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A Quasilinear Eigenvalue Problem with

Robin Conditions on the Non-Smooth Domain

of Finite Measure
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Abstract. In this paper, we consider a nonlinear eigenvalue problem involving the
p-Laplacian with Robin boundary conditions on a domain of finite measure. We show
the existence, simplicity and isolation of principal eigenvalue and regularity results
for the corresponding eigenfunction. Furthermore we establish the link between the
Dirichlet and Neumann problems by means of the Robin boundary conditions with
variable parameter.
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1. Introduction

The aim of this paper is to study the existence and main properties of the
principal eigenvalue and corresponding eigenfunction of the following nonlinear
boundary value problem:







−∆pu = λ |u|p−2u in Ω

|∇u|p−2∂u

∂ν
+ |u|p−2u = 0 on ∂Ω.

(1)

Here Ω is a domain in RN(N > 1) of finite measure, ∆p denotes the p-Laplacian
operator defined by ∆pu = div(|∇u|p−2∇u), p ∈ (1,∞), ν is the outward point-
ing unit normal to the boundary ∂Ω, λ ∈ R is the eigenvalue parameter. As we
want to deal with domains having non smooth boundary, the condition on ∂Ω

P. Drábek: Department of Mathematics, University of West Bohemia, Univerzitńı 22,
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in (1) has to be interpreted in a weak sense that we shall specify later, see
Definition 3.1.

The problem (1) appears in mathematical models for subjects such as
glaciology, nonlinear diffusion, filtration problem [32], power-low materials [20],
non-Newtonian fluids [8], reaction-diffusion problems, flow through porous me-
dia, nonlinear elasticity, petroleum extraction, torsional creep problems, etc.
For a discussion and some physical background, we refer the reader to [16]. The
nonlinear boundary condition describes the flux through the boundary ∂Ω which
depends on the solution itself. For a physical motivation of such conditions, see
for example [31].

On the other hand, the properties of the principal eigenvalue are of prime
interest since, for example, they are closely associated with the dynamics of the
corresponding evolution equations (e.g., global bifurcation, stability) or with
the description of the solution set of corresponding perturbed problems, see,
e.g., [33]. These properties are: existence, positivity, simplicity, uniqueness up
to eigenfunctions which do not change sign and isolation, which hold, e.g., in the
case of the p-Laplacian operator in a bounded domain with smooth boundary,
see [2, 3, 6, 11].

Eigenvalue problems involving the Laplacian or the p-Laplacian on bounded
domains have been the topic of many other studies. We cite the works [10,12,13,
17–19,21–23]. The Dirichlet and/or the Neumann eigenvalue problem involving
the p-Laplacian

−∆pu = λ|u|p−2u in Ω

u = 0 and/or |∇u|p−2∂u

∂ν
= 0 on ∂Ω,

(2)

has attracted considerable attention. Recently in [26] the author studied nonlin-
ear eigenvalue problems for the p-Laplacian operator subject to different types
of boundary conditions on a bounded domain.

The “smoothness” of the boundary ∂Ω is an important assumption in papers
mentioned above. In this paper we want to extend these results to more general
domains which can occur in applications. In particular, we want to emphasize
that our results cover a wide class of domains with non Lipschitz boundary and
which are allowed to be unbounded in RN .

To this end we have to choose different functional framework than usual.
Namely, we seek weak solutions in a suitable subspace Vp of W 1

p (Ω) which reflects
the influence of boundary conditions. This allows us to deal with more general
domains by using an inequality due to Maz’ja [28], see Section 2 for the details.
On the other hand, if Ω is bounded and has a Lipschitz boundary, then the
standard space Vp = W 1

p (Ω) is a suitable functional framework.



A Quasilinear Eigenvalue Problem 471

We also consider parameter dependent boundary conditions,

|∇u|p−2∂u

∂ν
+ µ|u|p−2u = 0 on ∂Ω,

with µ ∈ [0, +∞) and establish the link between the Dirichlet and the Neumann
boundary conditions letting µ to approach 0 and ∞, respectively.

The paper is organized as follows. In Section 2, we establish necessary
preliminaries and introduce the functional framework. In Section 3, we use a
variational method to show the existence and simplicity of principal eigenvalue
λ1 of (1). We also show the regularity of corresponding principal eigenfunction.
In Section 4, we show the isolation of principal eigenvalue. Finally, in Section 5,
we study the dependence of λ1 = λ1(µ) on the parameter µ ≥ 0 and link the
Dirichlet and the Neumann problem (2).

2. Preliminaries

Let Ω be a domain of finite measure |Ω|. Let W 1
p (Ω) denote the usual Sobolev

space and for u ∈ W 1
p (Ω) let us put ‖u‖1,p = (

∫

Ω
|∇u|pdx)1/p. We will write

‖ · ‖p for the Lp-norm. We then set

Vp = W 1
p,p(Ω, ∂Ω)

for a Banach space defined as a completion of W 1
p (Ω) ∩ C(Ω) with respect to

the norm

‖u‖Vp
=

(

‖u‖p
1,p + ‖u|∂Ω‖

p
Lp(∂Ω)

)
1

p

,

where

‖u|∂Ω‖Lp(∂Ω) =

(
∫

∂Ω

|u|pdHN−1

)
1

p

.

Note that the (N − 1)-dimensional Hausdorff measure coincides with the usual
surface Lebesque measure if ∂Ω is Lipschitz. These spaces have been introduced
by Maz’ja (see [28, Section 3.6]).

Remark 2.1. Since the Lp-norms are uniformly convex, also the Vp-norm is
uniformly convex. In particular by Milman’s Theorem, Vp is a reflexive space

(see [36, Section 5.2]). For v ∈ Vp let v+ = |v|+v
2

and v− = |v|−v
2

be the positive
and negative part of v, respectively. Then |v|, v+, v− ∈ Vp follows directly from
the definition of Vp.

Further discussion focuses on the fact that for rather general domains Ω
the space Vp is more suitable functional framework than W 1

p (Ω) and that, in
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general, we can have Vp 6= W 1
p (Ω). Indeed, Maz’ja’s result ( [28, Corollary Sec-

tion 3.6.3, p.189]) says that there exists a constant c > 0 (merely depending on
the dimension and not on the set Ω) such that

‖u‖ N
N−1

≤ c
(

‖u‖1,1 + ‖u| ∂Ω‖L1(∂Ω)

)

for all u ∈ W 1
1 (Ω)∩C(Ω). Following the calculations from [15, Sec. 4] (replacing

above u by |u|p, applying Hölder’s and Young’s inequalities with usual notation
p
′

= p
p−1

) we subsequently get

‖u‖p
Np

N−1

= ‖|u|p‖ N
N−1

≤ c
(

‖|u|p‖1,1 + ‖|u|p|∂Ω‖L1(∂Ω)

)

= c
(

p ‖|u|p−1∇u‖1 + ‖u|∂Ω‖
p
Lp(∂Ω)

)

≤ c
(

p |Ω|
1

Np′ ‖u‖p−1
Np

N−1

‖u‖1,p + ‖u|∂Ω‖
p
Lp(∂Ω)

)

≤ c

(

p |Ω|
1

Np
′

εp
′

p
′
‖u‖p

Np

N−1

+ |Ω|
1

Np
′

1

εp
‖u‖p

1,p + ‖u|∂Ω‖
p
Lp(∂Ω)

)

and hence, taking ε small enough, there exists C > 0 such that

‖u‖ Np

N−1

≤ C‖u‖Vp
(3)

for all u ∈ Vp. In particular, we have continuous embedding Vp →֒ Lp(Ω) for
q ≤ Np

N−1
, since the volume of Ω is finite.

Note that for a domain with an outward pointing exponential cusp the Vp-
norm is stronger than the W 1

p -norm and thus by the open mapping theorem
the space Vp is a proper subspace of W 1

p (Ω). That the norm is strictly stronger
follows from [1, Theorem 5.32], , asserting that for a domain with a sufficiently
sharp outward pointing cusp W 1

p (Ω) * Lq(Ω) for all q > p, contradicting (3) if
we assume that Vp = W 1

p (Ω). Similar situation occurs when Ω is an unbounded
domain with finite volume (see [1, Theorem 5.30]).

Let us consider the embedding Vp →֒ Lp(Ω). There are domains for which
this embedding is not injective (see [7, Example 4.3, pp.357 and 358] for an
example illustrating this phenomenon in the case p = 2). In other words, due
to the influence of the boundary ∂Ω there exists a function w ∈ Vp such that
w 6= oVp

but w = oLp(Ω). Here, oVp
and oLp(Ω) denote the zero elements in Vp and

Lp(Ω), respectively. Notice that this cannot happen if the trace of a function
from Vp is locally defined in a usual sense up to a set of (N − 1)-dimensional
Hausdorff measure zero. The domains for which the embedding Vp →֒ Lp(Ω)
is injective are usually called admissible, cf. [15]. In particular, it follows from
above discussion that any domain with Lipschitz boundary is admissible.
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In order to apply the results from [15] and get L∞ estimates for principal
eigenfunction as well as to perform some of our proofs, we require our domain
to be admissible. However, it follows from [7, Section 4] that this is not essential
restriction on the domain Ω (cf. also [9] and [14, Section 3]). An example of a
bounded domain which is not admissible is constructed in [7, pp.357 and 358].
One can see that the domains of this kind are rather special. On the other hand,
most of the domains which appear in applications do not possess such compli-
cated structure. In particular, due to our approach we can go “far beyond” the
class of Lipschitz domains and to extend some known results for much wider
class of boundary value problems arising in the real world applications.

