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On the Point Behavior of
Fourier Series and Conjugate Series

Ricardo Estrada and Jasson Vindas

Abstract. We investigate the point behavior of periodic functions and Schwartz
distributions when the Fourier series and the conjugate series are both Abel summable
at a point. In particular we show that if f is a bounded function and its Fourier series
and conjugate series are Abel summable to values γ and β at the point θ0, respectively,
then the primitive of f is differentiable at θ0, with derivative equal to γ, the conjugate

function satisfies limθ→θ0

3
(θ−θ0)3

∫ θ

θ0
f̃(t) (θ − t)2 dt = β, and the Fourier series and

the conjugate series are both (C, κ) summable at θ0, for any κ > 0. We show a
similar result for positive measures and L1 functions bounded from below. Since the
converse of our results are valid, we therefore provide a complete characterization
of simultaneous Abel summability of the Fourier and conjugate series in terms of
“average point values”, within the classes of positive measures and functions bounded
from below. For general L1 functions, we also give a.e. distributional interpretation
of − 1

2π
p.v.

∫ π

−π
f(t+θ0) cot t

2 dt as the point value of the conjugate series when viewed
as a distribution.
We obtain more general results of this kind for arbitrary trigonometric series with
coefficients of slow growth, i.e., periodic distributions.
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1. Introduction

It is well known that there is an intrinsic relationship between the local be-
havior of a function (or generalized function) at a point and the convergence
or summability properties of its Fourier series and conjugate series [36]. Many
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classical results establish the summability of the series from the local behavior
of the function [7, 8, 17, 18, 32, 33, 35]; some others go in the opposite direction,
they obtain local information about the function itself from certain summability
properties of the series [3, 10–13,16,26]. The first problem is of Abelian nature
while the second one usually has a Tauberian character [9]. Interestingly, some-
times, one can even go beyond the Abel–Tauber problem and provide precise
characterizations relating a summability method, or a family of them, with a
specific type of point behavior [3, 10–13,24,26].

In this article we are concerned with problems related to Abel summability.
The most basic result about Abel summability and Fourier series is due to
Fatou [7, 36]. Fatou’s theorem states that if f ∈ L1[−π, π] with Fourier series

a0

2
+

∞
∑

n=1

an cos nθ + bn sin nθ , (1)

and its primitive is differentiable at the point θ = θ0, i.e.,

lim
θ→θ0

1

θ − θ0

∫ θ

θ0

f(t)dt = γ , (2)

then the Fourier series is Abel summable [9, 36] to the value γ at θ = θ0,

a0

2
+

∞
∑

n=1

an cos nθ0 + bn sin nθ0 = γ (A) . (3)

Loomis has shown two converses to Fatou theorem in [16]. He showed, using
some results of Hardy and Littlewood [9,12], that if f is a positive function and
(3) holds, then the symmetric derivative of the primitive of f exits and equals γ,
i.e.,

lim
θ→0

1

2θ

∫ θ0+θ

θ0−θ

f(t)dt = γ . (4)

On the other hand (4) suffices to conclude (3). It should be observed that
(2) always implies (4), but in general they are not equivalent. One may say
that this result of Loomis is a Tauberian theorem, being the positivity of f the
Tauberian assumption; however, it is perhaps more appropriate to say that it is
rather a characterization of Abel summability of Fourier series within the class
of positive functions. Loomis also gave necessary and sufficient conditions to
conclude (2) from (3) for positive functions, but this time an extra Tauberian
hypothesis must be assumed. The results of Loomis apply to positive measures
as well.

There is also a well known sort of version of Fatou theorem which gives Abel
summability of the conjugate series [36]. One can show that if (2) is satisfied
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and the principal value integral,

β = −
1

2π
p.v.

∫ π

−π

f(t + θ0) cot
t

2
dt , (5)

exists, then the conjugate series is Abel summable as well,

∞
∑

n=1

an sin nθ0 − bn cos nθ0 = β (A) .

The scope of this article is to study the converse to this result, namely, we
investigate point behavior when the Fourier series and the conjugate series are
both simultaneously Abel summable at a point. We analyze the case of periodic
functions, measures, and Schwartz distributions.

The plan of the article is as follows. Section 2 is of preliminary character,
we discuss there the notion of average point values of functions and point values
for distributions (in the sense of  Lojasiewicz [15]), which are natural general-
izations of (2). In Section 3 we study the existence of point values under the
assumption of Abel summability of Fourier and conjugate series, our main re-
sult states that if either the distribution or the conjugate distribution (i.e., the
one given by the conjugate series) is (distributionally) bounded at the point,
then the point values of both distributions exist; the results of that section are
essentially Tauberian theorems. We also give distributional interpretation of
the conjugate integral (5) for L1 functions as the a.e. distributional point value
of the conjugate distribution. Section 4 deals with functions and measures, we
provide characterizations of simultaneous Abel summability of the Fourier and
conjugate series within the class of positive measures, in particular for bounded
functions, in terms of (2) and an average point behavior of the conjugate dis-
tribution. We also obtain characterizations of this situation for functions and
distributions which are bounded from below in a neighborhood of the analyzed
point.

2. Preliminaries and notation

2.1. Notation. We denote by D′(R) and S ′(R) the Schwartz spaces of distri-
butions and tempered distributions. We refer to [21] for the very well known
properties of these spaces, and to [5, 20, 23, 24, 31] for the theory of asymptotic
expansions of distributions. We fix the constants in the Fourier transform so
that

φ̂(x) =

∫ ∞

−∞

e−ixtφ(t) dt , for φ ∈ S(R) .
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We shall fix the complex exponential and cosines-sines Fourier expansions
of a periodic function or distribution

f(θ) =
∞
∑

n=−∞

cne
inθ =

a0

2
+

∞
∑

n=1

an cos nθ + bn sin nθ , (6)

and its conjugate distribution, namely, the distribution defined by

f̃(θ) =
∞
∑

n=−∞

c̃ne
inθ =

∞
∑

n=1

an sin nθ − bn cos nθ . (7)

Observe that in general f̃ is not a function but a distribution, even if f is a
function; indeed there exists f ∈ L1[−π, π] such that f̃ is not integrable over
any finite interval [36, Chap.VII, p.257].

We will consider limits in the Cesàro sense [5,9]. Given g, a locally integrable
function, we write

lim
x→∞

g(x) = ℓ (C, k) ,

if

lim
x→∞

k

x

∫ x

0

g(t)

(

1 −
t

x

)k−1

dt = ℓ . (8)

If we do not want to make reference to k, we simply write (C) for (C, k).

2.2. Average point values of functions. Let f be a locally integrable func-
tion. Except when the function is continuous, it does not make much sense to
speak about an individual point value as one does for “usual functions”. In-
deed, one usually regards two functions which are equal a.e. as the same object,
so changing a function in a set of measure zero, for instance a point, does not
change the object we call “function” in analysis. Therefore, the concept of point
value is rather an average notion; for example, one may use Lebesgue points or
relation (2) as the actual point values of the function f .

It is natural to consider generalizations of (2) and take higher order averages,
such an idea goes back to Hardy and Littlewood [11], and also to  Lojasiewicz
[15]. Let k ∈ N. In analogy with (8), we shall say that f has a point value in
the (C, k) sense and write f(θ0) = γ (C, k) if

lim
θ→θ0

k

(θ − θ0)k

∫ θ

θ0

f(t)(θ − t)k−1dt = γ . (9)

We may also say that f has an average point value of order k at θ = θ0. Observe
that (9) also makes sense for a (regular) Borel measure µ, one simply has to
replace f(t)dt by dµ(t). In this case we also write µ(θ0) = γ (C, k). It is easy
to see that (9) implies that µ is continuous at θ = θ0, i.e., the measure of {θ0}
with respect to µ is zero, µ ({θ0}) = 0.
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2.3. Distributional point values and Fourier series. The notion of point
values for Schwartz distributions was introduced by  Lojasiewicz in [15]. A
distribution f ∈ D′(R) is said to have a distributional point value at the point
θ = θ0 if there exist a non-negative integer k and a function F , locally integrable
in some neighborhood of θ0, such that F (k) = f near θ0 and the following limit
exists

lim
θ→θ0

k!F (θ)

(θ − θ0)k
= γ . (10)

In such a case we say that γ is the value of f at θ = θ0 and write f(θ0) = γ,
distributionally. If (10) holds we say that the point value is of order k. Notice
that if the distribution is locally integrable near the point, then this definition
is exactly the same as (9), but in general a distribution can have distributional
point values without being locally integrable [15].

