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Abstract. We present conditions which are necessary and sufficient for compact
embeddings of Bessel potential spaces HσX(Rn), modelled upon a rearrangement-
-invariant Banach function spaces X(Rn), into generalized Hölder spaces involving
k-modulus of smoothness. To this end, we derive a characterization of compact
subsets of generalized Hölder spaces. We apply our results to the case when X(Rn)
is a Lorentz–Karamata space Lp,q;b(R

n). Applications cover both superlimiting and
limiting cases.
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1. Introduction and main results

The paper is a continuation of [16], where optimal embeddings of Bessel-poten-
tial-type spaces HσX(Rn) with order of smoothness σ ∈ (0, n), modelled upon
rearrangement-invariant Banach function spaces (r.i.BFS) X(Rn), into general-

ized Hölder spaces Λ
k,µ(·)
∞,r (Rn), 0 < r ≤ +∞, µ ∈ Lk

r , involving the k-modulus of
smoothness, were investigated. (The class Lk

r consists of all continuous functions
µ : (0, 1) → (0, +∞) that satisfy (2.5) and (2.6) bellow. We refer to Section 2
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for definitions of the spaces in question). To this end, in [16] we have used
a sharp estimate of the k-modulus of smoothness of the convolution of a func-
tion f from an r.i.BFS X(Rn) with the Bessel potential kernel gσ, σ ∈ (0, n).
Such an estimate states that if gσ belongs to the associate space of X(Rn), then

ωk(f ∗gσ, t)-

∫ tn

0

s
σ
n
−1f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X(Rn), (1.1)

provided that k ≥ [σ] + 1 (f ∗ denotes the non-increasing rearrangement of f).
Estimate (1.1) and its reverse form (cf. Theorem 3.8 below) have enabled us to
characterize the continuous embeddings of spaces in question. Namely, we have
proved the following theorem.

Theorem 1.1 (cf. [16, Theorem 1.1]). Let σ ∈ (0, n) and let X = X(Rn) =
X(Rn, µn) be an r.i.BFS such that ‖gσ‖X′ < +∞. Put k := [σ]+1, assume that

r ∈ (0, +∞] and µ ∈ Lk
r . Then

HσX(Rn) →֒ Λk,µ(·)
∞,r (Rn) (1.2)

if and only if

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,1)

- ‖f‖X for all f ∈ X. (1.3)

Note that the implication (1.2) =⇒ (1.3) in Theorem 1.1 remains true
if k ∈ N. Theorem 1.1 has the following corollary.

Corollary 1.2 (cf. [16, Corollary 1.2]). Let σ ∈ (0, n) and let X = X(Rn) be

an r.i.BFS. Put k := [σ] + 1, assume that r ∈ (0, +∞] and µ ∈ Lk
r . Then

embedding (1.2) holds if and only if ‖gσ‖X′ < +∞ and (1.3) is satisfied.

Moreover, in [16] we have applied Theorem 1.1 to the case when X(Rn)
is a Lorentz–Karamata space Lp,q;b(R

n) and we have considered both the su-
perlimiting case when p > n

σ
and the limiting case when p = n

σ
. For example,

choosing in the superlimiting case σ = k +1, p = q = n
k
, with k ∈ N, k < n− 1,

and b(t) = (1+| log t|)α, t > 0, α < 1− k
n
, we have obtained that (cf. [16, (5.16)])

W k+1Ln/k(log L)α(Rn) →֒ Λ
2,λ(·)
∞,n/k(R

n), (1.4)

where λ(t) := t(1 + | log t|)−α, t > 0. Embedding (1.4) is the continuous em-
bedding of the Sobolev–Orlicz space W k+1Ln/k(log L)α(Rn) (the Sobolev space
modelled upon the Orlicz space Ln/k(log L)α(Rn) = LΦ(Rn), where the Young
function Φ satisfies Φ(t) ≈ [t(1 + | log t|)α]

n
k , t > 0) into the Zygmund-type

space Λ
2,λ(·)
∞,n/k(R

n). (Note that in the notation Λ
2,λ(·)
∞,n/k(R

n) the upper index 2
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indicates that the second order modulus of smoothness is used to define this
space.) This means that there exists a constant C > 0 such that

‖u‖L∞(Rn) +

(∫ 1

0

(
ω2(u, t)

t(1 + | log t|)−α

)n
k dt

t

)k
n

≤ C‖u‖W k+1Ln/k(log L)α(Rn)

for all u ∈ W k+1Ln/k(log L)α(Rn). Such embedding is optimal and it does not
follow from known results on embeddings of Sobolev–Orlicz spaces. In particu-
lar, if α = 0, we have arrived to the continuous embedding of the Sobolev space
W k+1,n/k(Rn) = W k+1Ln/k(Rn), with k ∈ N, k < n− 1, into the Zygmund-type

space Λ
2,Id(·)
∞,n/k(R

n) (Id stands for the identity map on (0, +∞)). The last men-
tioned embedding shows that the Brézis–Wainger result∗ on “almost” Lipschitz
continuity of functions from the Sobolev space W k+1,n/k(Rn) is a consequence
of a better embedding whose target is a Zygmund-type space. Similarly, choos-
ing σ = k, p = q = n

k
, with k ∈ N, k < n, and b(t) = (1 + | log t|)α, t > 0,

α > 1 − k
n

in the limiting case, we have obtained optimal continuous embed-
dings of the Sobolev–Orlicz space W kLn/k(log L)α(Rn) into Hölder-type spaces.
Namely (cf. [16, (7.9)]),

W kLn/k(log L)α(Rn) →֒ Λ
1,λ(·)
∞,n/k(R

n), (1.5)

where λ(t) = (1 + | log t|)1−α, t ∈ (0, 1).

The aim of this paper is the characterization of compact embeddings of
the Bessel potential space HσX(Rn) with the order of smoothness σ ∈ (0, n),

modelled upon r.i.BFS X(Rn), into generalized Hölder spaces Λ
k,µ(·)
∞,r (Ω), where

0 < r ≤ +∞ and Ω is a bounded domain in R
n. To this end, it is essential to

characterize totally bounded subsets of the space Λ
k,µ(·)
∞,r (Ω), Ω having minimally

smooth boundary. The result is given in the following theorem.

Theorem 1.3. Let k ∈ N, r ∈ (0, +∞), µ ∈ Lk
r and let Ω be a bounded domain

in R
n with minimally smooth boundary. Then S ⊂ Λ

k,µ(·)
∞,r (Ω) is totally bounded

if and only if S is bounded in Λ
k,µ(·)
∞,r (Ω) and

sup
u∈S

∥∥∥t−
1
r (µ(t))−1ωk(u, t)

∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+. (1.6)

Our main result (which is an analogue of Theorem 1.1) reads as follows.

Theorem 1.4. Let σ ∈ (0, n) and let X = X(Rn) = X(Rn, µn) be an r.i.BFS

such that ‖gσ‖X′ < ∞. Put k := [σ] + 1, assume that r ∈ (0, +∞), µ ∈ Lk
r and

that Ω is a bounded domain in R
n. Then

HσX(Rn) →֒→֒ Λk,µ(·)
∞,r (Ω) † (1.7)

∗Note that the Brézis–Wainger embedding has the target space Λ
1,µ(·)
∞,∞ (Rn) with µ(t) =

t(1 + | log t|)1−
k

n , t ∈ (0, 1), cf. [5, Corollary 5].
†This means that the mapping u 7→ u|Ω from HσX(Rn) into Λ

k,µ(·)
∞,r (Ω) is compact.
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if and only if

sup
‖f‖X≤1

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+. (1.8)

Note that the implication (1.7) =⇒ (1.8) in Theorem 1.4 remains true if
k ∈ N (cf. Remark 5.1 below). The counterpart of Corollary 1.2 reads as follows.

Corollary 1.5. Let σ ∈ (0, n) and let X = X(Rn) be an r.i.BFS. Put k :=
[σ] + 1, assume that r ∈ (0, +∞), µ ∈ Lk

r and that Ω is a bounded domain

in R
n. Then (1.7) holds if and only if ‖gσ‖X′ < +∞ and (1.8) is satisfied.

As in [16], we apply our main result (Theorem 1.4) to the case when X(Rn)
is a Lorentz–Karamata space Lp,q;b(R

n). The corresponding compact embed-
dings are characterized in Theorems 1.6 and 1.8 (and Corollaries 1.7 and 1.9)
below. The former theorem concerns the superlimiting case p > n

σ
while the

latter one is devoted to the limiting case p = n
σ
.