To be more specific, our approach covers for instance the domains with
cusps. We can consider bounded planar domain

Ω =
{

(x, y) ∈ R2 : 0 < x < 1, 0 < y < e
x

x−1

}

.

The boundary ∂Ω is smooth between the points (0, 0), (0, 1) and (1, 0), it has
Lipschitz edges at (0, 0) and (0, 1), but there is an exponential cusp at (1, 0)
(cf. [1, Theorem 5.32]). In particular, the last fact implies that Vp 6= W 1

p (Ω).
On the other hand, since the trace of a function from Vp is locally well-defined
up to a set of 1-Hausdorff measure zero (i.e., up to the point (1,0)), the set Ω
is admissible (cf. [7, Section 4]).

Our results cover also unbounded domains of finite measure like

Ω =
{

(x, y) ∈ R2 : −∞ < x < +∞, 0 < y < e−x2

}

.

Finally, we recall the assertions of Maz’ja (see [28, Section 4.11, Corollaries 2
and 3]) from which it follows that the embedding Vp →֒→֒ Lq(Ω) is compact for
q < Np

N−1
. In particular, we have

Vp →֒→֒ Lp(Ω). (4)

3. Existence and simplicity of principal eigenvalue

Since we deal with the domains having non smooth boundaries, the expressions
in (1) do not make sense in general. To make our exposition precise, we give
the definition of a weak solution of (1).

Definition 3.1. We say that (u, λ) ∈ Vp ×R is a weak solution to (1) if for all
φ ∈ Vp we have

∫

Ω

|∇u|p−2∇u∇φ dx +

∫

∂Ω

|u|p−2uφ dHN−1 = λ

∫

Ω

|u|p−2uφ dx.

In this case, such a pair (u, λ), with u nontrivial, is called an eigenpair, λ is an
eigenvalue and u is called an associated eigenfunction.
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Let us formulate problem (1) variationally. For that purpose we introduce
the C1 functionals I and J : Vp → R defined by

I(u) =

∫

Ω

|∇u|p dx +

∫

∂Ω

|u|pdHN−1 and J (u) =

∫

Ω

|u|pdx.

In particular, we have I(u) = ‖u‖p
Vp

. It follows from previous definitions that a
real value λ is an eigenvalue of problem (1) if and only if there exists u ∈ Vp\{0}
such that I ′(u) = λJ ′(u). Here I ′(u) and J ′(u) denote the Fréchet derivatives
of I and J at u, respectively. At this point let us introduce the set

M =
{

u ∈ Vp : J (u) = 1
}

.

Obviously, we have M 6= ∅. Moreover the set M is a C1 manifold in Vp.

Theorem 3.2. . There exists the principal (i.e., the least) eigenvalue λ1 of (1).
Moreover, λ1 > 0 and any principal eigenfunction (i.e., any eigenfunction cor-

responding to λ1) belongs to L∞(Ω) ∩ C1,δ(Ω) for some δ ∈ (0, 1) and it is of

definite sign in Ω.

Proof of Theorem 3.2. We proceed in standard way. We use the compact em-
bedding (4) and show that I achieves its infimum on M,

λ1 = inf{I(u) : u ∈ M}.

Let (un) be a minimizing sequence for λ1, i.e.,

J (un) = 1 and lim
n→∞

I(un) = λ1.

Obviously (un) is bounded in Vp. By the reflexivity of Vp it has a weakly con-
vergent subsequence, so by renumbering it we can assume that there exists
ϕ1 ∈ Vp such that, un ⇀ ϕ1 in Vp. The compact embedding Vp →֒→֒ Lp(Ω),
see (4), implies un → ϕ1 in Lp(Ω), i.e., J (ϕ1) = 1. In particular, ϕ1 6≡ 0. The
weak lower semicontinuity of the norm in Vp yields λ1 ≤ I(ϕ1) =

∫

Ω
|∇ϕ1|

p dx+
∫

∂Ω
|ϕ1|

pdHN−1 = ‖ϕ1‖
p
Vp

≤ lim infn→∞ ‖un‖
p
Vp

= lim infn→∞ I(un) = λ1, i.e.,

λ1 = I(ϕ1) =

∫

Ω

|∇ϕ1|
p dx +

∫

∂Ω

|ϕ1|
pdHN−1. (5)