There is an useful equivalent definition of distributional point values, which
is actually  Lojasiewicz original definition. It can be shown [15,31] that f(θ0)=γ,
distributionally, if and only if the following limit exists in the weak topology
of D′(R),

lim
ε→0

f(θ0 + ε θ) = γ , in D′(R) ,

namely, for each test function φ ∈ D(R)

lim
ε→0

1

ε

〈

f(θ), φ

(

θ − θ0

ε

)〉

= γ

∫ ∞

−∞

φ(θ)dθ . (11)

If f ∈ S ′(R), then (11) also holds for each φ ∈ S(R) [4, 31].

When f is a 2π-periodic distribution, it is possible to characterize [3] its
point values in terms of a certain summability of the Fourier series (6). Indeed,
f(θ0) = γ, distributionally, if and only if there exists a non-negative integer m

such that

e.v.

∞
∑

n=−∞

cne
inθ0 = γ (C,m) , (12)

where (12) means that all the following slightly asymmetric means converge

lim
x→∞

∑

−x<n≤ax

cne
inθ0 = γ (C,m) , for each a > 0 .

Remarkably, an analog result is true for Fourier transforms [26, 30]. We also
refer to [4, 6, 24,25,27,29,32,33] for further results in this direction.

It is important to point out that (12) is not equivalent to the Cesàro summa-
bility of the two series

∑1
n=−∞ cne

inθ0 and
∑∞

n=0 cne
inθ0 , separately; counterex-

amples can be found in [24,26]. On the other hand, if these two series are Cesàro
summable for some m, then it is easy to see that the distributional point val-
ues of f and f̃ must exist at θ = θ0, and the converse assertion also holds.



492 R. Estrada and J. Vindas

We must also emphasize a notational aspect, we will use the symbol f̃(θ0) to
denote the distributional point value of the distribution given by (7), we will
show, in Corollary 3.2 below, that when f is locally integrable it agrees almost
everywhere with the usual conjugate function [36] given by the principal value
integral (5).

We shall need two more local concepts for distributions, those of distri-
butional boundedness at a point [34] and jump behavior [6, 29]. We say that
a distribution is distributionally bounded at θ = θ0 if there exist k ∈ N and
a k-primitive F of f which is locally integrable in a neighborhood of θ0 and
F (θ) = O((θ − θ0)

k), θ → θ0. We say that f has a jump behavior if k!(θ −
θ0)

−kF (θ) → γ±, as θ → θ±0 ; in this case we write f(θ±0 ) = γ±, distributionally,
its distributional right and left point values ; the jump of f is then defined as
the number [f ]θ=θ0

= γ+ − γ− = f(θ+
0 ) − f(θ−0 ). Distributional boundedness is

equivalent to the weak boundedness of f(θ0 + ε θ) as ε → 0, i.e., for each test
function 〈f(θ0 + ε θ), φ(θ)〉 = O(1).

3. Point behavior of distributions and Abel summability
of Fourier and conjugate series

We discuss in this section results which relate the Abel summability of the
Fourier series and conjugate series with the local point behavior of a distribution
and its conjugate distribution. Our first theorem does this when the distribution
has a jump behavior. The meaning of (C) below is (C, k) for some k.

Theorem 3.1. Let f be a 2π-periodic distribution with Fourier series (6). Sup-
pose that f has jump behavior at θ = θ0. If

∞
∑

n=1

(an sin nθ0 − bn cos nθ0) = β (A) ,

then f and f̃ have  Lojasiewicz point value at θ = θ0, that is, f(θ0) = f(θ±0 ),
and f̃(θ0) = β, distributionally. Moreover,

∞
∑

n=0

cne
inθ0 =

f(θ0) + if̃(θ0)

2
+

c0

2
(C) (13)

and
1
∑

n=−∞

cne
inθ0 =

f(θ0) − if̃(θ0)

2
−

c0

2
(C) . (14)
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Proof. The distributional version of Lukács theorem [4,29] (see the classical one
in [17,19,36]) and the Abel summability of the conjugate series imply that

β + o(1) =
∞
∑

n=1

(an sin nθ0 − bn cos nθ0)r
n ∼

[f ]θ=θ0

π
log(1 − r) ,

as r → 1−, and so [f ]θ=θ0
= 0; therefore f(θ0) = f(θ±0 ), distributionally. Next,

the results from [23,26] imply the existence of a continuous function c such that
the following two distributional asymptotics hold:

∞
∑

n=0

cne
inθ0δ(λx − n) ∼

(

f(θ0)

2
+ c(λ)

)

δ(x)