Theorem 1.6. Let σ ∈ (0, n), p ∈ (n
σ
, +∞), q ∈ [1, +∞], b ∈ SV (0, +∞),

r ∈ (0, +∞), k = [σ] + 1 and µ ∈ Lk
r . Assume that Ω is a bounded domain

in R
n. Let λ : (0, 1) → (0, +∞) be defined by

λ(x) := x
σ−n

p
(
b(xn)

)−1
for all x ∈ (0, 1). (1.9)

(Note that λ ∈ Lk
r for any r ∈ (0, +∞]; recall that b is continuous (cf. (2.1)).)

(i) If 1 ≤ q ≤ r < +∞, then

HσLp,q;b(R
n) →֒→֒ Λk,µ(·)

∞,r (Ω) (1.10)

if and only if

lim
x→0+

∥∥∥t−
1
r (µ(t))−1

∥∥∥
r;(x,1)

λ(x) = 0. (1.11)

(ii) If 0 < r < q ≤ +∞ and q > 1, then

HσLp,q;b(R
n) →֒→֒ Λk,µ(·)

∞,r (Ω) (1.12)

if and only if

∫ 1

0

(∥∥∥t−
1
r (µ(t))−1

∥∥∥
r;(x,1)

λ(x)
)u dx

x
< +∞, (1.13)

where 1
u

:= 1
r
− 1

q
.

Corollary 1.7. Assume that all the assumptions of Theorem 1.6 are satisfied.

Let µ ∈ L
[σ−n/p]+1
r . If 1 ≤ q ≤ r < +∞, then

HσLp,q;b(R
n) →֒→֒ Λ[σ−n/p]+1,µ(·)

∞,r (Ω) (1.14)

if and only if (1.11) is satisfied.
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Theorem 1.8. Let σ ∈ (0, n), p = n
σ
, q ∈ (1, +∞], r ∈ (0, +∞), k = [σ] + 1,

µ ∈ Lk
r and let b ∈ SV (0, +∞) be such that

∥∥t−
1

q′ (b(t))−1
∥∥

q′;(0,1)
< +∞. Assume

that Ω is a bounded domain in R
n. Let λqr be defined by

λqr(x) := b
q′

r (xn)

(∫ xn

0

b−q′(t)
dt

t

) 1

q′
+ 1

r

, x ∈ (0, 1). (1.15)

(Note that λqr ∈ Lk
r ; recall that b is continuous (cf. (2.1)).)

(i) If 1 < q ≤ r < +∞, then

HσLp,q;b(R
n) →֒→֒ Λk,µ(·)

∞,r (Ω) (1.16)

if and only if

lim
x→0+

∥∥t− 1
r (µ(t))−1

∥∥
r;(x,1)∥∥t− 1

r (λqr(t))−1
∥∥

r;(x,1)

= 0. (1.17)

(ii) If 0 < r < q ≤ +∞ and q > 1, then

HσLp,q;b(R
n) →֒→֒ Λk,µ(·)

∞,r (Ω) (1.18)

if and only if

∫ 1
2

0

( ∥∥t− 1
r (µ(t))−1

∥∥
r;(x,1)∥∥t− 1

r (λqr(t))−1
∥∥

r;(x,1)

)u(∫ xn

0

t−1b−q′(t) dt

)−1

b−q′(xn)
dx

x
<+∞, (1.19)

where 1
u

:= 1
r
− 1

q
.

Corollary 1.9. Assume that all the assumptions of Theorem 1.8 are satisfied.

Let µ ∈ L1
r. If 1 < q ≤ r < +∞, then

HσLp,q;b(R
n) →֒→֒ Λ1,µ(·)

∞,r (Ω) (1.20)

if and only if (1.17) is satisfied.

When Ω is a bounded domain in R
n, Theorem 1.6 and Corollary 1.7 yield

the compactness result corresponding to (1.4): If k ∈ N, k < n − 1 and
α < 1 − k

n
, then

W k+1Ln/k(log L)α(Rn) →֒→֒ Λ
2,µ(·)
∞,n/k(Ω),

where µ(t) := t(1+| log t|)−β, t > 0, β ∈ R, holds if and only if β < α. Similarly,
Theorem 1.8 and Corollary 1.9 provide the compactness result corresponding
to (1.5): If k ∈ N, k < n and α > 1 − k

n
, then

W kLn/k(log L)α(Rn) →֒→֒ Λ
1,µ(·)
∞,n/k(Ω),
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where µ(t) = (1 + | log t|)1−β, t ∈ (0, 1), β ∈ R, holds if and only if
β ∈ (1 − k

n
, α).

The paper is organized as follows. Section 2 contains notation, definitions
and basic properties. In Section 3 we summarize some results, which we shall
need in subsequent sections. This section also involves key estimate (1.1) and its
reverse form proved in [14]. In Section 4 we prove Theorem 1.3, while Section 5
is devoted to the proofs of Theorem 1.4 and Corollary 1.5. Finally, in Section 6
we present proofs of Theorems 1.6, 1.8 and Corollaries 1.7, 1.9. Note that any
of Sections 4–6 contains some important remarks and comments on the results
proved there.

2. Notation, definitions and basic properties

As usual, R
n denotes the Euclidean n-dimensional space. Throughout the pa-

per µn is the n-dimensional Lebesgue measure in R
n and Ω is a µn-measurable

subset of R
n. We denote by χΩ the characteristic function of Ω and put

|Ω|n = µn(Ω). The family of all extended scalar-valued (real or complex)
µn-measurable functions on Ω is denoted by M(Ω) while M+(Ω) stands for
the subset of M(Ω) consisting of all functions which are non-negative µn-a.e.
on Ω. When Ω is an interval (a, b) ⊆ R, we denote these sets by M(a, b) and
M+(a, b), respectively. By M+(a, b; ↓) we mean the subset of M+(a, b) con-
taining all non-increasing functions on the interval (a, b). The symbol W(a, b)
stands for the class of weight functions on (a, b) ⊆ R consisting of all µn-
measurable functions which are positive and finite µn-a.e. on (a, b). The
non-increasing rearrangement of f ∈ M(Ω) is the function f ∗ defined by
f ∗(t) := inf {λ ≥ 0 : |{x ∈ Ω : |f(x)|>λ}|n ≤ t} for all t ≥ 0. By f ∗∗ we de-
note the maximal function of f ∗ given by f ∗∗(t) := t−1

∫ t

0
f ∗(τ) dτ , t > 0.

Given a rearrangement-invariant Banach function space (r.i.BFS) X, its as-
sociate space is denoted by X ′. For general facts about rearrangement-invariant
Banach function spaces we refer to [3].

Let X and Y be two (quasi-)Banach spaces. We say that X coincides with
Y (and write X = Y ) if X and Y are equal in the algebraic and topological
sense (their (quasi-)norms are equivalent). The symbol X →֒ Y means that
X ⊂ Y and the natural embedding of X in Y is continuous.

By c, C, c1, C1, c2, C2, etc. we denote positive constants independent
of appropriate quantities. For two non-negative expressions (i.e., functions or
functionals) A, B, the symbol A - B (or A % B) means that A ≤ cB (or
cA ≥ B). If A - B and A % B, we write A ≈ B and say that A and B are
equivalent. Throughout the paper we use the abbreviation LHS(∗) (RHS(∗))
for the left- (right-) hand side of the relation (∗). We adopt the convention that

a
+∞

= 0 and a
0

= +∞ for all a > 0. If p ∈ (0, +∞], the conjugate number p′
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is given by 1
p

+ 1
p′

= 1. Note that p′ is negative, if p ∈ (0, 1). In the whole

paper ‖.‖p;(c,d), p ∈ (0, +∞], denotes the usual Lp-(quasi-)norm on the interval
(c, d) ⊆ R.

For ρ ∈ (0, +∞) and x ∈ R
n, B(x, ρ) = Bn(x, ρ) stands for the open ball in

R
n of radius ρ and centre x. By βn we denote the volume of the unit ball in R

n.
Let either a = 1 or a = +∞. We say that a positive and µn-measurable

function b is slowly varying on (0, a), and write b ∈ SV (0, a), if, for each ε > 0,
tεb(t) is equivalent to a non-decreasing function on (0, a) and t−εb(t) is equiv-
alent to a non-increasing function on (0, a). Here we follow the definition of
SV (0, +∞) given in [17]; for other definitions see, for example, [4,8,11,21]. The
family SV (0, +∞) includes not only powers of iterated logarithms and the bro-
ken logarithmic functions of [12] but also such functions as t → exp (|log t|a) ,

a ∈ (0, 1). (The last mentioned function has the interesting property that it
tends to infinity more quickly than any positive power of the logarithmic func-
tion).