It follows from (5) and J (ϕ1) = 1 that λ1 > 0 and by the Lagrange multiplier
method we get that λ1 is the least (principal) eigenvalue of (1) with correspond-
ing principal eigenfunction ϕ1. Moreover, if u is an eigenfunction corresponding
to λ1 then |u| is also an eigenfunction corresponding to λ1. It follows from
Daners and Drábek [15, Theorem 2.7], that |u| ∈ L∞(Ω). Regularity result of
Tolksdorf [34] implies that |u| ∈ C1,δ(Ω) for some δ ∈ (0, 1). If u changes sign,
there is a point in Ω at which |u| vanishes. But then it violates the Harnack
inequality of Trudinger [35]. This proves Theorem 3.2.
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Remark 3.3. Let u ∈ Vp be a principal eigenfunction satisfying u > 0 in Ω.
Then u ≥ 0 a.e. on ∂Ω (in the sense of the Hausdorff measure). Indeed, it follows
from the Definition 3.1 with φ = −u− and λ = λ1 that

∫

∂Ω
|u−|pdHN−1 = 0,

i.e., u ≥ 0 a.e. on ∂Ω.

By convexity argument, as shown in [4], we show that the eigenfunctions
corresponding to λ1 are unique (up to a multiplicative constant). Our proof
is based on the observation, made in [24, Proposition 4], that for nonnegative
functions u, the functional I(u) is convex in up. The proof is included here for
completeness even if it is known in the literature.

Theorem 3.4. . The principal eigenvalue λ1 is simple.

Proof of Theorem 3.4. In the light of Theorem 3.2 it is sufficient to prove that
positive eigenfunctions u, v ∈ M associated with λ1 coincide in Ω. Indeed, let

w = ζ
1

p with ζ = up+vp

2
. Then w ∈ Vp and we have

∫

Ω
wpdx = 1

2

( ∫

Ω
updx +

∫

Ω
vpdx

)

= 1. Hence, w ∈ M. Let θ(x) = up

up+vp ∈ (0, 1), x ∈ Ω . Now we
calculate

∇w = ζ
−1+ 1

p

(

up−1∇u + vp−1∇v

2

)

,

so that, by the convexity of the map s 7→ |s|p, we have

|∇w|p = ζ1−p

∣

∣

∣

∣

1

2

(

up−1 ∇u + vp−1 ∇v
)

∣

∣

∣

∣

p

= ζ

∣

∣

∣

∣

1

2

(

up

ζ
·
∇u

u
+

vp

ζ
·
∇v

v

)∣

∣

∣

∣

p

= ζ

∣

∣

∣

∣

θ(x)
∇u

u
+ (1 − θ(x))

∇v

v

∣

∣

∣

∣

p

≤ ζ

(

θ(x)

∣

∣

∣

∣

∇u

u

∣

∣

∣

∣

p

+ (1 − θ(x))

∣

∣

∣

∣

∇v

v

∣

∣

∣

∣

p )

=
1

2

(

up

∣

∣

∣

∣

∇u

u

∣

∣

∣

∣

p

+ vp

∣

∣

∣

∣

∇v

v

∣

∣

∣

∣

p )

=
1

2

(

|∇u|p + |∇v|p
)

.

(6)

We note that equality occurs in (6) if and only if ∇u
u

= ∇v
v

in Ω. Thus,

∫

Ω

|∇w|pdx ≤
1

2

(
∫

Ω

|∇u|pdx +

∫

Ω

|∇v|pdx

)

.

Also we have
∫

∂Ω
wpdHN−1 = 1

2

( ∫

∂Ω
updHN−1 +

∫

∂Ω
vpdHN−1

)

. Hence

I(w) ≤
1

2

(

I(u) + I(v)
)

. (7)
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On the other hand, u and v are both minimizers of I on M, then we have
∫

Ω

|∇u|pdx +

∫

∂Ω

updHN−1 ≤

∫

Ω

|∇w|pdx +

∫

∂Ω

wpdHN−1

and
∫

Ω

|∇v|pdx +

∫

∂Ω

vpdHN−1 ≤

∫

Ω

|∇w|pdx +

∫

∂Ω

wpdHN−1.

Hence
I(u) + I(v) ≤ 2I(w). (8)

Due to (7) and (8) we have that actually equality holds in (7), and we conclude
∫

Ω

|∇w|pdx =
1

2

(
∫

Ω

|∇u|pdx +

∫

Ω

|∇v|pdx

)

.

With respect to (6) we then have ∇u
u

= ∇v
v

in Ω. But this implies that ∇(u
v
) =0

in Ω, so that u = cv for some c ∈ R. The facts J (u) = J (v) = 1 and u, v

positive in Ω imply c = 1. This completes the proof.

Remark 3.5. It follows from above that the set of all eigenfunctions associated
with the principal eigenvalue λ1 is one-dimensional vector space spanned by a
single function ϕ1 ∈ M satisfying ϕ1 > 0 in Ω and ϕ1 ≥ 0 on ∂Ω.

4. Isolation of the principal eigenvalue

The proofs in this section are standard for the Dirichlet problem. Since we
have to take care also about the boundary values, we include them here for
completeness.

Theorem 4.1. The principal eigenvalue λ1 is isolated, that is, there exists η > 0
such that in the interval (λ1, λ1 + η) there are no other eigenvalues of (1).

For the proof we need the following lemmas. At first, we recall the “Picone
identity” proved in [5, p.820, Theorem 1.1].

Lemma 4.2. Let v > 0, u ≥ 0 be differentiable in Ω. Denote

L(u, v) = |∇u|p + (p − 1)
up

vp
|∇v|p − p

up−1

vp−1
|∇v|p−2∇v∇u ,

R(u, v) = |∇u|p − |∇v|p−2∇
( up

vp−1

)

∇v.

Then

(i) L(u, v) = R(u, v)

(ii) L(u, v) ≥ 0 a.e. in Ω.
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Next, we show that any eigenfunction associated with an eigenvalue λ0 such
that λ0 6= λ1 has to change the sign in Ω.

Proposition 4.3. Any eigenfunction corresponding to the eigenvalue λ0, λ0 6=
λ1 changes sign in Ω.

Proof of Proposition 4.3. We assume the contrary. Let v0 be an eigenfunction
corresponding to the eigenvalue λ0 of (1) and assume that v0 ≥ 0 (the case
v ≤ 0 being completely analogous). By [15, Theorem 2.7], we have v0 ∈ L∞(Ω)
and hence according to [34] we have v0 ∈ C1,δ(Ω) for some δ ∈ (0, 1). Then
Harnack’s inequality implies that v0(x) > 0 for all x ∈ Ω. Note that given

ǫ > 0,
ϕp

1

(v0+ǫ)p−1 ∈ Vp follows from ϕ1, v0 ∈ Vp∩L∞(Ω) and from Ω being of finite
measure. Hence, for any ǫ > 0 we can apply Lemma 4.2 to the pair ϕ1, v0 + ǫ

and use the fact that ϕ1 is a weak solution of (1) with λ = λ1, where
ϕp

1

(v0+ǫ)p−1

can be taken as a test function.

We thus have

0 ≤

∫

Ω

L(ϕ1, v0 + ǫ) dx

=

∫

Ω

R(ϕ1, v0 + ǫ) dx

=

∫

Ω

[

|∇ϕ1|
p − |∇v0|

p−2∇

(

ϕ
p
1

(v0 + ǫ)p−1

)

∇v0

]

dx

= λ1

∫

Ω

ϕ
p
1 dx −

∫

∂Ω

ϕ
p
1dHN−1 −

∫

Ω

|∇v0|
p−2∇

(

ϕ
p
1

(v0 + ǫ)p−1

)

∇v0 dx

= λ1

∫

Ω

ϕ
p
1 dx −

∫

∂Ω

ϕ
p
1dHN−1 − λ0

∫

Ω

v
p−1
0

ϕ
p
1

(v0 + ǫ)p−1
dx

+

∫

∂Ω

v
p−1
0

ϕ
p
1

(v0 + ǫ)p−1
dHN−1

=

∫

Ω

ϕ
p
1

(

λ1 − λ0
v

p−1
0

(v0 + ǫ)p−1

)

dx −

∫

∂Ω

ϕ
p
1

(

1 −
v

p−1
0

(v0 + ǫ)p−1

)

dHN−1 .

Letting ǫ → 0 we apply the Lebesgue dominated convergence theorem to obtain
0 ≤ (λ1 − λ0)

∫

Ω
ϕ

p
1 dx = (λ1 − λ0), which is a contradiction since λ0 > λ1 by

the variational characterization of the principal eigenvalue.

Lemma 4.4. Let k > 0 be fixed and λ > 0, λ 6= λ1 be an eigenvalue of (1) such

that λ ≤ k. Denote Ω+ = {x ∈ Ω: v(x) > 0} and Ω− = {x ∈ Ω: v(x) < 0},
where v is an eigenfunction associated with λ. Then there exists a positive

constant c = c(k, Ω) > 0 such that

|Ω+| ≥ c and |Ω−| ≥ c.
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Proof of Lemma 4.4. We give the proof for Ω−, the other case being analo-
gous. It follows from the Definition 3.1 with φ = v−, that

∫

Ω
|∇v−|p dx +

∫

∂Ω
|v−|p dHN−1 = λ

∫

Ω
|v−|p dx. By Hölder inequality we have

‖v−‖p
Vp

≤ k ||v−||pNp

N−1

|Ω−|
1

N .

On the other hand, by (3) we have

‖v−‖p
Np

N−1

≤ C‖v−‖p
VP

.

Note that ‖v−‖Vp
> 0 due to Proposition 4.3. Hence |Ω−| ≥ (k C)−N = c > 0.

This proves the lemma.

Proof of Theorem 4.1. We proceed similarly as in the case of the Dirichlet prob-
lem. Suppose that λ1 is not isolated. Then there exists a sequence of eigenvalues
of (1), (λn)n≥2, with λn → λ1. Let un be an eigenfunction associated to λn.
Then λ1 < λn, every un changes sign in Ω (see Proposition 4.3), and without
loss of generality we may assume that ‖un‖p = 1. Since ‖un‖

p
Vp

= λn

∫

Ω
|un|

p dx

we can assume that (un) is bounded in Vp. The reflexivity of Vp yields the weak
convergence un ⇀ ũ in Vp for some ũ ∈ Vp (at least for some subsequence of
(un)). The compact embedding Vp →֒→֒ Lp(Ω) implies the strong convergence
un → ũ in Lp(Ω). Moreover J (ũ) = 1. On the other hand

I(ũ) := ‖ũ‖p
Vp

≤ lim inf
n→∞

‖un‖
p
Vp

= λ1 = inf
v∈M

I(v),

and hence λ1 = I(ũ). By Theorem 3.2, we can assume ũ > 0. Since un → ũ

in Lp(Ω), then un → ũ in measure, and then (un) has a subsequence (still
denoted un) which converges to ũ a.e. in Ω, then |Ω−

n | → 0, where Ω−
n = {x ∈

Ω: un(x) < 0}. But this contradicts Lemma 4.4.

5. The principal eigencurve

In order to link all three basic types of homogeneous boundary conditions
(Dirichlet, Neumann and Robin), we consider the following nonlinear eigen-
value problem







−∆pu = λ|u|p−2u in Ω

|∇u|p−2∂u

∂ν
+ µ|u|p−2u = 0 on ∂Ω,

(9)

where µ is a variable parameter. We study the dependence of λ1 = λ1(µ) and
ϕ1 = ϕ1(µ) on µ ∈ [0,∞).
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We define

Iµ(u) =

∫

Ω

|∇u|p dx + µ

∫

∂Ω

|u|pdHN−1 and J (u) =

∫

Ω

|u|pdx,

and
λ1 : µ → λ1(µ) = inf

{

Iµ(u) : u ∈ M
}

,

where M = {u ∈ Vp : J (u) = 1}. The graph of λ1 = λ1(µ) is called the first
eigencurve of (9).

By similar arguments as in Sections 3 and 4, we can prove the existence,
simplicity and isolation of principal eigenvalue λ1(µ) of (9) for any fixed µ. We
have ϕ1(µ) ∈ M, ϕ1(µ) ∈ L∞(Ω) ∩ C1,δ(Ω) for some δ ∈ (0, 1) and ϕ1(µ) > 0
in Ω, ϕ1(µ) ≥ 0 on ∂Ω.

Lemma 5.1. The function λ1 = λ1(µ) is concave in (0,∞).

Proof of Lemma 5.1. It is easy to see that, µ → Iµ(u) is an affine and so concave
function. As the infimum of the collection of concave functions is concave, it
follows that λ1 = λ1(µ) is concave function.

Lemma 5.2. The function λ1 = λ1(µ) is continuous in (0,∞), i.e., for any

µ0 ∈ (0,∞), µ → µ0 implies λ1(µ) → λ1(µ0).

Proof of Lemma 5.2. Continuity of λ1 = λ1(µ) follows from Lemma 5.1 and the
fact that a concave function is continuous on its open domain of definition.

Lemma 5.3. The function ϕ1 = ϕ1(µ) is continuous in (0,∞), i.e., for any

µ0 ∈ (0,∞), µ → µ0 implies ϕ1(µ) → ϕ1(µ0) in Vp.

Proof of Lemma 5.3. Let µ → µ0 ∈ (0,∞). We introduce an equivalent norm
on Vp by

‖u‖ =
(

‖u‖p
1,p + µ0 ‖u|∂Ω‖

p
Lp(∂Ω)

)
1

p .