λ
, as λ → ∞ , (15)

and
1
∑

n=−∞

cne
inθ0δ(λx − n) ∼

(

f(θ0)

2
− c(λ)

)

δ(x)

λ
, as λ → ∞ , (16)

where δ is the Dirac delta distribution and both (15) and (16) are interpreted in
the weak topology of S ′(R). Multiplying (15) and (16) by −i sgn n, evaluating
(15) at e−x and (16) at ex, and adding the two results, we get, as λ → ∞,

β + o(1) =
∞
∑

n=1

(an sin nθ0 − bn cos nθ0)e
−n

λ

= i

(

f(θ0)

2
− c(λ)

)

〈δ(x), ex〉 − i

(

f(θ0)

2
+ c(λ) − c0

)

〈

δ(x), e−x
〉

= −2ic(λ) + ic0 ,

and so

c(λ) =
c0 + iβ

2
+ o(1) , λ → ∞ . (17)

But (15)–(17) together give us

∞
∑

n=−∞

c̃ne
inθ0δ(λx − n) ∼ β

δ(x)

λ
, as λ → ∞ in S ′(R) ,

and, by [26, Lemma 1], the last fact is equivalent to the existence of the point
value of f̃ at θ = θ0, namely, f̃(θ0) = β, distributionally. On the other hand,
inserting (17) into (15) and (16) and using [26, Corollary 7], we obtain at once
(13) and (14).

Theorem 3.1 allows us to give distributional interpretation to the conjugate
function of an L1 function. Indeed, recall that if f ∈ L1[−π, π], at every point θ0

where the derivative of the primitive of f exists [36, Theorem 7.20, Chapter III],

∞
∑

n=1

(an sin nθ0 − bn cos nθ0)r
n +

1

2π

∫ π

1−r

(f(t + θ0) − f(θ0 − t)) cot
t

2
dt → 0 ,
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as r → 1−. So, at those points, the Abel summability of the conjugate series
is equivalent to the existence of the principal value integral. It is also very
well known that the conjugate series is Abel summable almost everywhere [36,
Chapter VII, p.252]. Since the  Lojasiewicz point value exists at any point
where the primitive has a derivative, we immediately obtain from Theorem 3.1
the following corollary.

Corollary 3.2. Let f ∈ L1[−π, π], then f̃ has  Lojasiewicz point value at every
point θ0 where the derivative of the primitive of f exists and the conjugate series
is Abel summable. Moreover, at those points,

f̃(θ0) = −
1

2π
p.v.

∫ π

−π

f(t + θ0) cot
t

2
dt , (18)

distributionally. Furthermore, the equality (18) holds almost everywhere.

We may obtain a stronger result than Theorem 3.1, but we have to pay
the price of passing through a Tauberian theorem [28, Theorem 3.2]. The next
theorem is the most important of this section.

Theorem 3.3. Let f be a 2π-periodic distribution with Fourier series (6). Sup-
pose that

a0

2
+

∞
∑

n=1

(an cos nθ0 + bn sin nθ0) = γ (A) , (19)

and
∞
∑

n=1

(an sin nθ0 − bn cos nθ0) = β (A) . (20)

If either f or f̃ is distributionally bounded at θ = θ0, then f(θ0) = γ and
f̃(θ0) = β, distributionally. Furthermore (13) and (14) hold.

Proof. By symmetry, we may assume that f is distributionally bounded at
θ = θ0. Let U and V be the standard harmonic representations [2,33] of f and
f̃ on the upper half-plane ℑm z > 0, that is,

U(z) =
∞
∑

n=0

cne
inz +

1
∑

n=−∞

cne
inz̄ and V (z) =

∞
∑

n=1

c̃ne
inz +

1
∑

n=−∞

c̃neinz̄ .

Put G(z) = U(z)+iV (z) = −c0+2
∑∞

n=0 cne
inz. Then G is analytic in the upper

half-plane ℑm z > 0, it has a radial limit at θ = θ0, i.e., limy→0+ G(θ0 + iy) =
γ + iβ, and it has distributional boundary values on the real axis, actually the
boundary distribution is obviously g(θ) = −c0 + 2

∑∞
n=0 cne

inθ = f(θ) + if̃(θ).