We can see from Lemma 3.1 (i) below that any b ∈ SV (0, +∞) is equivalent

to a b̃ ∈ SV (0, +∞) which is continuous on (0, +∞). Consequently, without
loss of generality, we shall assume that

all slowly varying functions in question are continuous on (0, +∞). (2.1)

More properties and examples of slowly varying functions can be found in [25,
Chapter V, p. 186] and [4,11,17,21].

Let p, q ∈ (0, +∞], b ∈ SV (0, +∞) and let Ω be a µn-measurable subset
of R

n. The Lorentz–Karamata (LK) space Lp,q;b(Ω) is defined to be the set of
all functions f ∈ M(Ω) such that

‖f‖p,q;b;Ω :=
∥∥∥t

1
p
− 1

q b(t) f ∗(t)
∥∥∥

q;(0,+∞)
< +∞. (2.2)

If Ω = R
n, we simply write ‖ · ‖p,q;b instead of ‖ · ‖p,q;b;Rn .

Particular choices of b give well-known spaces. If m ∈ N, α=(α1, . . . , αm)∈
R

m and

b(t) = ℓ
α(t) :=

m∏

i=1

ℓαi
i (t) for all t > 0

(where ℓ(t) = ℓ1(t) := 1 + |log t| , ℓi(t) := ℓ1(ℓi−1(t)) if i > 1), then the LK-
space Lp,q;b(Ω) is the generalized Lorentz–Zygmund space Lp,q,α introduced
in [10] and endowed with the (quasi-)norm ‖f‖p,q;α;Ω, which in turn becomes
the Lorentz–Zygmund space Lp,q(log L)α1(Ω) of Bennett and Rudnick [2] when
m = 1. If α = (0, . . . , 0), we obtain the Lorentz space Lp,q(Ω) endowed with the
(quasi-) norm ‖ · ‖p,q;Ω, which is just the Lebesgue space Lp(Ω) equipped with
the (quasi-)norm ‖·‖p;Ω when p = q; if p = q and m = 1, we obtain the Zygmund
space Lp(log L)α1(Ω) endowed with the (quasi-)norm ‖ · ‖p;α1;Ω.
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The Bessel kernel gσ, σ > 0, is defined as that function on R
n whose

Fourier transform is ĝσ(ξ) = (2π)−
n
2 (1 + |ξ|2)−

σ
2 , ξ ∈ R

n, where the Fourier
transform f̂ of a function f is given by f̂(ξ) = (2π)−

n
2

∫
Rn e−iξ·x f(x) dx. Some

basic properties of the Bessel kernel gσ can be found, e.g., in [24].
Let σ > 0 and let X = X(Rn) = X(Rn, µn) be an r. i. Banach function

space endowed with the norm ‖ · ‖X . The Bessel potential space HσX(Rn) is
defined by

HσX(Rn) :=
{
u : u = f ∗ gσ, f ∈ X(Rn)

}
(2.3)

and is equipped with the norm

‖u‖HσX := ‖f‖X . (2.4)

Note that, given f ∈ X, the convolution u = f ∗ gσ is well defined and finite
µn-a.e. on R

n since the measure space (Rn, µn) is resonant and so (cf. [3,
Theorem II.6.6]) X →֒ L1(Rn) + L∞(Rn).

If p ∈ (1, +∞], q ∈ [1, +∞] and b ∈ SV (0, +∞), then the space Lp,q;b(R
n)

coincides with an r. i. Banach function space X(Rn) (the (quasi-)norm (2.2)

is equivalent to the norm ‖t
1
p
− 1

q b(t) f ∗∗(t)‖q;(0,+∞), which follows from the

estimate f ∗ ≤ f ∗∗ and Lemma 3.2 (i) with r = q, w(t) = t
1
p
− 1

q
−1

b(t), v(t) =

t
1
p
− 1

q b(t) and a = +∞). Consequently, if σ > 0, p ∈ (1, +∞], q ∈ [1, +∞] and
b ∈ SV (0, +∞), HσLp,q;b(R

n) := HσX(Rn) is the usual Bessel potential space
modelled upon the Lorentz–Karamata space Lp,q;b(R

n), which is equipped with
the (quasi-)norm

‖u‖σ;p,q;b := ‖f‖p,q;b.

When m ∈ N, α = (α1, . . . , αm) ∈ R
m and b = ℓ

α, we obtain the loga-
rithmic Bessel potential space HσLp,q;α(Rn), endowed with the (quasi-)norm
‖u‖σ;p,q;b and considered in [10]. Note that if α = (0, . . . , 0), HσLp,p;α(Rn) is
simply the (fractional) Sobolev space Hσ,p(Rn) of order σ.

When k ∈ N, p, q ∈ (1, +∞) and b ∈ SV (0, +∞), then

HkLp,q;b(R
n) =

{
u : Dαu ∈ Lp,q;b(R

n) if |α| ≤ k
}

and

‖u‖k;p,q;b ≈
∑

|α|≤k

‖Dαu‖p,q;b for all u ∈ HkLp,q;b(R
n)

according to [13, Lemma 4.5] and [22, Theorem 5.3].

Let Ω be a domain in R
n. We denote by B(Ω) the set of all scalar-valued

functions (real or complex) which are bounded on Ω and we equip this set with
the norm

‖f‖B(Ω) := sup{|f(x)| : x ∈ Ω}.
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The subspace of B(Ω) of all continuous functions on Ω is denoted by CB(Ω) and
it is equipped with the B(Ω)-norm. By C(Ω) we mean the subspace of CB(Ω)
of all uniformly continuous functions on Ω.

Let Ω be a domain in R
n and let k ∈ N. For each h ∈ R

n, put Ω(kh) :=
{x ∈ Ω : x + th ∈ Ω, 0 ≤ t ≤ k}. The first difference operator ∆h is defined on
scalar functions f ∈ B(Ω) by ∆hf(x) = f(x + h) − f(x) for all x ∈ Ω(h), and
higher order differences are defined inductively by

∆k+1
h f(x) = ∆h(∆

k
hf)(x), x ∈ Ω((k + 1)h).

The k-modulus of smoothness of a function f in CB(Ω) is given by

ωk,Ω(f, t) := sup
|h|≤t

∥∥∆k
hf |B(Ω(kh))

∥∥ for all t ≥ 0.

If k = 1, we write ωΩ(f, t) instead of ω1,Ω(f, t).
It is clear that the k-modulus of smoothness depends on a given domain Ω.

In what follows we shall sometimes omit the subscript Ω at the k-modulus of
smoothness since it will be always clear from the context which k-modulus of
smoothness we have in mind.

Let k ∈ N, r ∈ (0, +∞] and let Lk
r be the class of all continuous functions

µ : (0, 1) → (0, +∞) such that
∥∥∥∥t

− 1
r

1

µ(t)

∥∥∥∥
r;(0,1)

= +∞ (2.5)

and ∥∥∥∥t
− 1

r
tk

µ(t)

∥∥∥∥
r;(0,1)

< +∞. (2.6)

When r = +∞, we simply write Lk instead of Lk
r .

Let k ∈ N, r ∈ (0, +∞], µ ∈ Lk
r and let Ω be a domain in R

n. The

generalized Hölder space Λ
k,µ(·)
∞,r (Ω) consists of all functions f ∈ CB(Ω) for which

the quasi-norm

‖f |Λk,µ(·)
∞,r (Ω)‖ := ‖f |B(Ω)‖ +

∥∥∥∥t
− 1

r
ωk(f, t)

µ(t)

∥∥∥∥
r;(0,1)

(2.7)

is finite. Standard arguments show that the space Λ
k,µ(·)
∞,r (Ω) is complete (cf. [20,

Theorem 3.1.4]).
Conditions (2.5) and (2.6) are natural (see [16]) and, if r = +∞, we can

assume without loss of generality in the definition of Λ
k,µ(·)
∞,r (Ω) that all the

elements µ of Lk
r are continuous non-decreasing functions on the interval (0, 1)

satisfying limt→0+
µ(t) = 0 (see again [16]).

If µ(t) = t, t ∈ (0, 1), then Λ
1,µ(·)
∞,∞ (Ω) coincides with the space Lip(Ω) of the

Lipschitz functions. If µ(t) ≡ tα, α ∈ (0, 1), then the space Λ
1,µ(·)
∞,r (Ω) coincides

with the space C0,α,r(Ω) considered in [1, p. 232].
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3. Auxiliary results and key estimate

In this section we summarize results, which we shall need in subsequent sec-
tions. Theorem 3.8 mentioned below gives sharp estimates for the k-modulus of
smoothness of the convolution of a function f from an r.i.BFS X(Rn) with the
Bessel potential kernel gσ, 0 < σ < n, with k ≥ [σ] + 1. Such estimates are
essential in what follows. The case 0 < σ < 1 and k = 1 has been considered
in [15, Theorem 1].

Some properties of slowly varying functions are given in the next lemma.

Lemma 3.1 (cf. [16, Lemma 3.1]). Let b ∈ SV (0, +∞).

(i) If α > 0 and q ∈ (0, +∞], then for all t > 0,

∥∥∥τα− 1
q b(τ)

∥∥∥
q;(0,t)

≈ tαb(t) and

∥∥∥τ−α− 1
q b(τ)

∥∥∥
q;(t,∞)

≈ t−αb(t).

(ii) If α > 0, then

lim
t→0+

tαb(t) = 0 and lim
t→0+

t−αb(t) = +∞.

We shall need the following weighted Hardy inequalities, for which we refer
to [23, Theorems 5.9, 5.10 and 9.3]. The case r ∈ (0, 1) and q = +∞ can be
proved as the case 1 ≤ r < +∞ and q = +∞ in [19, Theorem 1.3.1/2].

Lemma 3.2. Let q ∈ [1, +∞], r ∈ (0, +∞], a ∈ (0, +∞] and v, w ∈ W(0, a).

(i) If 1 ≤ q ≤ r ≤ +∞, then

∥∥∥∥w(t)

∫ t

0

h(s) ds

∥∥∥∥
r;(0,a)

≤ C ‖v(t) h(t)‖q;(0,a) for all h ∈ M+(0, a) (3.1)

if and only if

A := sup
x∈(0,a)

‖w(t)‖r;(x,a)

∥∥(v(t))−1
∥∥

q′;(0,x)
< +∞.

Moreover, the best possible constant C in (3.1) satisfies the estimate C≈A

and the constants involved in this equivalence are independent of a.

(ii) If 0 < r < q ≤ +∞ and q > 1, then (3.1) holds if and only if

B :=

(∫ a

0

[
‖w(t)‖r;(x,a)

∥∥(v(t))−1
∥∥ q′

r′

q′;(0,x)

]u

v−q′(x) dx

)1
u

< +∞,

where 1
u

= 1
r
− 1

q
. Moreover, the best possible constant C in (3.1) satisfies

C ≈ B and the constants involved in this equivalence are independent of a.
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Now, we recall some more properties of moduli of smoothness. For each
fixed f in CB(Ω), ωk(f, ·) is a non-negative non-decreasing function on [0, +∞).
Putting ω̃k(f, t) := 1

tk
ωk(f, t) for all t > 0, one can prove that ω̃k(f, ·) is equiv-

alent to a non-increasing function on (0, +∞). If f ∈ CB(Ω), then

ωk(f, t) ≤ 2k‖f |B(Ω)‖, t > 0. (3.2)

We refer to [3, pp. 331–333, 431], [6, pp. 40–50] and [7, 18] for more details
about k-modulus of smoothness.

Let r ∈ N and let f ∈ CB(Ω). One can estimate ωr(f, ·) by means of moduli
of smoothness of lower order:

ωr(f, ·) ≤ 2r−kωk(f, ·), 1 ≤ k ≤ r. (3.3)

Marchaud has shown that (3.3) has a weak inverse (when Ω = R
n). Namely,

one can dominate ωk(f, ·) by means of an integral of ωr(f, ·), k < r. See, for
example, [3, Theorem V.4.4] or [6, Theorem II.8.1]. If a domain Ω has minimally
smooth boundary (see [3, p. 430] or [24, p. 189]), then the Marchaud inequality
still holds. We refer to [7, 18] for more details.

Theorem 3.3 (Marchaud). Let Ω be a domain in R
n with minimally smooth

boundary. Let k, r ∈ N, k < r. Then there is a positive constant c such that

ωk(f, t) ≤ c tk
(
‖f |B(Ω)‖ +

∫ +∞

t

ωr(f, s)

sk

ds

s

)
(3.4)

for all t > 0 and all f in CB(Ω).

When Ω = R
n, the term ‖f |B(Ω)‖ can be dropped (see [3]).

One can easily see from (3.4) that

ωk(f, t) ≤ c

(
2r

k
+ 1

)
tk‖f |B(Ω)‖ + c tk

∫ 1

t

ωr(f, s)

sk

ds

s

for all t ∈ (0, 1) and all f in CB(Ω).

The next lemma is a straightforward extension of [14, Lemma 4.2].

Lemma 3.4. Let Ω be a domain in R
n with minimally smooth boundary. Let

k∈Nand let S be a bounded subset of CB(Ω)such that limt→0+ supu∈S ωk(u, t)=0.
Then limt→0+ supu∈S ω(u, t) = 0. In particular, if u ∈ CB(Ω) satisfies

limt→0+ωk(u, t) = 0, then limt→0+ ω(u, t) = 0, which means that u ∈ C(Ω).

Proof. Suppose that k ≥ 2, otherwise the result is trivial. Since S is a bounded
subset of CB(Ω), there is K > 0 such that supu∈S ‖u|B(Ω)‖ < K. Let u ∈ S.
By Marchaud’s inequality (3.4), there exists c > 0 such that

ω(u, t) ≤ c t

(
‖u|B(Ω)‖ +

∫ +∞

t

ωk(u, s)

s

ds

s

)
, t > 0. (3.5)
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Let ε > 0. Since limt→0+ supu∈S ωk(u, t) = 0, there is δ1 > 0 such that
supu∈S ωk(u, t) < ε

2c
for all t ∈ (0, δ1). Hence, by (3.5) and (3.2),

ω(u, t) ≤ c t

∫ δ1
2

t

ωk(u, s)

s

ds

s
+ c t

∫ +∞

δ1
2

ωk(u, s)

s

ds

s
+ c t‖u|B(Ω)‖

≤ c ωk

(
u,

δ1

2

)
+ c t

(
2k 2

δ1

+ 1
)
‖u|B(Ω)‖

<
ε

2
+ c t

(
2k 2

δ1

+ 1
)
K for all t ∈

(
0,

δ1

2

)
.

Thus, taking δ := min
{

δ1
2
, ε δ1

c (2k+2+2δ1)K

}
, we obtain supu∈S ω(u, t) ≤ ε for all

t ∈ (0, δ), and the result follows.

The next lemma shows that if we define the generalized Hölder space
Λ

k,µ(·)
∞,r (Ω) as a subspace of C(Ω) rather than a subspace of CB(Ω), then both

definitions coincide provided that Ω is a domain in R
n with minimally smooth

boundary.

Lemma 3.5. Let Ω be a domain in R
n with minimally smooth boundary. Let

k ∈ N, r ∈ (0, +∞] and let µ ∈ Lk
r . Then

Λk,µ(·)
∞,r (Ω) →֒ C(Ω).

Proof. Let f ∈ Λ
k,µ(·)
∞,r (Ω). Then there is M ∈ (0, +∞) such that

∥∥∥∥t
− 1

r
ωk(f, t)

µ(t)

∥∥∥∥
r;(0,1)

< M.

Since also, for all t ∈ (0, 1),

∥∥∥∥τ
− 1

r
ωk(f, τ)

µ(τ)

∥∥∥∥
r;(t,1)

≥ ωk(f, t)

∥∥∥∥τ
− 1

r
1

µ(τ)

∥∥∥∥
r;(t,1)

,

we obtain that

ωk(f, t) -

∥∥∥∥τ
− 1

r
1

µ(τ)

∥∥∥∥
−1

r;(t,1)

for all t ∈ (0, 1).

Together with (2.5), this implies that ωk(f, t) → 0 as t → 0+. Now, Lemma 3.4
implies that f is uniformly continuous on Ω.

We shall need the following result.
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Lemma 3.6. Let k ∈ N, r ∈ (0, +∞] and λ, µ ∈ Lk
r . Let Ω be a domain in R

n

and let ξ ∈ (0, 1
2
]. If

A :=
supx∈(0,ξ)

∥∥∥t− 1
r (µ(t))−1

∥∥∥
r;(x,ξ)∥∥∥t− 1

r (λ(t))−1

∥∥∥
r;(x,1)

< +∞, (3.6)

then
∥∥∥∥t

− 1
r
ωk,Ω(f, t)

µ(t)

∥∥∥∥
r;(0,ξ)

≤ C

∥∥∥∥t
− 1

r
ωk,Ω(f, t)

λ(t)

∥∥∥∥
r;(0,1)

for all f ∈ CB(Ω). (3.7)

Moreover, if C is the best constant in (3.7), then C ≤ A.

Proof. When r ∈ (0, +∞), the result follows from [17, Lemma 2.6]) because
(ωk,Ω(f, ·))r is a non-decreasing function.

If r = +∞, we can assume without loss of generality that λ and µ are
continuous and non-decreasing functions on the interval (0, 1) (cf. [16, the end
of Section 2]). Then (3.6) implies that (µ(x))−1 ≤ A(λ(x))−1 for x ∈ (0, ξ) and
(3.7) is clear.

We continue with some important results from [14,16] which are fundamen-
tal for what follows.

Remark 3.7 ( [14, Remark 3.2]). Let σ ∈ (0, n) and let X = X(Rn) be an
r.i.BFS such that ‖gσ‖X′ < +∞. Then

∫ 1

0

s
σ
n
−1f ∗(s) ds < +∞ for all f ∈ X

(which implies that a function f ∈ X(Rn) belongs to the Lorentz space L
n
σ

,1(B)
for any ball B ⊂ R

n).

The next theorem gives sharp estimates for the k-modulus of smoothness of
the convolution of a function f from an r.i.BFS X(Rn) with the Bessel potential
kernel gσ, 0 < σ < n, when k ≥ [σ] + 1. The case 0 < σ < 1 and k = 1 has
been considered in [15, Theorem 1].

Theorem 3.8 ( [14, Theorem 3.1]). Let σ ∈ (0, n) and let X = X(Rn) be an

r.i.BFS such that ‖gσ‖X′ < +∞. Then f ∗ gσ ∈ C(Rn) for all f ∈ X and

ωk(f ∗ gσ, t) -

∫ tn

0

s
σ
n
−1f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (3.8)

where k ≥ [σ] + 1.
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Moreover, estimate (3.8) is sharp in the sense that given k ∈ N, there are

(small enough) δ ∈ (0, 1) and (big enough) α > 0 such that

ωk(f ∗ gσ, t) %

∫ tn

0

s
σ
n
−1f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (3.9)

where

f(x) := f ∗(βn|x|
n)χCα(0,δ)(x), x = (x1, . . . , xn) ∈ R

n,

Cα(0, δ) := Cα ∩ B(0, δ) with Cα :=
{
y ∈ R

n : y1 > 0, y2
1 > α

∑n
i=2 y2

i

}
.

Remark 3.9. We shall investigate the compactness of the embedding

HσX(Rn) →֒ Λk,µ(·)
∞,r (Ω), (3.10)

where Ω will be a bounded domain in R
n. Note that, by (3.10), the restriction

to Ω of a function u ∈ HσX(Rn) belongs to the space Λ
k,µ(·)
∞,r (Ω).‡ Note also that

u = f ∗ gσ for some f ∈ X(Rn). Under the assumptions of Theorem 3.8, u ∈

C(Rn), which implies that u ∈ C(Ω). To calculate ‖u|Λ
k,µ(·)
∞,r (Ω)‖, we need the

k-modulus of smoothness ωk(u, t) = ωk,Ω(u, t), t ≥ 0, of the function u. Recall
also that the k-modulus of smoothness ω(f ∗gσ, ·) involved in Theorem 3.8 is the
k-modulus of smoothness with respect to the whole R

n, that is, ωk,Rn(f ∗ gσ, ·).

To characterize the compactness of the embedding (3.10), we shall need
analogues of estimates (3.8) and (3.9) with ωk replaced by ωk,Ω. Since

ωk,Ω(f ∗ gσ, t) ≤ ωk,Rn(f ∗ gσ, t), t ≥ 0,

estimate (3.8) implies that

ωk,Ω(f ∗ gσ, t) -

∫ tn

0

s
σ
n
−1f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (3.11)

where k ≥ [σ] + 1. To get an analogue of (3.9), take x0 = (x01, . . . , x0n) ∈ Ω
and δ1 ∈ (0, 1] so that B(x0, δ1) ⊂ Ω. Then, for given k ∈ N,

ωk,Ω(f ∗ gσ, t) %

∫ tn

0

s
σ
n
−1f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (3.12)

where

f(x) := f ∗(βn|x − x0|
n)χCα(x0,δ2)(x), x = (x1, . . . , xn) ∈ R

n, (3.13)

Cα(x0, δ2) := (x0+Cα)∩B(x0, δ2) with Cα := {y ∈ R
n : y1 > 0, y2

1 > α
∑n

i=2 y2
i },

δ2 := min{δ, δ1} and δ ∈ (0, 1) is given by Theorem 3.8. Indeed, take t ∈ (0, δ2
k
)

‡In the whole paper we use the symbol u both for the function u and its restriction to Ω.
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and put t = (−t, 0, . . . , 0) ∈ R
n and u = f ∗ gσ. Then, instead of [14, (4.12)],

we now have

ωk,Ω(u, t) ≥
∣∣(∆k

t u)(x0)
∣∣

=

∣∣∣∣∣

k∑

i=0

(
k

i

)
(−1)k−iu(x0 + it)

∣∣∣∣∣

=

∣∣∣∣∣

∫

Cα(x0,δ2)

f ∗(βn|y − x0|
n)

(
k∑

i=0

(
k

i

)
(−1)k−igσ(x0 + it − y)

)
dy

∣∣∣∣∣

=

∣∣∣∣∣

∫

Cα(0,δ2)

f ∗(βn|y|
n)

(
k∑

i=0

(
k

i

)
(−1)k−igσ(y − it)

)
dy

∣∣∣∣∣ ,

with Cα(0, δ2) = −x0 + Cα(x0, δ2), and the same arguments as those used in
part (ii) of the proof of Theorem 3.8 yield (3.12).

In what follows we shall omit again the subscript Ω at k-modulus of smooth-
ness (since it will be always clear from the context which k-modulus of smooth-
ness we have in mind).

The next lemma is a consequence of Theorem 3.8 and [15, Lemma 6].

Lemma 3.10. Let X = X(Rn) be an r.i.BFS, let Ω be a domain in R
n and let

σ > 0. Then HσX(Rn) →֒ C(Ω) if and only if ‖gσ‖X′ < +∞.

4. Proof of Theorem 1.3

Sufficiency. Since S is bounded in Λ
k,µ(·)
∞,r (Ω), Lemma 3.5 implies that S is

also bounded in C(Ω).

Let ε ∈ (0, 1). By (1.6), there is δ ∈ (0, 1) such that

sup
u∈S

∥∥∥t−
1
r (µ(t))−1ωk(u, t)

∥∥∥
r;(0,δ)

<
ε

4
. (4.1)

Now, by (3.2) and (2.7), for this δ, there is a positive constant c(δ) such that,
for all u ∈ S,

∥∥u|Λk,µ(·)
∞,r (Ω)

∥∥ ≤ c(δ)‖u|B(Ω)‖ +
∥∥∥t−

1
r (µ(t))−1ωk(u, t)

∥∥∥
r;(0,δ)

. (4.2)

By (4.1), for all ξ with |ξ| < δ,

1 > sup
u∈S

∥∥∥t−
1
r (µ(t))−1ωk(u, t)

∥∥∥
r;(ξ,δ)

≥ sup
u∈S

ωk(u, ξ)
∥∥∥t−

1
r (µ(t))−1

∥∥∥
r;(ξ,δ)

.
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Hence,

sup
u∈S

ωk(u, ξ) -
∥∥∥t−

1
r (µ(t))−1

∥∥∥
−1

r;(ξ,δ)
if |ξ| < δ

and (2.5) implies that supu∈S ωk(u, ξ) → 0 as ξ → 0+. Thus, by Lemma 3.4,
supu∈S ω(u, ξ) → 0 as ξ → 0+, which means that S is equicontinuous. There-
fore, the Ascoli–Arzelà theorem implies that S is totally bounded in C(Ω).
Consequently, there exists a finite ε

2 c(δ)
-net {u1, . . . , uN} ⊂ S such that

min
m∈{1,...,N}

‖u − um|B(Ω)‖ <
ε

2 c(δ)
for all u ∈ S. (4.3)

Using estimates (4.2), (4.3) and (4.1), we obtain for any u ∈ S that

min
m∈{1,...,N}

∥∥u − um|Λ
k,µ(·)
∞,r (Ω)

∥∥ ≤ c(δ) min
m∈{1,...,N}

‖u − um|B(Ω)‖

+ sup
m∈{1,...,N}

∥∥∥t−
1
r (µ(t))−1ωk(u − um, t)

∥∥∥
r;(0,δ)

≤ c(δ) min
m∈{1,...,N}

‖u − um|B(Ω)‖

+ sup
m∈{1,...,N}

∥∥∥t−
1
r (µ(t))−1ωk(u, t)

∥∥∥
r;(0,δ)

+ sup
m∈{1,...,N}

∥∥∥t−
1
r (µ(t))−1ωk(um, t)

∥∥∥
r;(0,δ)

<
ε

2
+

ε

4
+

ε

4
= ε,

which proves that S is totally bounded in Λ
k,µ(·)
∞,r (Ω).

Necessity. Suppose that S is totally bounded in Λ
k,µ(·)
∞,r (Ω). Then S is bounded

in Λ
k,µ(·)
∞,r (Ω). On the other hand, given ε > 0, there exists a finite ε

2
-net

{u1, . . . , uN} ⊂ S such that

min
m∈{1,...,N}

∥∥u − um|Λ
k,µ(·)
∞,r (Ω)

∥∥ <
ε

2
for all u ∈ S. (4.4)

Because r ∈ (0, +∞), for each m ∈ {1, . . . , N} there is δm > 0 such that
∥∥∥t−

1
r (µ(t))−1ωk(um, t)

∥∥∥
r;(0,δm)

<
ε

2
. (4.5)

Let δ := minm∈{1,...,N} δm. Since, for all u ∈ S, any m ∈ {1, . . . , N} and all
t ∈ (0, 1), ωk(u, t) ≤ ωk(u − um, t) + ωk(um, t), (4.4) and (4.5) imply that

∥∥∥t−
1
r (µ(t))−1ωk(u, t)

∥∥∥
r;(0,δ)

≤ min
m∈{1,...,N}

∥∥∥t−
1
r (µ(t))−1ωk(u − um, t)

∥∥∥
r;(0,1)

+ sup
m∈{1,...,N}

∥∥∥t−
1
r (µ(t))−1ωk(um, t)

∥∥∥
r;(0,δ)

<
ε

2
+

ε

2
= ε for all u ∈ S.
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Therefore, supu∈S ‖t
− 1

r (µ(t))−1ωk(u, t)‖r;(0,δ) ≤ ε and (1.6) follows.

Remark 4.1. (i) In Theorem 1.3 the implication

S ⊂ Λk,µ(·)
∞,r (Ω) is bounded and (1.6) holds

=⇒ S is totally bounded in Λk,µ(·)
∞,r (Ω)

(4.6)

remains true even if r = +∞. (This can be seen from the proof of Theorem 1.3.)

(ii) If r = +∞ in Theorem 1.3, then the reverse implication to (4.6) holds

provided that we assume S ⊂ Λ
k,µ(·),0
∞,∞ (Ω). Here Λ

k,µ(·),0
∞,∞ (Ω) is a subspace of

Λ
k,µ(·)
∞,∞ (Ω) consisting of those functions u which satisfy

lim
δ→0+

∥∥(µ(t))−1 ωk(u, t)
∥∥
∞;(0,δ)

= 0.

(This follows from the necessity part of the proof of Theorem 1.3.)

(iii) Summarizing what we have said, we arrive at the following result:

Let µ ∈ Lk and let Ω be a bounded domain in R
n with minimally smooth bound-

ary. Then S ⊂ Λ
k,µ(·),0
∞,∞ (Ω) is totally bounded in Λ

k,µ(·)
∞,∞ (Ω) if and only if S is

bounded in Λ
k,µ(·)
∞,∞ (Ω) and

sup
u∈S

∥∥(µ(t))−1 ωk(u, t)
∥∥
∞;(0,ξ)

→ 0 as ξ → 0+.

5. Proofs of Theorem 1.4 and Corollary 1.5

Proof of Theorem 1.4.

Sufficiency. Since Ω is bounded, there is a ball B1 such that Ω ⊂ B1. By
(1.8), there is δ ∈ (0, 1) such that

sup
‖f‖X≤1

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,δ)

≤ 1. (5.1)

As g∗
σ(t) ≈ t

σ
n−1 for all t ∈ (0, 1) (cf. [9]),

∫ 1

0
τ

σ
n
−1f ∗(τ) dτ - ‖gσ‖X′ ‖f‖X for all

f ∈ X. This estimate and (2.6) imply that, for all f ∈ X,

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;[δ,1)

-
∥∥∥t−

1
r (µ(t))−1

∥∥∥
r;[δ,1)

‖gσ‖X′ ‖f‖X - ‖f‖X .

Together with estimate (5.1), this yields

sup
‖f‖X≤1

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,1)

- 1 .
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Therefore, by Theorem 1.1, HσX(Rn) →֒ Λ
k,µ(·)
∞,r (Rn). Consequently, the unit

ball of HσX is bounded in Λ
k,µ(·)
∞,r (B1).

Let f ∈ X be such that ‖f‖X ≤ 1. Then, by (3.11) of Remark 3.9,

sup
‖f‖X≤1

∥∥∥t−
1
r (µ(t))−1ωk,B1

(f ∗ gσ, t)
∥∥∥

r;(0,ξ)

- sup
‖f‖X≤1

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,ξ)

,

which, together with (1.8), gives

sup
‖f‖X≤1

∥∥∥t−
1
r (µ(t))−1ωk,B1

(f ∗ gσ, t)
∥∥∥

r;(0,ξ)
→ 0 as ξ → 0+.

With respect to (2.3) and (2.4), this and Theorem 1.3 imply that the unit ball of

the space HσX is totally bounded in Λ
k;µ(·)
∞,r (B1). Since Λ

k;µ(·)
∞,r (B1) →֒ Λ

k;µ(·)
∞,r (Ω),

the result follows.

Necessity. Suppose that (1.7) holds. Since Ω is open, there is a ball B0 such
that B0 ⊂ Ω. Then (1.7) also holds with Ω replaced by B0. Let f ∈ X,
‖f‖X ≤ 1, and define f by (3.13). Since (f)∗ ≤ f ∗, we have that ‖f‖X ≤ 1.
Moreover, by (3.12), for all ξ ∈ (0, 1),

sup
‖h‖X≤1

∥∥∥t−
1
r (µ(t))−1ωk,B0

(h ∗ gσ, t)
∥∥∥

r;(0,ξ)
≥
∥∥∥t−

1
r (µ(t))−1ωk,B0

(f ∗ gσ, t)
∥∥∥

r;(0,ξ)

%

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,ξ)

.

Hence,

sup
‖h‖X≤1

∥∥∥t−
1
r (µ(t))−1ωk,B0

(h ∗ gσ, t)
∥∥∥

r;(0,ξ)

% sup
‖f‖X≤1

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,ξ)

.

This, (1.7) with Ω replaced by B0, (2.3), (2.4) and Theorem 1.3, imply (1.8).

Remark 5.1. The implication (1.7) =⇒ (1.8) in Theorem 1.4 remains true
if k ∈ N (cf. Theorem 3.8, Remark 3.9 and the necessity part in the proof of
Theorem 1.4).

Proof of Corollary 1.5.
Using Theorem 1.4 and Lemma 3.10, we obtain the result.
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Remark 5.2. (i) In Theorem 1.4 the implication (1.8) =⇒ (1.7) remains true
even if r = +∞. (This can be seen from Remark 4.1 (i) and the proof of
Theorem 1.4.)

(ii) We see from Remark 4.1 (iii) that if we assume additionally in Theo-
rem 1.4 that r = +∞ and the space X(Rn) and µ ∈ Lk are such that

HσX(Rn) →֒ Λk,µ(·),0
∞,∞ (Ω), (5.2)

then (1.7) is equivalent to (1.8).

(iii) For example, (5.2) is satisfied provided that

the Schwartz space S (Rn) is dense in HσX(Rn) (5.3)

HσX(Rn) →֒ Λk,µ(·)
∞,∞ (Ω) (5.4)

lim
t→0+

tk

µ(t)
= 0. (5.5)

Indeed, given u ∈ HσX(Rn) and ε > 0, there is v ∈ S (Rn) such that
‖u − v‖HσX < ε. Moreover, ωk(v, t) ≤ ctk for all t ∈ (0, 1), where c = c(v)
is a positive constant. Thus, using also (5.4), we obtain

‖(µ(t))−1ωk(u, t)‖∞;(0,δ) ≤ ‖(µ(t))−1ωk(u−v, t)‖∞;(0,δ)+ ‖(µ(t))−1ωk(v, t)‖∞;(0,δ)

- ‖u−v‖HσX + c

∥∥∥∥
tk

µ(t)

∥∥∥∥
∞;(0,δ)

≤ ε + c

∥∥∥∥
tk

µ(t)

∥∥∥∥
∞;(0,δ)

for all δ ∈ (0, 1).

Together with (5.5), this implies (5.2).

For instance, (5.3) holds if

the Schwartz space S (Rn) is dense in X(Rn). (5.6)

Indeed, this is a consequence of (2.3), (2.4), the fact that the mapping h 7→ gσ∗h

maps S (Rn) on S (Rn), and (5.6). In particular, (5.6) is satisfied provided that
the r.i.BFS X(Rn) has absolutely continuous norm (cf. [10, Remark 3.13]).

