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Abstract. In several mathematical models of physical or technical processes there
are non-local boundary-value problems in terms of partial differential equations with
integral conditions. In this article we consider hyperbolic differential equations of
second order in the rectangle with some integral conditions and their relationship to
boundary-value problems for some certain type of loaded equations.
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1. Introduction

In actual natural sciences there steadily arise new problems differing from the
classical ones. Therefore there is a need for further development of the theory
of partial differential equations.

J. R. Cannon [1] studied the one-dimensional heat equation

ut(x, t) = uxx(x, t), x > 0, t > 0,

with Dirichlet-conditions on some part of the boundary and integral conditions.

Given continuous mappings E, x, ϕ on [0,∞) satisfying the initial condition

E(0) =

∫ x(0)

0

ϕ(x) dx
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the problem is in finding the temperature distribution u such that the equations
∫ x(t)

0

u(x, t) dx = E(t), x(t) > 0, t > 0

u(x, 0) = ϕ(x), x ≥ 0

hold. This problem describes the temperature distribution in a homogeneous
semi-infinite conductor. Assume the total heat energy of a certain part of
the conductor to be given. Furthermore let the initial temperature and the
behaviour of the temperature distribution on the boundary of the conductor be
known. Then the unique existence of a solution can be shown.

The Cannon-problem belongs to the so-called non-local problems. In this
class of problems given boundary-values are partially or completely replaced by
additional conditions on the functions connecting the values at the boundary
and the inner of the domain, e.g.,

u(0, ·) + u(l, ·) + u(1, ·) = 0, l ∈ (0, 1).

Definition 1.1. Let I be an index set, Ω ⊂ R
n and ∅ 6=

⋃

i∈I ωi = ω ⊂ Ω.
Let F (M,R) denote the set of all real-valued functions on a set M . Suppose
u, f ∈ F (Ω,R), ϕi ∈ F (ωi,R), i ∈ I. Let L : D(L) ⊂ F (Ω,R) −→ F (Ω,R) be
a differential operator and for i ∈ I

Bi : D(Bi) ⊂ F (Ω,R) −→ F (ωi,R).

The problem
{

Lu = f in Ω,

Biu = ϕi on ωi, i ∈ I

is called non-local, if there are i ∈ I, z ∈ Ω, v ∈ F (Ω,R) such that

∂αu(z) = ∂αv(z), α ∈ N
n
0 , and (Biu)(z) 6= (Biv)(z).

That is, the problem is non-local if the image of some z ∈ Ω under the map
Biu is not uniquely determined by the value of the derivatives of all orders of u
at z.

In the class of non-local boundary-value problems those problems with in-
tegral conditions play an important role. One can consider such problems as a
necessary step towards the generalisation of classical problems of mathematical
physics.

In recent publications such problems are studied for various types of equa-
tions. The respective investigations started with elliptic and parabolic differ-
ential equations. Hyperbolic equations are more difficult to study. Findings in
this area of research one can find in the work of L. S. Pulkina, e.g., in [6].

In this article a linear hyperbolic equation of second order is studied. We
consider a rectangle as underlying domain, the two boundary-value conditions
are thereby replaced by integral conditions.
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2. Problem with integral conditions

We consider differential equations on the domain Ω = (0, a) × (0, b) ⊂ R
2.

Let therefore A,B,C ∈ C(Ω), f ∈ C(Ω) be given and let ϕ, ψ be integrable
functions on [0, a] and [0, b] respectively such that

∫ a

0

ϕ(x) dx =

∫ b

0

ψ(y) dy. (1)

The investigated differential equation has the form

uxy(x, y) + A(x, y)ux(x, y) +B(x, y)uy(x, y) + C(x, y)u(x, y) = f(x, y), (2)

(x, y) ∈ Ω, and the integral conditions are given as follows:

∫ a

0

u(x, y) dx = ψ(y), y ∈ (0, b) (3)

∫ b

0

u(x, y) dy = ϕ(x), x ∈ (0, a). (4)

Let
U :=

{

u ∈ F (Ω,R) | u ∈ C1(Ω), uxy ∈ C(Ω)
}

be the set of all continuously differentiable functions on Ω such that uxy is
continuous on Ω.