As ϕ1(µ) is bounded in Vp, there exists ϕ̃ ∈ Vp such that, ϕ1(µ) ⇀ ϕ̃ weakly
in Vp, and ϕ1(µ) → ϕ̃ strongly in Lp(Ω), i.e., J (ϕ̃) = 1.

On the other hand, by Lemma 5.2, we know that λ1(µ) → λ1(µ0), hence

lim
µ→µ0

‖ϕ1(µ)‖p = lim
µ→µ0

(

λ1(µ)+(µ−µ0)

∫

∂Ω

ϕ1(µ)pdHN−1

)

= lim
µ→µ0

λ1(µ)=‖ϕ1(µ0)‖
p.

The weak lower semicontinuity of the norm in Vp then yields

λ1(µ0) ≤ ‖ϕ̃‖p ≤ lim inf
µ→µ0

‖ϕ1(µ)‖p = lim
µ→µ0

‖ϕ1(µ)‖p = ‖ϕ1(µ0)‖
p = λ1(µ0),

i.e., λ1(µ0) = ‖ϕ̃‖p. Hence, ϕ̃ = ϕ1(µ0) by simplicity of λ1(µ0). Moreover, the
uniform convexity of Vp then implies the strong convergence ϕ1(µ) → ϕ1(µ0)
in Vp.



480 P. Drábek and S. H. Rasouli

The next lemma asserts that λ1 = λ1(µ) is actually differentiable.

Lemma 5.4. For any µ0 ∈ (0,∞), we have

dλ1

dµ
(µ0) =

∫

∂Ω

ϕ1(µ0)
pdHN−1.

In particular, the function λ1 = λ1(µ) is non decreasing.

Proof of Lemma 5.4. Let us recall the normalization ϕ1(µ) ∈ M. For any pos-
itive µ and µ0, by using the variational characterization of λ1(µ) and λ1(µ0),
respectively, we have

λ1(µ0) = Iµ0
(ϕ1(µ0)) ≤ Iµ0

(ϕ1(µ)) and λ1(µ) = Iµ(ϕ1(µ)) ≤ Iµ(ϕ1(µ0)).

Thus,

(µ − µ0)

∫

∂Ω

ϕ1(µ)pdHN−1 ≤ λ1(µ) − λ1(µ0) ≤ (µ − µ0)

∫

∂Ω

ϕ1(µ0)
pdHN−1.

Dividing by (µ−µ0) and letting µ → µ0, the result follows from Lemma 5.3.

Continuity of λ1(µ) and ϕ1(µ) at 0 requires a special attention. Let us
assume that Ω is a bounded domain with Lipschitz boundary. Note that (0=)
λ1(0) = λN

1 , where λN
1 denotes the principal eigenvalue of the p-Laplacian sub-

ject to the Neumann boundary conditions with corresponding eigenfunction
ϕ1(0) = const.

It follows from the Trace Theorem (see [25, 29]) that there exists c > 0
such that for any W 1

p (Ω) ∩ C(Ω) we have ‖u|∂Ω‖Lp(∂Ω) ≤ c‖u‖p. In particular,
Vp = W 1

p (Ω). Moreover, given µ0 > 0, it follows from the definition of ϕ1(µ)
that for all µ ∈ (0, µ0) the norms ‖ϕ1(µ)‖Vp

are uniformly bounded. Hence,
there exists φ1 ∈ W 1

p (Ω) such that for µ → 0, we may assume that ϕ1(µ) ⇀ φ1

weakly in W 1
p (Ω) and ϕ1(µ) → φ1 strongly in Lp(Ω). In particular, we have

φ1 ≥ 0 a.e. in Ω and φ1 6= 0 by normalization of ϕ1(µ). Due to Lemma 5.2 we
also have λ(µ) → λ̃ ≥ 0. Letting µ → 0 in

∫

Ω

|∇ϕ1(µ)|p−2∇ϕ1(µ)∇φ dx + µ

∫

∂Ω

|ϕ1(µ)|p−2ϕ1(µ)φ dHN−1

= λ(µ)

∫

Ω

|ϕ1(µ)|p−2ϕ1(µ)φ dx,

we conclude that φ1 is a weak solution of the Neumann problem







−∆pφ1 = λ̃ |φ1|
p−2φ1 in Ω

|∇φ1|
p−2∂φ1

∂ν
= 0 on ∂Ω.
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This fact together with φ1 ≥ 0 a.e. in Ω imply that φ1 = ϕ1(0) = const 6= 0,
λ̃ = λ(0) = 0. Substituting φ = ϕ1(µ) into the integral identity above and
letting µ → 0, we get ‖ϕ1(µ)‖1,p → 0 and so, eventually, ϕ1(µ) → ϕ1(0)
strongly in W 1

p (Ω).