6. Proofs of Theorems 1.6, 1.8 and Corollaries 1.7, 1.9

To prove Theorems 1.6 and 1.8, we are going to apply Theorem 1.4. If the space
X is a Lorentz–Karamata space Lp,q;b(R

n) with p ∈ (1, +∞), q ∈ [1, +∞] and
b ∈ SV (0,∞), then X coincides with an r. i. Banach function space and

X ′ = Lp′,q′;1/b(R
n)

(see [21, Theorem 3.1] and replace γb by b and γ 1
b

by 1
b

there). To verify the

assumption ‖gσ‖X′ < +∞ in Theorem 1.4, we shall use the next lemma.
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Lemma 6.1 ( [15, Lemma 7]). Let σ ∈ (0, n), p ∈ (1, +∞), q ∈ [1, +∞] and

b ∈ SV (0, +∞). If X = Lp,q;b(R
n), then gσ ∈ X ′ if and only if either

p >
n

σ

or

p =
n

σ
and

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,1)
< +∞.

To characterize (1.8) when X is the Lorentz–Karamata space Lp,q;b(R
n), we

shall need the following lemma.

Lemma 6.2. Let σ ∈ (0, n), p ∈ [n
σ
, +∞), q ∈ [1, +∞], b ∈ SV (0, +∞),

ξ ∈ (0, 1), r ∈ (0, +∞] and let µ ∈ W(0, 1). Then

sup
‖f‖p,q;b≤1

∥∥∥∥t
− 1

r (µ(t))−1

∫ tn

0

τ
σ
n
−1f ∗(τ) dτ

∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+

if and only if

sup
Nξ(h)≤1

∥∥∥∥t
− 1

r

(
µ
(
t

1
n

))−1
∫ t

0

h(τ) dτ

∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+, (6.1)

where Nξ(h) :=
∥∥t

1
p
+ 1

q′
−σ

n b(t)h(t)
∥∥

q;(0,ξ)
for all h ∈ M+(0, ξ) and ξ ∈ (0, 1).

Proof. The proof is the same as that of [15, Lemma 9], where the case
σ ∈ (0, 1) was considered.

Proof of Theorem 1.6.
Put X = Lp,q;b(R

n). By Lemma 6.1, ‖gσ‖X′ < +∞. Consequently, by Theo-

rem 1.4 and Lemma 6.2, HσX →֒→֒ Λ
µ(·)
∞,r(Ω) if and only if (6.1) is satisfied.

(i) If 1 ≤ q ≤ r < +∞, then Lemma 3.2(i) states that (6.1) holds if and
only if

sup
x∈(0,ξ)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,ξ)

∥∥∥t
σ
n
− 1

p
− 1

q′ (b(t))−1
∥∥∥

q′;(0,x)
→ 0 as ξ → 0+. (6.2)

Since σ
n
− 1

p
> 0, Lemma 3.1 (i) shows that

∥∥∥t
σ
n
− 1

p
− 1

q′ (b(t))−1
∥∥∥

q′;(0,x)
≈ x

σ
n
− 1

p (b(x))−1 for all x > 0.

Thus, (6.2) is equivalent to

sup
x∈(0,ξ)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,ξ)
x

σ
n
− 1

p (b(x))−1 → 0 as ξ → 0+. (6.3)
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Now, we are going to prove that (6.3) is equivalent to (1.11). First, suppose
that (1.11) holds. Then, given ε > 0, there exists δ ∈ (0, 1) such that

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,1)
x

σ
n
− 1

p (b(x))−1 < ε for all x ∈ (0, δ).

Let ξ ∈ (0, δ). Then

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,ξ)
x

σ
n
− 1

p (b(x))−1 < ε for all x ∈ (0, ξ).

Consequently,

sup
x∈(0,ξ)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,ξ)
x

σ
n
− 1

p (b(x))−1 ≤ ε for all ξ ∈ (0, δ),

which gives (6.3).

Conversely, suppose that (6.3) holds. Then, given ε > 0, there exists
∆ ∈ (0, 1) such that

sup
x∈(0,∆)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,∆)
x

σ
n
− 1

p (b(x))−1 <
ε

2
.

Since λ(t) → 0 as t → 0+ (cf. Lemma 3.1(ii)) and µ ∈ Lk
r , we can find δ ∈ (0, ∆)

such that ∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(∆,1)
δ

σ
n
− 1

p (b(δ))−1 <
ε

2
.

Therefore, since λ is equivalent to a non-decreasing function, for all x ∈ (0, δ),

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,1)
x

σ
n
− 1

p (b(x))−1 ≤
∥∥∥t−

1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,∆)
x

σ
n
− 1

p (b(x))−1

+
∥∥∥t−

1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(∆,1)
x

σ
n
− 1

p (b(x))−1

-
ε

2
+

ε

2
= ε,

and (1.11) follows.

(ii) If 0 < r < q ≤ +∞ and q > 1, then Lemma 3.2 (ii) states that (6.1)
holds if and only if

∫ ξ

0

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

u

r;(x,ξ)
(V (x))

u
r′

(
x

σ
n
− 1

p (b(x))−1
)q′ dx

x
→ 0 as ξ → 0+, (6.4)

where

V (x) =
∥∥∥t

σ
n
− 1

p
− 1

q′ (b(t))−1
∥∥∥

q′

q′;(0,x)
.
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Since σ
n
− 1

p
> 0, Lemma 3.1(i) and (1.9) imply that

V (x) ≈
(
x

σ
n
− 1

p (b(x))−1
)q′

=
(
λ
(
x

1
n

))q′

for all x ∈ (0, 1).

This and the identity q′( u
r′

+ 1) = u show that condition (6.4) can be rewritten
as ∫ ξ

0

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

u

r;(x,ξ)

(
λ
(
x

1
n

))u dx

x
→ 0 as ξ → 0+. (6.5)

Finally, since singularities of functions in question are only at the origin, (6.5)
is equivalent to (1.13).

Remark 6.3. Compact embeddings of spaces HσLp,q;b(R
n) with σ ∈ (0, 1) into

generalized Hölder spaces Λ
1,µ(·)
∞,r (Ω) in the superlimiting case (that is, when

p > n
σ
) were characterized in [15, Theorem 7]. Theorem 1.6 extends this result

to the case when σ ∈ (0, n) and when Λ
1,µ(·)
∞,r (Ω) is replaced by Λ

[σ]+1,µ(·)
∞,r (Ω).

Its formulation is slightly different because in [15] the definition of the class L1
r

was more restrictive (in particular, the function µ ∈ L1
r was equivalent to an

increasing function on the interval (0, 1]).

Remark 6.4. As in Remark 5.1, we see that in Theorem 1.6 the implications
(1.10) =⇒ (1.11) and (1.12) =⇒ (1.13) remain true if k ∈ N.

Remark 6.5 ( [16, Remark 5.5 (i)]). Let σ ∈ (0, n), p ∈ (n
σ
, +∞), q ∈ [1, +∞],

b ∈ SV (0, +∞), r ∈ [1, +∞], k = [σ] + 1, and let λ be given by (1.9). Then

Λk,λ(·)
∞,r (Rn) = Λ

[σ−n
p
]+1,λ(·)

∞,r (Rn).

Proof of Corollary 1.7. Suppose that (1.11) holds. Then, by [16, Corollary 1.4],

HσLp,q;b(R
n) →֒ Λ

[σ−n
p
]+1,λ(·)

∞,r (Rn). (6.6)

Since Ω is bounded, there is an open ball B1 such that Ω ⊂ B1 and (6.6) implies
that

HσLp,q;b(R
n) →֒ Λ

[σ−n
p
]+1,λ(·)

∞,r (B1). (6.7)

On the other hand, (1.11) is equivalent to

sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t))−1

∥∥∥
r;(x,ξ)

x
σ−n

p
(
b(xn)

)−1
→ 0 as ξ → 0+ (6.8)

(see the proof of Theorem 1.6). Moreover,

∥∥∥t−
1
r (λ(t))−1

∥∥∥
−1

r;(x,1)
≈ x

σ−n
p
(
b(xn)

)−1
for all x ∈

(
0,

1

2

)
(6.9)
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(cf. Lemma 3.1(i) and the fact that −σ + n
p

< 0).

Therefore, by Lemma 3.6 with ξ = 1
2

and k =
[
σ − n

p

]
+ 1, we obtain that

∥∥∥∥t
− 1

r
ωk(f, t)

µ(t)

∥∥∥∥
r;(0, 1

2
)

-

∥∥∥∥t
− 1

r
ωk(f, t)

λ(t)

∥∥∥∥
r;(0,1)

for all f ∈Λ
[σ−n

p
]+1,λ(·)

∞,r (B1). (6.10)

Making use of (3.2) and the fact that µ ∈ L
[σ−n

p
]+1

r , we arrive at
∥∥∥∥t

− 1
r
ωk(f, t)

µ(t)

∥∥∥∥
r;( 1

2
,1)

=

∥∥∥∥t
− 1

r
tk

µ(t)

ωk(f, t)

tk

∥∥∥∥
r;( 1

2
,1)

- ‖f |B(B1)‖

∥∥∥∥t
− 1

r
tk

µ(t)

∥∥∥∥
r;( 1

2
,1)

- ‖f |B(B1)‖ for all f ∈ B(B1).