Suppose that we were able to show that g is distributionally bounded at
θ = θ0, since G has a radial value, then the hypotheses of the Tauberian the-
orem from [28, Theorem 3.2] would be fully satisfied and it would lead to the
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conclusion g(θ0) = γ + iβ, distributionally, which implies that f(θ0) = γ and
f̃(θ0) = β, distributionally; moreover, the latter would obviously yield (13)
and (14), since the distributional point values of the distributions

∑∞
n=0 cne

inθ

and
∑1

n=−∞ cne
inθ would be 1

2
(γ + iβ + c0) and 1

2
(γ − iβ − c0), respectively.

So the proof of the present theorem will be complete after we establish the
distributional boundedness of g at θ = θ0.

Let us show the distributional boundedness of g at θ = θ0. Observe that
the distributional boundedness of f explicitly means that f(θ0 + εθ) = O(1),
ε → 0+, in the weak topology of S ′(R), so by applying the Fourier transform,
we obtain that, as λ → ∞,

∞
∑

n=−∞

cne
inθ0δ(λx − n) = O

(

1
λ

)

, in S ′(R) .

The results from [23,25] imply that there exists a continuous function c(λ) such
that

∞
∑

n=1

cne
inθ0δ(λx − n) = c(λ)

δ(x)

λ
+ O

(

1
λ

)

, in S ′(R) ,

and
1
∑

n=−∞

cne
inθ0δ(λx − n) = −c(λ)

δ(x)

λ
+ O

(

1
λ

)

, in S ′(R) .

The same argument used in the proof of Theorem 3.1 and the hypothesis (20)
yield c(λ) = O(1), λ → ∞, and hence

−c0δ(λx) + 2
∞
∑

n=0

cne
inθ0δ(λx − n) = O

(

1
λ

)

, in S ′(R) ,

taking inverse Fourier transform in the above relation, we convince ourselves
that g is distributionally bounded at θ = θ0. This completes the proof.

Remark 3.4. Theorem 3.3 includes Theorem 3.1. Indeed, the existence of the
jump behavior gives in particular distributional boundedness at the point, it
also implies the Abel summability of the Fourier series [4, 25].

There is also another useful notion of point value which is weaker than the
one of  Lojasiewicz, that of symmetric point value [5, 24, 30]. It is related to de
la Vallée Poussin generalized symmetric derivatives [36, Chapter XI]. One says
that a distribution f has a symmetric (distributional) point value γ at θ = θ0,
if its symmetric part about θ = θ0,

χ(θ) =
f(θ + θ0) + f(θ − θ0)

2
,
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has γ as point value at θ = 0, that is, χ(0) = γ, distributionally. In such a
case one writes fsym(θ0) = γ, distributionally. Naturally, the existence of the
distributional point value implies the existence of the symmetric point value,
but the converse is not true, as shown by the example δ′(θ) at θ = 0; indeed,
δ′sym(0) = 0, distributionally, because its symmetric part about the origin van-
ishes, but obviously the value of δ′ does not exist at θ = 0. Observe that (4) is
a particular case of this distributional concept. The existence of the symmetric
point value at θ = θ0 implies the Abel summability of the Fourier series at the
point [5, 24,30]. Thus, we obtain from Theorem 3.3 the following corollary.

Corollary 3.5. Let f be a 2π-periodic distribution with Fourier series (6). Sup-
pose that fsym(θ0) = γ, distributionally. If (20) holds and if either f or f̃ is
distributionally bounded at θ = θ0, then f(θ0) = γ and f̃(θ0) = β, distribution-
ally. Furthermore (13) and (14) hold.

4. Point behavior of periodic functions and measures

In this section we provide complete characterizations of Abel summability at a
point of the Fourier and conjugate series for functions and positive measures in
terms of average point values. More generally, we extend the characterization to
distribution which are bounded from below in a neighborhood of the analyzed
point.

4.1. Bounded functions. We now combine Theorem 3.3 with some results of
Hardy and Littlewood [10–13] to obtain the ensuing theorem about functions
which are locally bounded at a point.

Theorem 4.1. Let f ∈ L1[−π, π] be bounded in a neighborhood of the point
θ = θ0. Let (6) be its Fourier series. Then, we have simultaneously the Abel
summability of its Fourier series and conjugate series (19) and (20) if and only
if f(θ0) = γ (C, 1) and f̃(θ0) = β (C, 3). Namely, the first order primitive of f

is differentiable at θ = θ0,

lim
θ→θ0

1

θ − θ0

∫ θ

θ0

f(t)dt = γ ; (21)

and the conjugate distribution (which is integrable near θ = θ0) satisfies

lim
θ→θ0

3

(θ − θ0)3

∫ θ

θ0

f̃(t) (θ − t)2 dt = β . (22)

Furthermore, under these circumstances,

β = −
1

2π
p.v.