Problem A: For given A,B,C, f, ϕ, ψ as above, find a function u ∈ U , such
that for all (x, y) ∈ Ω the equation (2) holds and the integral conditions (3) and
(4) are satisfied.

Remark 2.1. The classical problem of Goursat is given by

uxy(x, y) + A(x, y)ux(x, y) +B(x, y)uy(x, y) + C(x, y)u(x, y) = f(x, y)

u(0, y) = ψ(y), y ∈ (0, b)

u(x, 0) = ϕ(x), x ∈ (0, a).

The first boundary-value condition can be written in the form of (3), if one
understands ψ as a mean-value of u in (0, a), i.e., ψ(y) = 1

a

∫ a

0
u(x, y) dx. Anal-

ogously one gets condition (4). That is why this problem is often called integral-
analogue to the Goursat-problem.

In the light of physics one can interpret conditions like (3) and (4) as an
averaging process made by a sensor in order to measure for example the tem-
perature in a certain area.

Remark 2.2. Mathematical modelling and integral conditions arise in many
areas, e.g.,
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– in particle diffusion processes in turbulent plasma, in processes of heat
diffusion, in water conducting processes in porous media and in modelling
of some technical processes ([4]),

– in the description of population in mathematical biology ([5]),

– and in demographic problems.

Such problems often arise in mathematical physics if one investigates heat dif-
fusion or diffusion processes where one does not know all physical quantities,
i.e., some relevant quantities of the experiment are impossible to measure. On
the other hand it is possible to get additional information for the processes.

3. Relationships of non-local boundary-value problems to
boundary-value problems with loaded equations

3.1. Loaded equations. The investigation of such integral problems with
standard methods goes along with big difficulties due to the non-local integral
conditions. That is why those problems need the development of new meth-
ods in proving the solvability and in finding solution strategies. An analysis
of problems with non-local boundary-value conditions reveals that there is an
important relationship to so-called loaded equations ([3]).

Let Ω ⊂ R
n, M ⊂ Ω locally of dimension less than n. We consider the

differential equation Lu = f on the domain Ω with L a differential operator.

Definition 3.1. The equation Lu = f is called loaded, if f depends on ∂αu|M
for some α ∈ N

n
0 .

An example for an ordinary loaded differential equation is y′ = f(x, y, y(0)).
The interest in loaded equations has grown in the last years. Obviously this
is related to two main facts. Loaded equations arise in mathematical research
itself and descriptions of thermodynamical or diffusion problems with loaded
equations are more accurate than the classical ones.

We will show that non-local problems for differential equations can be in-
vestigated by studying local problems with specially chosen loaded equations of
the same type and order.

3.2. Formal motivation. For a motivation of how we establish a connection
between the non-local differential equation in Problem A and a Goursat-problem
with classical conditions but a loaded integro-differential equation of hyperbolic
type, we give some formal calculations and arguments. Assume there exists a
solution u ∈ U of Problem A and consider the (formal) substitution

v(x, y) := xyu(x, y)+x

∫ b

y

u(x, η) dη+y

∫ a

x

u(ξ, y) dξ+

∫ y

0

∫ x

0

u(ξ, η) dξ dη. (5)
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Differentiation w.r.t. the x-variable and afterwards w.r.t. the y-variable equa-
tion (5) becomes vxy(x, y) = xyuxy(x, y), or equivalently

uxy(x, y) =
vxy(x, y)

xy
. (6)

Integrating equation (6) we obtain

u(x, y) =

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη + C1(x) + C2(y). (7)

Due to (3) and (4) we get the following system of equations for C1(x) and C2(y):


















∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx +

∫ a

0

C1(x) dx + aC2(y) = ψ(y)

∫ b

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dy +

∫ b

0

C2(y) dy + bC1(x) = ϕ(x).

From the first equation we obtain

C2(y) =
1

a

(

ψ(y) −

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx−

∫ a

0

C1(x) dx

)

.

Using this expression in the second equation we get

∫ b

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dy

+
1

a

∫ b

0

(

ψ(y) −

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx−

∫ a

0

C1(x) dx

)

dy + bC1(x) = ϕ(x).

With this we have

C1(x) =
ϕ(x)

b
−

1

b

∫ b

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dy −

1

ab

∫ b

0

ψ(y) dy

+
1

ab

∫ b

0

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx dy +

1

a

∫ a

0

C1(x) dx.

Hence a particular solution of the problem (6)–(3)–(4) is given by

u(x, y) =

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη +

ϕ(x)

b
−

1

b

∫ b

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dy

−
1

ab

∫ b

0

ψ(y) dy +
1

ab

∫ b

0

∫ a

0

∫ b

y

a
∫

x

vξη(ξ, η)

ξη
dξ dη dx dy

+
ψ(y)

a
−

1

a

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx.

(8)
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By changing the order of integration in some expressions of the terms on the
right-hand side of (8) and making use of equations (5), (3) and (4) we obtain a
simplified expression for u without using partial derivatives of v:

u(x, y)=
v(x, y)

xy
+

1

a

∫ b

y

ψ(η)

η
dη +

1

b

∫ a

x

ϕ(ξ)

ξ
dξ −

1

ab

∫ b

0

ψ(η) dη

−
1

x

∫ b

y

v(x, η)

η2
dη −

1

y

∫ a

x

v(ξ, y)

ξ2
dξ +

∫ a

x

∫ b

y

v(ξ, η)

ξ2η2
dη dξ

=: Sϕ,ψ(v).

(9)

Equation (9) serves us as the definition of the operator Sϕ,ψ, which we apply
later to elements of V := {v ∈ F (Ω) | v ∈ C1(Ω), vxy ∈ C(Ω)}.

3.3. Passing to the problem with classical conditions. Next, we derive
a differential equation for v by plugging Sϕ,ψ(v) = u in equation (2). Differen-
tiation of (9) w.r.t. x and y yields:

ux(x, y) =
vx(x, y)

xy
−

1

b

ϕ(x)

x
−

1

x

∫ b

y

vx(x, η)

η2
dη, (10)

uy(x, y) =
vy(x, y)

xy
−

1

a

ψ(y)

y
−

1

y

∫ a

x

vy(ξ, y)

ξ2
dξ, (11)

together with the already known equation (6), uxy(x, y) = vxy(x,y)

xy
. Using these

expressions in equation (2) we get

vxy(x, y)

xy
+ A(x, y)

(

vx(x, y)

xy
−

1

b

ϕ(x)

x
−

1

x

∫ b

y

vx(x, η)

η2
dη

)

+B(x, y)

(

vy(x, y)

xy
−

1

a

ψ(y)

y
−

1

y

∫ a

x

vy(ξ, y)

ξ2
dξ

)

+ C(x, y)

(

v(x, y)

xy
+

1

a

∫ b

y

ψ(η)

η
dη +

1

b

∫ a

x

ϕ(ξ)

ξ
dξ

−
1

ab

∫ b

0

ψ(η) dη
1

x

∫ b

y

v(x, η)

η2
dη −

1

y

∫ a

x

v(ξ, y)

ξ2
dξ

+

∫ a

x

∫ b

y

v(ξ, η)

ξ2η2
dη dξ

)

= f(x, y).

(12)

This leads to a differential equation for v which we consider now:

vxy(x, y) +A(x, y)vx(x, y) +B(x, y)vy(x, y) + C(x, y)v(x, y) = F (x, y; v), (13)
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where F can be expressed as F (x, y; v) = F1(x, y) + F2(x, y; v), the function

F1(x, y) = xyf(x, y) +
A(x, y)

b
yϕ(x) +

B(x, y)

a
xψ(y)

+
C(x, y)

ab
xy

(
∫ b

0

ψ(η) dη − b

∫ b

y

ψ(η)

η
dη − a

∫ a

x

ϕ(ξ)

ξ
dξ

)

is known and the expression

F2(x, y; v) = A(x, y)y

∫ b

y

vx(x, η)

η2
dη +B(x, y)x

∫ a

x

vy(ξ, y)

ξ2
dξ

− C(x, y)xy

∫ a

x

∫ b

y

v(ξ, η)

ξ2η2
dη dξ + C(x, y)x

∫ a

x

v(ξ, y)

ξ2
dξ

+ C(x, y)y

∫ b

y

v(x, η)

η2
dη,

contains the unknown function v. Consequently, equation (13) is loaded. As
boundary conditions to equation (13) let

v(x, 0) = xϕ(x) =: ϕ1(x) (14)

v(0, y) = yψ(y) =: ϕ2(y), (15)

which can be easily formally motivated as consequences of (3) and (4). Note
that ϕ1(0) = ϕ2(0) = 0. The functions A,B,C, f are assumed to be of equal
quality as in Problem A. Additionally, let ϕ, ψ be differentiable on (0, a] and
(0, b], respectively. Furthermore assume ϕ1 ∈ C([0, a]) and ϕ2 ∈ C([0, b]).

Problem B: For given A,B,C, f, ϕ1, ϕ2 as above, find a function v ∈ V , such
that for all (x, y) ∈ Ω the loaded equation (13) holds and the classical conditions
(14) and (15) are satisfied.

Proposition 3.2. Let v ∈ V be a solution of Problem B and u := Sϕ,ψ(v),
where the operator Sϕ,ψ is defined in equation (9). Then u satisfies the integral

conditions (3) and (4).

Proof. First we proof the convergence of the integrals involved in the respective
expressions. Consider the integral

∫ a

0
u(x, y) dx. The function u can be written

as follows:

u(x, y) =

∫ b

y

∫ a

x

v(ξ, η) − v(x, η) − v(ξ, y) + v(x, y)

ξ2η2
dξ dη

−
1

a

∫ b

y

vη(x, η)

η
dη −

1

b

∫ a

x

vξ(ξ, y)

ξ
dξ −

v(x, y)

ab
+
v(x, b)

ab

+
v(a, y)

ab
+

1

a

∫ b

y

ψ(η)

η
dη +

1

b

∫ a

x

ϕ(ξ)

ξ
dξ −

1

ab

∫ b

0

ψ(η) dη.

(16)
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From (16) we easily get
∫ a

0

u(x, y) dx =

∫ a

0

(
∫ b

y

∫ a

x

v(ξ, η) − v(x, η) − v(ξ, y) + v(x, y)

ξ2η2
dξ dη

−
1

a

∫ b

y

vη(x, η)

η
dη −

1

b

∫ a

x

vξ(ξ, y)

ξ
dξ −

v(x, y)

ab
+
v(x, b)

ab

+
v(a, y)

ab
+

1

a

∫ b

y

ψ(η)

η
dη

)

dx+

∫ a

0

(

1

b

∫ a

x

ϕ(ξ)

ξ
dξ

)

dx

−

∫ a

0

(

1

ab

∫ b

0

ψ(η) dη

)

dx.

The last two integrals can be calculated explicitly:
∫ a

0

(

1

b

∫ a

x

ϕ(ξ)

ξ
dξ

)

dx =
1

b

∫ a

0

(
∫ ξ

0

ϕ(ξ)

ξ
dx

)

dξ =
1

b

∫ a

0

ϕ(ξ) dξ

∫ a

0

(

1

ab

∫ b

0

ψ(η) dη

)

dx =
1

b

∫ b

0

ψ(η) dη.

Because of (1) we get
∫ a

0

u(x, y) dx =

∫ a

0

(
∫ b

y

∫ a

x

v(ξ, η) − v(x, η) − v(ξ, y) + v(x, y)

ξ2η2
dξ dη

−
1

a

∫ b

y

vη(x, η)

η
dη −

1

b

∫ a

x

vξ(ξ, y)

ξ
dξ −

v(x, y)

ab
+
v(x, b)

ab

+
v(a, y)

ab
+

1

a

∫ b

y

ψ(η)

η
dη

)

dx.

Denote the integrand of the right-hand side of the above equation by T (x, y).
We estimate the modulus of T (x, y). Obviously we have

|T (x, y)| ≤

∫ b

y

∫ a

x

|v(ξ, η) − v(x, η) − v(ξ, y) + v(x, y)|

ξ2η2
dξ dη

+
1

a

∫ b

y

|vη(x, η)|

η
dη +

1

b

∫ a

x

|vξ(ξ, y)|

ξ
dξ +

|v(x, y)|

ab
+

|v(x, b)|

ab

+
|v(a, y)|

ab
+

1

a

∣

∣

∣

∣

∫ b

y

ψ(η)

η
dη

∣

∣

∣

∣

.

Due to v ∈ C1(Ω) the function v and its derivatives are bounded by some
constant M . Therefore we get

|T (x, y)| ≤

∫ b

y

∫ a

x

|v(ξ, η) − v(x, η)| + |v(ξ, y) − v(x, y)|

ξ2η2
dξ dη

+
M

a

∫ b

y

1

η
dη +

M

b

∫ a

x

1

ξ
dξ +

3M

ab
+

1

a

∣

∣

∣

∣

∫ b

y

ψ(η)

η
dη

∣

∣

∣

∣

,



Some Non-Local Boundary-Value Problems 79

and the following Lipschitz condition holds: |v(x, y) − v(x̄, y)| ≤ M |x− x̄|.
That is why we have

|T (x, y)|≤M

(

2

∫ b

y

∫ a

x

ξ−x

ξ2η2
dξ dη +

1

a

∫ b

y

1

η
dη +

1

b

∫ a

x

1

ξ
dξ +

3

ab

)

+
1

a

∣

∣

∣

∣

∫ b

y

ψ(η)

η
dη

∣

∣

∣

∣

,

and

∫ b

y

∫ a

x

ξ−x

ξ2η2
dξ dη =

∫ b

y

1

η2
dη

∫ a

x

ξ−x

ξ2
dξ ≤

(

−
1

b
+

1

y

)
∫ a

x

1

ξ
dξ ≤

1

y
(ln a− lnx).

Hence we get

|T (x, y)| ≤M

[

2

y
(ln a− ln x) +

1

a
(ln b− ln y) +

1

b
(ln a− lnx) +

3

ab

]

+
1

a

∣

∣

∣

∣

∫ b

y

ψ(η)

η
dη

∣

∣

∣

∣

.

The integral

∫ a

0

(

M

[

−

(

2

y
+

1

b

)

lnx+

(

2

y
+

1

b

)

ln a+
1

a
(ln b− ln y) +

3

ab

]

+
1

a

∣

∣

∣

∣

∫ b

y

ψ(η)

η
dη

∣

∣

∣

∣

)

dx

= M

(

2a

y
+
a+ 3

b
+ ln b− ln y

)

+

∣

∣

∣

∣

∫ b

y

ψ(η)

η
dη

∣

∣

∣

∣

converges and because of the majorant criterion so does
∫ a

0
u(x, y) dx. The

convergence of
∫ b

0
u(x, y) dy can be proved analogously.

