′

(compare with Theorem 1.4, A)). When q = r+1
p′

, estimate (3.7) becomes

Ap − ε
(

d(x) +
(

βp−1 + Aq−p+1
p

)
1

p−1λ−
1

p−1

)β
−M

≤ uλ ≤
Ap + ε

(

d(x) +
(

βp−1 + Aq−p+1
p

)
1

p−1λ−
1

p−1

)β
+M,

for every ε > 0 when 0 < d(x) < δ(ε), M = M(ε) and λ is large. The critical
scale and inner behavior (3.6) remain the same as in the Robin-type problem (R)
while the outer estimate becomes

uλ ∼
Ap

(

βp−1 + Aq−p+1
p

)
β

p−1

λ
β

p−1

if d(x) ≪ λ−
1

p−1 as λ→ ∞.

As for the case B) corresponding to q > r+1
p′

, the critical scale becomes now

(compare with Theorem 3, B)) λ−θ with θ = 1
p

r−p+1
r−q+1

, and in fact the relevant
estimate is

Ap − ε
(

d(x) + A
1
β
p λ−θ

)β
−M ≤ uλ ≤

Ap + ε
(

d(x) + A
1
β
p λ−θ

)β
+M,

where ε > 0 is prefixed and d(x) < δ, M = M(ε) and λ ≥ λ(ε). While the inner
behavior (3.6) holds once again if 1 ≫ d(x) ≫ λ−θ as λ→ ∞, we find that

uλ ∼ λ
1

q−p+1 ,

if λ→ ∞ and x moves with λ according to the scale d(x) ≪ λ−θ.

Remark 3.1. As in the linear diffusion problem, an intermediate layer behavior
of the solution uλ to problem (1.13) is found when observing such solution in a
multiple of the critical scale. For instance, in the case of problem (D),

uλ ∼
Ap

(

1 + ρ−1
0 A

1
β
p

)β
d(x)−β ∼

Ap
(

ρ0 + A
1
β
p

)β
λ ,

when d(x) ≪ 1 according to d(x) ∼ ρ0λ
− 1

β . Of course, similar estimates are
obtained for the other boundary conditions by employing their own critical
scales.
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