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Dual Properties of Triebel-Lizorkin-T'ype Spaces
and their Applications

Dachun Yang and Wen Yuan

Abstract. Let s € R, p € (1,00), 7 € [0, %] and Soo(R™) be the set of all Schwartz

functions ¢ whose Fourier transforms ¢ satisfy that 07@(0) = 0 for all v € (NU
{0})". Denote by yFyy (R™) the closure of Soo(R") in the Triebel-Lizorkin-type
space [ (R™). In this paper, the authors prove that the dual space of v Fjp (R™)
is the Triebel-Lizorkin-Hausdorff space FH I;i;f (R™) via their op-transform character-
izations together with the atomic decomposition characterization of the tent space
F TpT;’f (R%Jrl), where t' denotes the conjugate index of ¢ € [1,00]. This gives a gen-
eralization of the well-known duality that (CMO(R"))* = H'(R") by taking s = 0,
p=2and T = % As applications, the authors obtain the Sobolev-type embedding
property, the smooth atomic and molecular decomposition characterizations, bound-
ednesses of both pseudo-differential operators and the trace operators on F Hpp (R");
all of these results improve the existing conclusions.
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1. Introduction

Recently, the Besov-type spaces B;:Z(R") and the Triebel-Lizorkin-type spaces
F[i’; (R™) were introduced and investigated in [14,22,23]. These spaces unify

and generalize Besov spaces B;q(R”), Triebel-Lizorkin spaces F;Q(R”), Morrey
spaces, Morrey—Triebel-Lizorkin spaces and Q,(R") spaces. Recall that the
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spaces Qo (R™) were originally introduced by Essén, Janson, Peng and Xiao [9];
see also [7,9,19,20] for the history of @) spaces and their properties.

Let se R, p e (1,00), g € [1,00) and T € [0>Wm]
follows, for any t € [1,00], ¢’ denotes its conjugate indezx, namely, % + tl, =1.
The Besov-Hausdorft spaces BH,7(R") and the Triebel-Lizorkin—Hausdorff
spaces F'FH>7(R™) (¢ > 1) were also introduced in [22, 23]; moreover, it was

. Here and in what

proved therein that they are respectively the predual spaces of B;Z,T(R") and
pr,Z’,T(RfL). The spaces BH5T(R") and F Hg:g(R") unify and generalize Besov
spaces By (R"), Triebel-Lizorkin spaces F; (R") and Hardy-Hausdorff spaces

HH! (R") for « € (0,1), where HH"' (R") was recently introduced by Dafni
and Xiao in [7] and was proved to be the predual space of Q,(R™) therein.

Let S(R™) be the space of all Schwartz functions on R™ and denote by
S'(R™) its topological dual, namely, the set of all continuous linear functionals
on S(R"™) endowed with the weak x-topology. Let Z, = N U {0}. Following
Triebel [17], we set

S (R™) = {gp e S(R") : / o(x)x” dx = 0 for all multi-indices v € (Z+)"}

and consider So(R") as a subspace of S(R"), including the topology. Use
S (R™) to denote the topological dual of S (R™), namely, the set of all con-
tinuous linear functionals on S, (R™). We also endow S’ (R") with the weak
x-topology. Let P(R™) be the set of all polynomials on R". It is well known
that S._(R") = §’'(R")/P(R™) as topological spaces.

Let VF;’;(R”) be the closyr@ of Soo(R™) in Fpqu(R") Recall that SOO(R")
may not be dense in the space F)7 (R"); see [22, Remark 3.1(ii)]. Thus,y F;;7 (R")
may be a proper subspace of sz”qT (R™) and it makes no sense to study the
dual space of F;;qT (R™), which explains the necessity to introduce the space
VF;,’qT (R™). Moreover, the main target of this paper is to show that for all
s €R,pe(l,0)and T € [0,%], the dual space, denoted by (VF;”;(R”))*,
of v F37(R™) is the space FH o (R™), which is obtained via their ¢-transform
characterizations together with the atomic decomposition characterization of
the tent space F Tp_/;’f (RZ*™1). This generalizes the well-known result in [6] that
(CMO (R™))* = H'(R") by taking s =0, p = 2 and 7 = 5. Indeed, in order to
represent H'(R™) as a dual space, Coifman and Weiss [6] introduced the space
CMO(R™), which was originally denoted by VMO (R") in [6], as the closure
of continuous functions with compact supports in the BMO (R") norm and
established this dual relation. We recall that CMO (R") is also the closure
of all smooth functions with compact support in BMO (R"); see, for example,
2, p. 519].



Dual Properties of Triebel-Lizorkin-Type Spaces 31

As applications of this new dual theorem, in this paper, we also obtain the
Sobolev-type embedding property, the smooth atomic and molecular decom-
position characterizations, boundednesses of both pseudo-differential operators
and the trace operators on FH;;; (R™); all of these results improve the existing
conclusions.

To recall the notions of these spaces, we need some notation. For k£ € Z™ and
J € Z, we denote by Q. the dyadic cube 277([0,1)" +k), £(Q) its side length, xq
its lower left-corner 277k and cq its center. Set Q(R™) ={Qjx : j € Z, k € Z"},
Q;(R") ={Q € QR™): (Q) =277} forall j € Z, and jg = — log, E(Q) for all
Q € Q(R™). When the dyadic cube @) appears as an index, such as ZQGQ(R,L)
and {-}gecomn), it is understood that () runs over all dyadic cubes in R™.

In what follows, for any go € S(R"), we use © to denote its Fourier transform,
namely, for all £ € R", 3(&) = [o. e ““p(x)dr. Set @;(x) = 27"p(27z) for all
] €Z and x € R™.

Assume that ¢ € S(R") such that
~ n 1 ~ .3 5)
supp C {€ € R": o< g <2 amd [B(OIZC>0if Z<f <3 ()
Now we recall the notion of Triebel-Lizorkin-type spaces F;;qT (R™) in [23, Defi-

nition 1.1].

Definition 1.1. Let s € R, 7 € [0,00), p € (0, 00), ¢ € (0, o] and ¢ € S(R")
satisfy (1). The Triebel-Lizorkin-type space F;7(R") is defined to be the set of
all f € S (R") such that || f[| s &ny < 00, where

p 1
E p

1 N ¢
Hf‘ For(rny = Sup ’P’T /P [Z (QJS’QOj *f(x)‘) dx

TL . .
PEQ(R i

with suitable modification made when ¢ = oo

It was proved in [23, