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An Example of a Functional

which is Weakly Lower Semicontinuous

on W
1,p
0 for every p > 2 but not on H1

0

Fernando Farroni, Raffaella Giova and François Murat

Abstract. In this note we give an example of a functional which is defined and
coercive on H1

0 (Ω), which is sequentially weakly lower semicontinuous on W
1,p
0 (Ω)

for every p > 2, but which is not sequentially lower semicontinuous on H1
0 (Ω). This

functional is non local.
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1. Results and comments

Let Ω be a bounded open subset of R
N , with 0 ∈ Ω if N ≥ 2, and Ω = (0, R0) if

N = 1. In this note, we give an example of a functional defined and coercive on
H1

0 (Ω), that has quadratic growth with respect to ‖Dv‖2 = ‖Dv‖(L2(Ω))N and

which is sequentially weakly lower semicontinuous on W
1,p
0 (Ω) for every p > 2,

but not sequentially weakly lower semicontinuous on H1
0 (Ω).

More precisely, when N ≥ 3, we recall the Hardy–Sobolev inequality (see,
e.g., [5, Theorems 21.7, 21.8], [6, Lemma 17.1], and also 4.1 in the Appendix
below):

m2
N

∫

RN

|v|2
|x|2 dx ≤

∫

RN

|Dv|2dx ∀v ∈ H1
0 (RN), (1)
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where m2
N denotes the best possible constant in the inequality, i.e.,

m2
N = inf

v∈H1

0
(RN )

∫

RN |Dv|2dx
∫

RN

|v|2
|x|2 dx

. (2)

It is well known that m2
N is given by (see the references above) m2

N = (N−2)2

4
.

We consider a function ϕ defined and continuous on [0,∞], which is non
negative and decreasing and which satisfies

ϕ(0) > m2
N and ϕ(∞) <

m2
N

2
. (3)

Finally, we define the functional J by

J(v) =

∫

Ω

|Dv|2dx− ϕ(‖Dv‖2
2)

∫

Ω

|v|2
|x|2 dx ∀v ∈ H1

0 (Ω). (4)

Our main result is the following:

Theorem 1.1. Let N ≥ 3 and let Ω be a bounded open subset of R
N , with

0 ∈ Ω. Assume that ϕ is a continuous, non negative and decreasing function on

[0,∞] satisfying (3), where m2
N is given by (2). Then the functional J defined

by (4) satisfies:

(i) there exists a constant C > 0 such that

−C +
1

2

∫

Ω

|Dv|2dx ≤ J(v) ≤
∫

Ω

|Dv|2dx ∀v ∈ H1
0 (Ω); (5)

(ii) the functional J is sequentially weakly lower semicontinuous on W
1,p
0 (Ω)

for every p > 2, i.e.,

J(v) ≤ lim inf
n→∞

J(vn) if vn ⇀ v in W
1,p
0 (Ω) weakly;

(iii) the functional J is not sequentially weakly lower semicontinuous on

H1
0 (Ω); more precisely, there exists a sequence of functions wn ∈ H1

0 (Ω)
such that wn ⇀ 0 in H1

0 (Ω) weakly and

lim inf
n→∞

J(wn) < J(0).

Theorem 1.1 is proved in Section 2 below.

On the other hand, when N = 2 we consider a bounded open subset Ω of R
2,

with 0 ∈ Ω and some R0 for which1 Ω ⊂ BR0
. We recall the Hardy–Sobolev

inequality (see, e.g., [1, Theorems 4.2, 5.4] and [6, Lemma 17.4]):

m2
2

∫

Ω

|v|2

|x|2 log2 |x|
R0

dx ≤
∫

Ω

|Dv|2dx ∀v ∈ H1
0 (Ω), (6)

1In this note we denote by BR the open ball of R
N of radius R and center 0.
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where m2
2 denotes the best possible constant in the inequality, i.e.,

m2
2 = inf

v∈H1

0
(Ω)

∫

Ω
|Dv|2dx

∫

Ω
|v|2

|x|2 log2 |x|
R0

dx
. (7)

It is well known that m2
2 is given by (see the references above) m2

2 = 1
4
.

We consider a function ϕ which is defined and continuous on [0,∞], which
is non negative and decreasing and which satisfies

ϕ(0) > m2
2 and ϕ(∞) <

m2
2

2
, (8)

and we define the functional J by

J(v) =

∫

Ω

|Dv|2dx− ϕ(‖Dv‖2
2)

∫

Ω

|v|2

|x|2 log2 |x|
R0

dx ∀v ∈ H1
0 (Ω). (9)

In this case, we prove the following

Theorem 1.2. Let N = 2 and let Ω be a bounded open subset of R
2, with 0 ∈ Ω

and Ω ⊂ BR0
. Assume that ϕ is a continuous, non negative and decreasing func-

tion on [0,∞] satisfying (8), where m2
2 is given by (7). Then the functional J

defined by (9) satisfies the conditions (i), (ii) and (iii) of Theorem 1.1.

Theorem 1.2 is proved in Section 3 below.

Finally, in the one-dimensional case, let Ω be the interval Ω = (0, R0).
We recall the Hardy–Sobolev inequality (see, e.g., [3, Theorem 327] and [5,
Lemma 1.3]):

m2
1

∫ ∞

0

|v|2
|x|2 dx ≤

∫ ∞

0

|v′|2dx ∀v ∈ H1
0 (0,∞), (10)

where m2
1 denotes the best possible constant in the inequality, i.e.,

m2
1 = inf

v∈H1

0
(0,∞)

∫ ∞
0

|v′|2dx
∫ ∞
0

|v|2
|x|2 dx

. (11)

It is well known that m2
1 is given by (see the references above) m2

1 = 1
4
.

We consider a function ϕ which is defined and continuous on [0,∞], which
is non negative, decreasing and which satisfies

ϕ(0) > m2
1 and ϕ(∞) <

m2
1

2
, (12)

and we define the functional J by

J(v) =

∫ R0

0

|v′|2dx− ϕ(‖v′‖2
2)

∫ R0

0

|v|2
|x|2 dx ∀v ∈ H1

0 (0, R0). (13)

In this case we prove the following
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Theorem 1.3. Let N = 1 and let Ω be the interval Ω = (0, R0). Assume that ϕ

is a continuous, non negative and decreasing function on [0,∞] satisfying (12),
where m2

1 is given by (11). Then the functional J defined by (13) satisfies the

conditions (i), (ii) and (iii) of Theorem 1.1.

The proof of Theorem 1.3 follows along the lines of Theorem 1.1 and will
not be given here.

Remark 1.4. Observe that, in contrast with the case N ≥ 2, the functions
v ∈ H1

0 (0, R0) vanish in 0 in the one-dimensional case.

Remark 1.5. Consider a functional of the (integral) form

J(v) =

∫

Ω

F (x, v,Dv) dx ∀v ∈ W 1,p(Ω), (14)

where F : Ω × R × R
N → R is a Carathéodory function satisfying

a0(x) + c0|ξ|p ≤ F (x, s, ξ) ≤ a1(x) + b1|s|p + c1|ξ|p for a.e. x ∈ Ω

and for all (s, ξ) ∈ R × R
N where p > 1, c0 > 0, and a0, a1 ∈ L1(Ω). It

is well known (see, e.g., [2, Theorems 3.1, 3.4] and [4, Theorem 2.4]) that the
functional J is sequentially weakly lower semicontinuous on W 1,p(Ω) if and only
if F (x, s, ·) is a convex function for a.e. x ∈ Ω and for every s ∈ R; moreover,
in this case, the functional J is sequentially weakly lower semicontinuous on
W 1,q(Ω) for every q > 1. It is therefore impossible to write the functionals
defined by (4), (9) and (13) in the integral form (14).

Remark 1.6. Using the result 4.3 of the Appendix below, we can prove an
assertion which is stronger than assertion (ii), namely: if N ≥ 3, then J(v) ≤
lim infn→∞ J(vn) if vn ⇀ v inH1

0 (Ω) weakly with |Dvn| equi-integrable in L2(Ω).
The same result continues to hold for N = 1 and N = 2. Assertion (ii) of
Theorems 1.1, 1.2, and 1.3 is a special case of this assertion since Ω is assumed
to be bounded.

Remark 1.7. Actually in dimension N ≥ 3, Theorem 1.1 continues to hold
(with the same proof) if the Hardy–Sobolev inequality (1) is replaced by the
Sobolev inequality

m2

(
∫

RN

|v|2∗dx
)

2

2∗

≤
∫

RN

|Dv|2dx ∀v ∈ H1
0 (RN), (15)

where 2∗ is the Sobolev’s exponent defined by 2∗ = 2N
N−2

and wherem2 is the best
possible constant in (15), and if in the definition (4) of the functional J the inte-

gral
∫

Ω
|v|2
|x|2 dx is replaced by

(∫

Ω
|v|2∗dx

)
2

2∗ . More than that, Theorems 1.1, 1.2,
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and 1.3 still continue to hold (with the same proof) if the inequalities (1), (6),
(10), and (15) are replaced by an inequality of the type mX(Ω)‖v‖X(Ω) ≤ ‖Dv‖2,
where X(Ω) is a Banach space such that the embedding H1

0 (Ω) →֒ X(Ω) is not
compact while the embedding W 1,p

0 (Ω) →֒X(Ω) is compact for any p > 2. The
non compactness of the embedding H1

0 (Ω) →֒ L2
(

Ω;ω(x)dx
)

and the compact-

ness of the embedding W 1,p
0 (Ω) →֒ L2

(

Ω;ω(x)dx
)

for p > 2, where

ω(x) =







1
|x|2 if N = 1 or N ≥ 3

1

|x|2 log2 |x|
R0

if N = 2

(see 4.2 and 4.3 in the Appendix below), are indeed at the root of the proofs
of (iii) and (ii). This explains why Theorem 1.1 continues to hold by replacing
the Hardy–Sobolev inequality by the Sobolev inequality.

In contrast, if the embedding H1
0 (Ω) →֒ X(Ω) is compact (e.g., in the case

X(Ω) = L2(Ω) for Ω bounded), it is straightforward to prove that the functional

J(v) =

∫

Ω

|Dv|2dx− ϕ(‖Dv‖2
2)‖v‖2

X(Ω) ∀v ∈ H1
0 (Ω)

is sequentially weakly lower semicontinuous on H1
0 (Ω) whenever ϕ is decreasing:

just take a sequence vn such that vn ⇀ v in H1
0 (Ω) weakly, and observe that in

this framework holds:

∫

Ω

|Dv|2dx ≤ lim inf
n→∞

∫

Ω

|Dvn|2dx,

−ϕ(‖Dv‖2
2) ≤ lim inf

n→∞
−ϕ(‖Dvn‖2

2),

lim
n→∞

‖vn‖2
X(Ω) = ‖v‖2

X(Ω).

Remark 1.8. Observe finally that in the proof of Theorem 1.1 below (for
N ≥ 3) it is not necessary to know the explicit value of the best constant m2

N

in the inequality (1), whenever the function ϕ is chosen such that (3) holds.

In contrast, the proof of Theorem 1.2 below (where N = 2) uses the fact
that the constant m2

2 coincides with m2
1. If one does not want to use the fact

that m2
2 = m2

1, it would be sufficient to assume in (8) that ϕ(0) > m2
1 in place

of ϕ(0) > m2
2 (see also the proof of (iii) in Theorem 1.2).

Also it should be observed that the best constant mX(Ω) is attainable or
not, does not play any role in the proofs below in contrast with the fact, that
the embedding H1

0 (Ω) →֒ X(Ω) is not compact for Ω bounded, which is crucial.
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2. Proof of Theorem 1.1

Proof of (i). By the definition of J(v) we have

J(v) ≤
∫

Ω

|Dv|2dx,

since ϕ is non negative. It remains to prove the first inequality of (5). Since ϕ

is continuous and satisfies (3), there exists t0 > 0 such that ϕ(t0) =
m2

N

2
.

If ‖Dv‖2
2 ≥ t0 then ϕ(‖Dv‖2

2) ≤
m2

N

2
. Therefore

J(v) ≥
∫

Ω

|Dv|2dx−m2
N

2

∫

Ω

|v|2
|x|2 dx ≥

∫

Ω

|Dv|2dx− 1

2

∫

Ω

|Dv|2dx ≥ 1

2

∫

Ω

|Dv|2dx,

and the first inequality of (5) holds.

On the other hand, if ‖Dv‖2
2 ≤ t0, then

J(v)≥
∫

Ω

|Dv|2dx−ϕ(0)

∫

Ω

|v|2
|x|2dx≥

∫

Ω

|Dv|2dx−ϕ(0)

m2
N

∫

Ω

|Dv|2dx≥
(

1−ϕ(0)

m2
N

)

t0,

in view of (3). If we choose a constant C such that ϕ(0)

m2

N

t0 ≤ C, we have

J(v) ≥ t0 −
ϕ(0)

m2
N

t0 ≥
∫

Ω

|Dv|2dx− C,

and the first inequality of (5) is again proved. This proves (i).

Proof of (ii). Let p > 2. Assume that vn ⇀ v in W
1,p
0 (Ω) weakly. Since Ω is

bounded, vn ⇀ v in H1
0 (Ω) weakly and there exists α ≥ 0 such that

lim inf
n→∞

‖Dvn‖2
2 = ‖Dv‖2

2 + α. (16)

Since ϕ is continuous and decreasing, there exists some β ≥ 0 such that

lim inf
n→∞

−ϕ
(

‖Dvn‖2
2

)

= −ϕ
(

‖Dv‖2
2

)

+ β. (17)

Moreover, by the compactness of the embedding W 1,p
0 (Ω) →֒ L2

(

Ω; 1
|x|2 dx

)

for

p > 2 (see 4.3 in the Appendix below), we get

lim
n→∞

∫

Ω

|vn|2
|x|2 dx =

∫

Ω

|v|2
|x|2 dx. (18)

(Note that (18) continues to hold if we assume (27) mentioned below in place
of vn ⇀ v in W

1,p
0 (Ω) weakly. This allows one to prove the assertion of Re-

mark 1.6.) Combining (16), (17) and (18), we obtain

lim inf
n→∞

J(vn) ≥ J(v) + α+ β

∫

Ω

|v|2
|x|2 dx ≥ J(v),

which proves (ii).
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Proof of (iii). Let λ be such that m2
N < λ < ϕ(0) (such a λ exists in view

of (3)). Recalling the definition (2) of m2
N , there exists a function ψ ∈ C∞

0 (RN)
such that

λ

∫

RN

|ψ|2
|x|2 dx >

∫

RN

|Dψ|2dx.

Since ϕ is continuous and satisfies (3), there exists t1 > 0 such that ϕ(t1) = λ.
Take s such that 0 < s2‖Dψ‖2

2 ≤ t1. The function w = sψ belongs to C∞
0 (RN)

and satisfies
ϕ
(

‖Dw‖2
2

)

≥ λ, (19)

as well as

λ

∫

RN

|w|2
|x|2 dx >

∫

RN

|Dw|2dx. (20)

Define the sequence wn by wn(x) = n
N−2

2 w(nx); then Dwn(x) = n
N

2 Dw(nx).
For n sufficiently large, the function wn belongs to H1

0 (Ω) and it holds
∫

Ω

|Dwn|2dx =

∫

RN

|Dw|2dx and

∫

Ω

|wn|2
|x|2 dx =

∫

RN

|w|2
|x|2 dx.

Therefore, for n sufficiently large, the sequence wn is bounded in H1
0 (Ω) with

wn ⇀ 0 in H1
0 (Ω) weakly, and

J(wn) =

∫

RN

|Dw|2dx− ϕ
(

‖Dw‖2
2

)

∫

RN

|w|2
|x|2 dx.

Therefore J(wn) < 0 in view of (19) and (20). This proves (iii).

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to the one of Theorem 1.1, but differs by
technical aspects.

Proof of (i). Condition (5) is proved exactly as in the proof of Theorem 1.1.

Proof of (ii). Let p > 2. Assume that vn ⇀ v in W
1,p
0 (Ω) weakly. Then, as in

the proof of Theorem 1.1, we have, for some α ≥ 0 and β ≥ 0,

lim inf
n→∞

‖Dvn‖2
2 = ‖Dv‖2

2 + α (21)

lim inf
n→∞

{

− ϕ(‖Dvn‖2
2)

}

= −ϕ(‖Dv‖2
2) + β. (22)

Moreover, since p > N = 2, we have that vn → v uniformly in Ω, and, since
1

|x|2 log2 |x|
R0

∈ L1(Ω), we have

lim
n→∞

∫

Ω

|vn|2

|x|2 log2 |x|
R0

dx =

∫

Ω

|v|2

|x|2 log2 |x|
R0

dx. (23)
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Combining (21), (22) and (23), we obtain

lim inf
n→∞

J(vn) = J(v) + α+ β

∫

Ω

v2

|x|2 log2 |x|
R0

dx ≥ J(v),

which proves (ii).

Proof of (iii). Let λ be such thatm2
1 < λ, wherem2

1 is the best constant (defined
by (11)) in the one-dimensional Hardy–Sobolev inequality (10). Then there
exists ψ ∈ C∞

0 (0,∞) such that

λ

∫ ∞

0

|ψ(t)|2
t2

dt >

∫ ∞

0

|ψ′(t)|2dt.

Since ϕ is continuous and satisfies (8), and since the best constant m2
2 (defined

by (7)) in the two-dimensional Hardy–Sobolev inequality (6) coincides with m2
1,

we can choose λ such that m2
2 = m2

1 < λ < ϕ(0) (if we do not want to use the
property m2

2 = m2
1, it would be sufficient to assume in (8) that ϕ(0) > m2

1 in
place of ϕ(0) > m2

2). Then, there exists t1 > 0 such that ϕ(t1) = λ. Take s
such that 0 < 2πs2‖ψ′‖2

2 ≤ t1. The function w = sψ belongs to C∞
0 (0,∞) and

satisfies

ϕ

(

2π

∫ ∞

0

|w′(t)|2dt
)

≥ λ, (24)

as well as

λ

∫ ∞

0

|w(t)|2
t2

dt >

∫ ∞

0

|w′(t)|2dt. (25)

Define the sequence wn by

wn(x) =

{

1√
n
w

(

−n log |x|
R0

)

if |x| ≤ R0

0 if |x| ≥ R0,

then

Dwn(x) =

{

−√
nw′

(

−n log |x|
R0

)

x
|x|2 if |x| < R0

0 if |x| > R0.

For n sufficiently large, the function wn belongs to H1
0 (Ω) and

∫

Ω

|Dwn|2dx = 2π

∫ R0

0

∣

∣

∣

∣

w′
(

−n log
r

R0

)∣

∣

∣

∣

2
n

r
dr = 2π

∫ ∞

0

|w′(t)|2dt,

while

∫

Ω

|wn|2

|x|2 log2 |x|
R0

dx = 2π

∫ R0

0

∣

∣

∣
w

(

−n log r
R0

)∣

∣

∣

2

nr log2 r
R0

dr = 2π

∫ ∞

0

|w(t)|2
t2

dt.
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Therefore, for n sufficiently large, the sequence wn is bounded in H1
0 (Ω) with

wn ⇀ 0 in H1
0 (Ω) weakly, and

J(wn) = 2π

∫ ∞

0

|w′(t)|2dt− 2πϕ

(

2π

∫ ∞

0

|w′(t)|2dt
)

∫ ∞

0

|w(t)|2
t2

dt.

Therefore J(wn) < 0 in view of (24) and (25). This proves (iii).

4. Appendix

In this Appendix we recall some facts about the Hardy–Sobolev inequality in
dimension N ≥ 3, some of them are well known.

4.1. A classical proof of (1) is to write, for every v ∈ C∞
0 (RN),

0 ≤
∫

RN

∣

∣

∣

∣

Dv + cv
x

|x|2
∣

∣

∣

∣

2

dx =

∫

RN

(

|Dv|2 + 2cv
x ·Dv
|x|2 + c2

|v|2
|x|2

)

dx.

Integrating by parts the second term, one gets

∫

RN

2v
x ·Dv
|x|2 dx = −(N − 2)

∫

RN

|v|2
|x|2 dx,

and therefore

0 ≤
∫

RN

|Dv|2dx−
(

(N − 2)c− c2
)

∫

RN

|v|2
|x|2 dx.

The choice c = N−2
2

proves (1) with m2
N = (N−2)2

4
.

4.2. Let us now prove by means of a counterexample that, when 0 ∈ Ω, the
embedding H1

0 (Ω) →֒ L2
(

Ω; 1
|x|2 dx

)

is not compact. For that we consider the
functions

un(x) =
1√
n
Tn (GR0

(x)) ,

where GR0
: R

N → R is the function defined by

GR0
(x) =

{

1
|x|N−2 − 1

RN−2

0

if |x| ≤ R0

0 if |x| ≥ R0,
(26)

with R0 > 0 such that the ball BR0
⊂ Ω, and where Tn : R → R is the truncation

at height n, i.e.,

Tn(t) =

{

t if |t| ≤ n

n t
|t| if |t| ≥ n.
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Then

∫

Ω

|Dun|2dx =

∫

BR0

|Dun|2dx =
(N − 2)2SN−1

n

∫ R0

rn

1

rN−1
dr,

where SN−1 is the area of the unit sphere of R
N and where rn is defined by

1

rN−2
n

− 1

RN−2

0

= n. Therefore
∫

Ω
|Dun|2dx = (N − 2)SN−1 and un ⇀ 0 in H1

0 (Ω)

weakly. On the other hand, one has

∫

Ω

|un|2
|x|2 dx ≥

∫

Brn

|un|2
|x|2 dx = SN−1n

∫ rn

0

rN−3dr =
SN−1

N − 2
nrN−2

n ,

and then limn→∞
∫

Ω
|un|2
|x|2 dx ≥ SN−1

N−2
. This proves that the embedding H1

0 (Ω) →֒
L2

(

Ω; 1
|x|2 dx

)

is not compact.

In dimension N = 2, this counterexample continues to hold if one replaces
the function GR0

defined in (26) by the function GR0
(x) = − log |x|

R0

if |x| ≤ R0.
In dimension N = 1, one uses the continuous piecewise affine functions un such
that un(0) = 0, un

(

R0

n

)

= 1√
n

and un(R0) = 0.

4.3. Let us finally prove that, when

un ⇀ u in H1
0 (Ω) weakly with |Dun| equi-integrable in L2(Ω), (27)

then un → u in L2
(

Ω; 1
|x|2 dx

)

. Note that every sequence satisfying un ⇀ u

in W
1,p
0 (Ω) weakly, with p > 2, satisfies (27) since Ω is bounded; therefore

this claim implies that the embedding W 1,p
0 (Ω) →֒ L2

(

Ω; 1
|x|2 dx

)

is compact for
p > 2.

Let δ > 0 be small. We write

∫

Ω

|un − u|2
|x|2 dx =

∫

Ω\Bδ

|un − u|2
|x|2 dx+

∫

Bδ

|un − u|2
|x|2 dx, (28)

where Bδ is the ball of radius δ. Since 1
|x|2 ∈ L∞ (Ω \Bδ) and since the embed-

ding H1
0 (Ω) →֒ L2 (Ω) is compact for Ω bounded, the first term of (28) tends to

zero when n→ ∞.

Let ψδ be the radial function defined by

ψδ(x) =











1 if |x| ≤ δ

2 − |x|
δ

if δ ≤ |x| ≤ 2δ

0 if |x| ≥ 2δ.

For δ sufficiently small, ψδ has compact support in Ω, and using Hardy–Sobolev
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inequality (1) we have

m2
N

∫

Bδ

|un − u|2
|x|2 dx ≤ m2

N

∫

Ω

|ψδ (un − u) |2
|x|2 dx

≤
∫

Ω

|D (ψδ (un − u)) |2dx

≤ 2

∫

Ω

|Dψδ|2|un − u|2dx+ 2

∫

Ω

|D (un − u) |2|ψδ|2dx

≤ 2

∫

Ω

|Dψδ|2|un − u|2dx+ 2

∫

B2δ

|D (un − u) |2dx.

For δ fixed, the first term tends to zero when n→ ∞ (still because the embed-
ding H1

0 (Ω) →֒ L2 (Ω) is compact), while the second term is small uniformly
in n when δ is small in view of the equi-integrability assumption (27). This
proves the claim. This also proves the assertion of Remark 1.6.
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