∫ π

−π

f(t + θ0) cot
t

2
dt . (23)
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In addition, we have (C, κ) summability of the series for any κ > 0,

∞
∑

n=0

cne
inθ0 =

γ + iβ + c0

2
(C, κ) , (24)

and
1
∑

n=−∞

cne
inθ0 =

γ − iβ − c0

2
(C, κ) . (25)

Proof. The converse is clear since the existence of the two point values implies
Abel summability [4, 24,25,33].

Observe that the local boundedness of f gives us for free the distributional
boundedness of f at θ = θ0. So, Theorem 3.3 yields at once f(θ0) = γ, distri-
butionally, but since f is a bounded function, then the point value must be of
order 1 [15] and then (21) follows. We have already seen that under these cir-
cumstances, (21) and (20), the principal value integral in (23) exists and agrees
with β. A theorem of Hardy and Littlewood [10] (see also [11,12]) gives us that
if (21) holds, then

a0

2
+

∞
∑

n=1

an cos nθ0 + bn sin nθ0 = γ (C, κ) , (26)

for any κ > 0. Theorem 3.3 also implies f̃(θ0) = β, distributionally, but
not the assertion about the order of the point value. It should be noticed
that f̃ is integrable in a neighborhood of θ = θ0, it is implied by the local
boundedness of f . On the other hand f̃(θ0) = β, distributionally, implies the
Cesàro summability of the conjugate series [3,26], but another theorem of Hardy
and Littlewood [13] implies

∞
∑

n=1

an sin nθ0 − bn cos nθ0 = β (C, κ) , (27)

for any κ > 0.

Using cn = 1
2
(a|n| − i sgn n b|n|), it is easy to see that (24) and (25) follow

from (26) and (27). Finally, invoking the equivalence theorem between Riesz
and Cesàro means [9, 14], (24) and (25) give

e.v.

∞
∑

n=−∞

c̃ne
inθ0 = β (C, 1) ,

and this fact in combination with [30, Theorem 5.2] yield f̃(θ0) = β (C, 3),
which in turn is equivalent to (22).
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In particular, we obtain the characterization of simultaneous Abel summa-
bility of the Fourier and conjugate series for bounded functions.

Corollary 4.2. Let f ∈ L∞[−π, π] have Fourier series (6). Then, simultaneous
Abel summability of its Fourier series and conjugate series (19) and (20) is
equivalent to (21) and (22).

4.2. Positive measures and functions bounded from below. Theorem 4.1
does not tell all the true, it is also valid for L1 functions which are bounded
from below. A version for positive measures also holds. We need the following
lemma in order to establish those facts. In the following, we shall write

∫ b

a
for

integration over the closed interval [a, b], if we write
∫ b

a+ it means integration

over (a, b], a similar meaning is assigned to the symbols
∫ b−

a
and

∫ b−

a+ . Given a
2π-periodic measure µ, we use the following definition for its Fourier coefficients

an =
1

π

∫ π

−π+

cos nt dµ(t) and bn =
1

π

∫ π

−π+

sin nt dµ(t) ,

so that the Fourier expansion converges to µ in the space S ′(R). The integral
∫ π−

−π
could have also be used and we would obtain the same result. On the other

hand if we use
∫ π

−π
then the Fourier expansion does not converge to µ in general,

it rather converges to the periodic distribution µ+µ({π})
∑∞

n=−∞ δ(· −(2n+1)π).
After these preliminaries, we state the lemma.

Lemma 4.3. Let µ be a 2π-periodic positive measure with Fourier series (6).
If its Abel-Poisson means are bounded at the point θ = θ0, that is,

a0

2
+

∞
∑

n=1

(an cos nθ0 + bn sin nθ0)r
n = O(1) , r → 1−, (28)

then µ is distributionally bounded at θ = θ0. Moreover, µ is continuous at
θ = θ0, i.e., µ({θ0}) = 0, and

1

(θ − θ0)

∫ θ

θ0

dµ(t) = O(1) , θ → θ0.