Together with (6.10), this shows that
∥∥∥∥t

− 1
r
ωk(f, t)

µ(t)

∥∥∥∥
r;(0,1)

- ‖f |B(B1)‖ +

∥∥∥∥t
− 1

r
ωk(f, t)

λ(t)

∥∥∥∥
r;(0,1)

for all f ∈ Λ
[σ−n

p
]+1,λ(·)

∞,r (B1). Consequently,

Λ
[σ−n

p
]+1,λ(·)

∞,r (B1) →֒ Λ
[σ−n

p
]+1,µ(·)

∞,r (B1). (6.11)

Now we are going to prove that embedding (6.11) is compact. Let S be the

closed unit ball in Λ
[σ−n

p
]+1,λ(·)

∞,r (B1). Let ξ ∈ (0, 1
2
) and f ∈ S. By (6.8), (6.9)

and Lemma 3.6 with k = [σ − n
p
] + 1, we obtain that

∥∥∥∥t
− 1

r
ωk(f, t)

µ(t)

∥∥∥∥
r;(0,ξ)

≤

(
sup

x∈(0,ξ)

∥∥t− 1
r (µ(t))−1

∥∥
r;(x,ξ)∥∥t− 1

r (λ(t))−1
∥∥

r;(x,1)

)∥∥∥∥t
− 1

r
ωk(f, t)

λ(t)

∥∥∥∥
r;(0,1)

≤ sup
x∈(0,ξ)

∥∥t− 1
r (µ(t))−1

∥∥
r;(x,ξ)∥∥t− 1

r (λ(t))−1
∥∥

r;(x,1)

.

Together with (6.8) and (6.9), this implies that

sup
f∈S

∥∥∥∥t
− 1

r
ωk(f, t)

µ(t)

∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+.

Thus, by Theorem 1.3,

Λ
[σ−n

p
]+1,λ(·)

∞,r (B1) →֒→֒ Λ
[σ−n

p
]+1,µ(·)

∞,r (B1). (6.12)

Since Ω ⊂ B1, (1.14) follows from (6.7) and (6.12).

Conversely, if (1.14) holds, Remark 6.4 implies that (1.11) is satisfied.
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Proof of Theorem 1.8. Put X = Lp,q;b(R
n). By Lemma 6.1, ‖gσ‖X′ < +∞.

Consequently, by Theorem 1.4 and Lemma 6.2, HσX →֒→֒ Λ
µ(·)
∞,r(Ω) if and only

if (6.1) is satisfied.

(i) If 1 < q ≤ r < +∞, by Lemma 3.2 (i), (6.1) holds if and only if

sup
x∈(0,ξ)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,ξ)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)
→ 0 as ξ → 0+. (6.13)

We show that (6.13) is equivalent to

lim
x→0+

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,1)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)
= 0. (6.14)

Indeed, assume that (6.13) holds. Then, given ε > 0, there is ∆ ∈ (0, 1) such
that

sup
x∈(0,∆)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,∆)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)
<

ε

2
.

As
∥∥t−

1

q′ (b(t))−1
∥∥

q′;(0,1)
< +∞, q′ < +∞, and µ ∈ Lk

r , we can find δ ∈ (0, ∆)

satisfying ∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(∆,1)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,δ)
<

ε

2
.

Therefore, for all x ∈ (0, δ),

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,1)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)

-
∥∥∥t−

1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,∆)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)

+
∥∥∥t−

1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(∆,1)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)

<
ε

2
+

ε

2
= ε,

and (6.14) follows. The converse implication is a consequence of the estimate

sup
x∈(0,ξ)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,ξ)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)

≤ sup
x∈(0,ξ)

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

r;(x,1)

∥∥∥t−
1

q′ (b(t))−1
∥∥∥

q′;(0,x)
.

Since

∥∥∥t−
1
r (λqr(t

1
n ))−1

∥∥∥
r;(x,1)

≈
∥∥∥t−

1

q′ (b(t))−1
∥∥∥
−1

q′;(0,x)
for all x ∈

(
0,

1

2

)
, (6.15)

(6.14) is equivalent to (1.17) and the proof of part (i) is complete.
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(ii) If 0 < r < q ≤ +∞ and q > 1, then Lemma 3.2 (ii) shows that (6.1)
holds if and only if

∫ ξ

0

∥∥∥t−
1
r

(
µ
(
t

1
n

))−1
∥∥∥

u

r;(x,ξ)
(V (x))

u
r′ b−q′(x)

dx

x
→ 0 as ξ → 0+, (6.16)

where

V (x) =
∥∥∥t−

1

q′ (b(t))−1
∥∥∥

q′

q′;(0,x)
. (6.17)

Using the identity u
r′

= u
q′
− 1 and (6.15), we see that (6.16) is equivalent to

∫ ξ

0

∥∥t− 1
r (µ(t))−1

∥∥u

r;(x,ξ)∥∥t− 1
r (λqr(t))−1

∥∥u

r;(x,1)

(∫ xn

0

t−1b−q′(t)dt

)−1

b−q′(xn)
dx

x
→ 0 as ξ → 0+. (6.18)

Finally, since singularities of functions in question are only at the origin, (6.18)
is satisfied if and only if (1.19) holds.

Remark 6.6. As in Remark 5.1, we see that in Theorem 1.8 the implications
(1.16) =⇒ (1.17) and (1.18) =⇒ (1.19) remain true if k ∈ N.

Remark 6.7 ( [16, Remark 7.2 (i)]). Let σ ∈ (0, n), p = n
σ
, q ∈ (1, +∞], r ∈

[1, +∞], k = [σ]+1, let b ∈ SV (0, +∞) be such that
∥∥t−

1

q′ (b(t))−1
∥∥

q′;(0,1)
< +∞

and let λqr be given by (1.15). Then Λ
k,λqr(·)
∞,r (Rn) = Λ

1,λqr(·)
∞,r (Rn).

Proof of Corollary 1.9. Suppose that (1.17) holds. Then, by [16, Corollary 1.7],
we have

HσLp,q;b(R
n) →֒ Λ1,λqr(·)

∞,r (Rn). (6.19)

Since Ω is bounded, there is an open ball B1 such that Ω ⊂ B1 and (6.19)
implies that

HσLp,q;b(R
n) →֒ Λ1,λqr(·)

∞,r (B1). (6.20)

On the other hand (1.17) is equivalent to

sup
x∈(0,ξ)

∥∥t− 1
r (µ(t))−1

∥∥
r;(x,ξ)∥∥t− 1

r (λqr(t))−1
∥∥

r;(x,1)

→ 0 as ξ → 0+ (6.21)

(see the proof of Theorem 1.8 (i)). Thus, as in the proof of Corollary 1.7, we
have

Λ1,λqr(·)
∞,r (B1) →֒→֒ Λ1,µ(·)

∞,r (B1). (6.22)

Since Ω ⊂ B1, (1.20) follows from (6.20) and (6.22).
Conversely, if (1.20) holds, Remark 6.6 implies that (1.17) is satisfied.



26 A. Gogatishvili et al.

Remark 6.8. (i) In Theorem 1.6 (i) the implication

(1.11) =⇒ HσLp,q;b(R
n) →֒→֒ Λk,µ(·)

∞,r (Ω)

remains true even if we extend the range of q and r to 1 ≤ q ≤ r ≤ +∞.
(Indeed, this can be seen from the proof of Theorem 1.6 (i), where we use
Theorem 1.4 and Remark 5.2 (i) instead of Theorem 1.4.)

Theorem 1.6 (i) continues to hold if we assume that 1 ≤ q ≤ r ≤ +∞,
q < +∞, and (5.5) is satisfied. (This follows from Remarks 5.2 (ii), (iii). Note
that the condition q < +∞ implies that the space Lp,q;b(R

n) has absolutely
continuous norm - cf. [22, Lemma 3.2].)

(ii) Similarly, in Theorem 1.8 (i) the implication

(1.17) =⇒ HσLp,q;b(R
n) →֒→֒ Λk,µ(·)

∞,r (Ω)

remains true if we extend the range of q and r to 1 < q ≤ r ≤ +∞.
Theorem 1.8 (i) continues to hold if we assume that 1 < q ≤ r ≤ +∞,

q < +∞, and (5.5) is satisfied. (This follows from Remarks 5.2 (ii), (iii).)
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