Figure 1. Graph of µ → λ1(µ) when λ1(µ0)=λD

1
.

Finally, we proceed to prove that λ1(µ) → λD
1 and ϕ1(µ) → ϕD

1 as µ → ∞,
where λD

1 denotes the principal eigenvalue of the p-Laplacian subject to the
Dirichlet boundary conditions and ϕD

1 is the corresponding eigenfunction.

We observe that the function λ1 = λ1(µ) is bounded above by λD
1 . Indeed,

let us assume that there is a µ0 > 0 such that λ1(µ0)=λD
1 . By the uniqueness

result for the positive normalized eigenfunction of the homogeneous Dirichlet
problem, ϕ1(µ0) is its principal eigenfunction which belongs to W̊ 1

p (Ω). It then

follows from Lemma 5.4 that dλ1

dµ
(µ0) = 0. Since λ1 = λ1(µ) is concave and

non decreasing function, we actually have dλ1

dµ
(µ) = 0, i.e., λ1(µ) = λD

1 for all
µ ≥ µ0, see Figure 1.

Let the boundary of Ω be regular at a point x0 ∈ ∂Ω and the Hopf Maximum
Principle applies at x0. For example, this is the case, when ∂Ω satisfies the
interior sphere condition at x0. Then ϕ1(µ0) would violate the Robin boundary
condition at x0 and the equality λ1(µ0)=λD

1 never holds with a finite µ0. Due
to the continuity of function λ1 = λ1(µ), we thus have λ1(µ) < λD

1 for all µ ∈
[0,∞).

To summarize above discussion, we present the following

Theorem 5.5. . The function λ1 = λ1(µ) is concave, increasing, continuously

differentiable and bounded above. The function ϕ1 = ϕ1(µ) (as a function from

R into Vp) is continuous. Moreover, if the Hopf maximum principle holds at

some point x0 ∈ ∂Ω, the following asymptotic properties as µ → ∞ hold true
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(see Figure 2):

λ1(µ) < λD
1 , µ ∈ [0,∞), lim

µ→∞
λ1(µ) = λD

1 ,

and

lim
µ→∞

‖ϕ1(µ) − ϕD
1 ‖Vp

= 0 .

Figure 2. Graph of µ → λ1(µ).

Proof of Theorem 5.5. It remains to prove the asymptotic properties of λ1(µ)
and ϕ1(µ). By Lemma 5.3, (ϕ1(µ)) is bounded in Vp as µ → ∞. Then there
exists ϕ∞ ∈ Vp such that, ϕ1(µ) ⇀ ϕ∞ weakly in Vp as µ → ∞ and ϕ1(µ) → ϕ∞

strongly in Lp(Ω) as µ → ∞, i.e.,

J (ϕ∞) = 1, and ϕ∞ > 0 in Ω.

The weak lower semicontinuity of the norm in Vp yields

λD
1 ≤ ‖ϕ∞‖1,p

≤ I(ϕ∞)

=

∫

Ω

|∇ϕ∞|p dx +

∫

∂Ω

ϕp
∞dHN−1

≤ lim inf
µ→∞

∫

Ω

|∇ϕ1(µ)|p dx +

∫

∂Ω

ϕ1(µ)pdHN−1

= lim inf
µ→∞

I(ϕ1(µ))

≤ lim inf
µ→∞

Iµ(ϕ1(µ))

= lim inf
µ→∞

λ1(µ)

≤ lim sup
µ→∞

λ1(µ)
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≤ λD
1 .

i.e., limµ→∞ λ1(µ) = λD
1 , and ϕ∞ = ϕD

1 . Moreover, it follows from the above
inequalities that ‖ϕ1(µ)‖Vp

→ ‖ϕD
1 ‖Vp

as µ → ∞. The uniform convexity of Vp

then implies the strong convergence ϕ1(µ) → ϕD
1 in Vp as µ → ∞.

Remark 5.6. Our results could be formulated and proved for the nonlinear
eigenvalue problem of the form







−∆pu = λa(x)|u|p−2u in Ω

|∇u|p−2∂u

∂ν
+ µb(x)|u|p−2u = 0 on ∂Ω.

Here b(x) ∈ L∞(∂Ω) and there exists a constant b0 > 0 such that b(x) ≥ b0;
a(x) ∈ L q

q−p
(Ω) with some q satisfying p < q < Np

N−1
or a(x) ∈ L∞(Ω), and

moreover, |{x ∈ Ω : a(x) > 0}| > 0. Then all our proofs can be recovered using
multiple use of Hölder’s inequality.
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