In order to show the equalities
∫ b

0
u(x, y) dy = ϕ(x) and

∫ a

0
u(x, y) dx = ψ(y)

we use equation (8). We have

∫ a

0

u(x, y) dx =

∫ a

0

(
∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη −

1

b

∫ b

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dy

−
1

ab

∫ b

0

ψ(y) dy +
1

ab

∫ b

0

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx dy

+
ψ(y)

a
+
ϕ(x)

b
−

1

a

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx

)

dx.
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Therefore we get
∫ a

0

u(x, y) dx =

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx−

1

b

∫ a

0

∫ b

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dy dx

−
1

b

∫ b

0

ψ(y) dy +
1

b

∫ b

0

∫ a

0

∫ b

y

a
∫

x

vξη(ξ, η)

ξη
dξ dη dx dy + ψ(y)

+
1

b

∫ a

0

ϕ(x) dx−−

∫ a

0

∫ b

y

∫ a

x

vξη(ξ, η)

ξη
dξ dη dx,

this yields
∫ a

0
u(x, y) dx = ψ(y). Analogously we get

∫ b

0
u(x, y) dy = ϕ(x).

Proposition 3.3. Let v ∈ V be a solution of Problem B and u := Sϕ,ψ(v), where

the operator Sϕ,ψ is defined in equation (9). Then u satisfies the differential

equation (2) on Ω = (0, a) × (0, b).

Proof. By partial differentiation of equation (9) we first recover equations (10),
(11) and (6):

u(x, y) =
v(x, y)

xy
+

1

a

∫ b

y

ψ(η)

η
dη +

1

b

∫ a

x

ϕ(ξ)

ξ
dξ −

1

ab

∫ b

0

ψ(η) dη

−
1

x

∫ b

y

v(x, η)

η2
dη −

1

y

∫ a

x

v(ξ, y)

ξ2
dξ +

∫ a

x

∫ b

y

v(ξ, η)

ξ2η2
dη dξ

ux(x, y) =
vx(x, y)

xy
−

1

b

ϕ(x)

x
−

1

x

∫ b

y

vx(x, η)

η2
dη

uy(x, y) =
vy(x, y)

xy
−

1

a

ψ(y)

y
−

1

y

∫ a

x

vy(ξ, y)

ξ2
dξ

uxy(x, y) =
vxy(x, y)

xy
.

By assumption, equation (13) holds for (x, y) ∈ Ω. Reordering the terms, we
obtain (cf. equation (12))

vxy(x, y) + A(x, y)

(

vx(x, y) −
y

b
ϕ(x) − y

∫ b

y

vx(x, η)

η2
dη

)

+B(x, y)

(

vy(x, y) −
x

a
ψ(y) − x

∫ a

x

vy(ξ, y)

ξ2
dξ

)

+ C(x, y)

(

v(x, y) +
xy

a

∫ b

y

ψ(η)

η
dη +

xy

b

∫ a

x

ϕ(ξ)

ξ
dξ

−
xy

ab

∫ b

0

ψ(η) dη − y

∫ b

y

v(x, η)

η2
dη − x

∫ a

x

v(ξ, y)

ξ2
dξ

+xy

∫ a

x

∫ b

y

v(ξ, η)

ξ2η2
dη dξ

)

= xyf(x, y),
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from which we derive

xyuxy(x, y) + Axyux(x, y) +Bxyuy(x, y) + Cxyu(x, y) = xyf(x, y).

Here we omitted the dependence of the coefficients A,B,C on x and y for
convenience. This proves that u solves equation (2) for all (x, y) ∈ Ω.

Theorem 3.4. Let v ∈ V be a solution of Problem B and u := Sϕ,ψ(v), where

the operator S is defined in equation (9). Then u is a solution of Problem A.

Proof. It is easy to see that u ∈ C1(Ω). Because of uxy(x, y) = vxy(x,y)

xy
the

function uxy is continuous on Ω and therefore u ∈ U . The rest follows by
Propositions 3.2 and 3.3.

4. Conclusions

By relating problem A with problem B we shift the question of solvability of
problem A to the question of solvability of problem B. In fact, existence and
uniqueness of a solution of Problem B can be shown under certain nontrivial
assumptions. This result will be published in a forthcoming paper [2].
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