Proof. We may assume that θ0 = 0, by translating. Observe next that (28) says
∫ π

−π+

Pr(t) dµ(t) = O(1) , r → 1−, (29)

where Pr is the Poisson kernel, i.e., Pr(θ) = 1−r2

1−2r cos θ+r2 . Define the following
primitive of µ:

F (θ) =

{

∫ θ

0
dµ(θ), θ > 0

∫ θ

0−
dµ(θ), θ ≤ 0 .
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Thus, F is non-decreasing, right continuous on (0,∞), and left continuous on
(−∞, 0] with F (0) = F (0−) = 0. Let us show that µ is continuous at the origin,
that is, F (0+) = 0. From (29), we have that

0 ≤

∫ 0−

−π+

Pr(t) dµ(t) +

∫ π

0+

Pr(t) dµ(t) + F (0+)
1 + r

1 − r
= O(1) , r → 1−,

but the three terms in this inequality are positive, so each of them must be
bounded, and hence F (0+) = 0. Working with the second integral, integrating
by parts, and using that −P ′

r(θ) is positive for θ > 0, we have

O(1) =

∫ π

0

Pr(t) dµ(t)

= F (π)Pr(π) +

∫ π

0

(−P ′
r(t))F (t) dt

≥

∫ π

1−r

(−P ′
r(t))F (t) dt

≥ F (1 − r)

∫ π

1−r

(−P ′
r(t)) dt

=
F (1 − r)

1 − r

(

1 + r

1 + 2r−2r cos(1−r)
(1−r)2

−
(1 − r)2

1 + r

)

∼
F (1 − r)

(1 − r)
, r → 1−.

Therefore, θ−1F (θ) = O(1), θ → 0+. The integral over (−π, 0) can be handled
in a similar manner to obtain the estimate θ−1F (θ) = O(1), θ → 0−. Thus,
the proof is complete.

We then obtain from Theorem 3.3 and Lemma 4.3 the following result for
periodic positive measures.

Theorem 4.4. Let µ be a 2π-periodic positive measure with Fourier series (6).
Then, we have simultaneously the Abel summability of its Fourier series and
conjugate series (19) and (20) if and only if µ(θ0) = γ (C, 1), namely its first
order primitive is differentiable at θ = θ0,

lim
θ→θ0

1

θ − θ0

∫ θ

θ0

dµ(t) = γ ; (30)

and the conjugate distribution µ̃ has a point value of order 3 at θ=θ0, µ̃(θ0)=β,

distributionally. In addition,

β = −
1

2π
p.v.

∫ π

−π+

cot
t − θ0

2
dµ(t) . (31)
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and we have (C, κ) summability of the series for any κ > 0,

∞
∑

n=0

cne
inθ0 =

γ + iβ + c0

2
(C, κ) , (32)

and
1
∑

n=−∞

cne
inθ0 =

γ − iβ − c0

2
(C, κ) . (33)

Proof. Lemma 4.3 gives the distributional boundedness of µ at θ = θ0. So, The-
orem 3.3 yields µ(θ0) = γ, distributionally. For positive measures the existence
of the distributional point value is equivalent to (30), as shown by  Lojasiewicz
in [15]. Theorem 3.3 also implies µ̃(θ0) = β, distributionally. Now the theorem
of Young–Riesz–Plessner [36, Theorem 8.1, Chapter III] implies (31), under the
assumption of Abel summability of the conjugate series (one has to integrate
by parts and use [36, Theorem 7.15, Chapter III]). The rest of the proof is
identically the same as the one of Theorem 4.1, but using [36, Theorem 8.1,
Chapter III] instead of the results from [10,13].

We now provide the announced extension of Theorem 4.1 to functions
bounded from below (or above).

Theorem 4.5. Let f ∈ L1[−π, π] be bounded from below (or above) in some
neighborhood of θ = θ0. Let (6) be its Fourier series. The simultaneous Abel
summability of the Fourier series and conjugate series (19) and (20) is equiva-
lent to f(θ0) = γ (C, 1), namely,

lim
θ→θ0

1

θ − θ0

∫ θ

θ0

f(t)dt = γ ;

and the existence of the point value of order 3 at θ = θ0 for the conjugate
distribution, f̃(θ0) = β, distributionally. Furthermore,

β = −
1

2π
p.v.

∫ π

−π

f(t + θ0) cot
t

2
dt ,

and we have (C, κ) summability of the series (32) and (33) for any κ > 0.

Proof. The statement of the present theorem is a local one, we can therefore
assume the existence of a constant K > 0 such that f > −K, globally. Apply
now Theorem 4.4 to the positive measure µ = f + K.

Remark 4.6. It has been pointed out in Section 2 that (32) and (33) are suf-
ficient to establish the existence of the point values of f and f̃ . Therefore, for
positive measures and functions bounded from below (or above) in a neighbor-
hood of the point, they are necessary and sufficient for the simultaneous Abel
summability of the Fourier and conjugate series.
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4.3. Distributions bounded from below (above). The global integrability
of f on [−π, π] can be removed from Theorem 4.5 in order to allow more general
trigonometric series in the statement.

Given f ∈ D′(R) and a point θ0 ∈ R, we shall say that f is bounded
from below (above) in a neighborhood of θ = θ0 if there exist σ,K ≥ 0 such
that −K ≤ f on (θ0 − σ, θ0 + σ) (resp. f ≤ K), i.e., for each non-negative
φ ∈ D(θ0 − σ, θ0 + σ)

−K

∫ ∞

−∞

φ(θ)dθ ≤ 〈f(θ), φ(θ)〉

(

resp. K

∫ ∞

−∞

φ(θ)dθ ≥ 〈f(θ), φ(θ)〉

)

. (34)

It should be noticed that under this circumstances f is a signed measure in a
neighborhood of the point.

We end this article by characterizing simultaneous Abel summability of the
Fourier and conjugate series for distributions which satisfy (34) near the point.
We first show a lemma.

Lemma 4.7. Let g be a 2π-periodic distribution vanishing in a neighborhood
of the point θ = θ0. Then the conjugate distribution f̃ is a C∞-function in a
neighborhood of θ = θ0, and consequently the Fourier series and conjugate series
of g are Abel summable to the values 0 and g̃(θ0), respectively.

Proof. Let U and V be the standard harmonic representations of f and f̃ on
ℑm z > 0, i.e., the ones used in the proof of Theorem 3.3. By applying the
reflection principle to the real and imaginary parts of U ( [1, Section 4.5], [22,
Section 3.4]), we have that U admits a harmonic extension to a (complex)
neighborhood of θ0. Since V is harmonic conjugate to U , we conclude that
V admits a harmonic extension to a (complex) neighborhood of θ0 as well.
Therefore, f̃ is a C∞-function near θ = θ0. The Abel summability of the two
series is implied by the results from [4,25].

Theorem 4.8. Let the 2π-periodic distribution f ∈ D′(R) be bounded from
below (or above) in some neighborhood of θ = θ0. Let (6) be its Fourier series.
The following properties are equivalent:

(i) The simultaneous Abel summability of the Fourier series and conjugate
series (19) and (20).

(ii) The existence of the point values f(θ0) = γ (C, 1) and f̃(θ0) = β, distri-
butionally of order 3.

(iii) The existence of the distributional point values of f and f̃ at θ = θ0,
f(θ0) = γ and f̃(θ0) = β, distributionally.



502 R. Estrada and J. Vindas

(iv) The existence of some (possibly large) κ such that

a0

2
+

∞
∑

n=1

(an cos nθ0 + bn sin nθ0) = γ (C, κ)

∞
∑

n=1

(an sin nθ0 − bn cos nθ0) = β (C, κ) .

(v) The existence of some (possibly large) κ such that

∞
∑

n=0

cne
inθ0 =

γ + iβ + c0

2
(C, κ)

1
∑

n=−∞

cne
inθ0 =

γ − iβ − c0

2
(C, κ) .

Proof. Observe that (iii), (iv) and (v) are equivalent in general, regardless the
assumption over f ; moreover, clearly, any of them implies (i) [4, 25].

It remains to show that (i) implies (ii) under the hypothesis f is bounded
from below in a neighborhood of θ = θ0. By adding a constant K > 0, we can
assume that f is a positive measure in a neighborhood of θ = θ0. So, we can
decompose f = g + µ, where g is a 2π-periodic distribution which vanishes in a
neighborhood of θ = θ0, and µ is a 2π-periodic positive measure. By Lemma 4.7
and the assumption (i), we have that the Fourier and conjugate series of µ are
both Abel summable at θ = θ0, (ii) now follows directly from Theorem 4.4 and
Lemma 4.7.
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[31] Vindas, J. and Pilipović, S., Structural theorems for quasiasymptotics of dis-
tributions at the origin. Math. Nachr. 282 (2009), 1584 – 1599.

[32] Walter, G., Pointwise convergence of distribution expansions. Studia Math. 26
(1966), 143 – 154.

[33] Walter, G., Fourier series and analytic representation of distributions. SIAM
Review 12 (1970), 272 – 276.
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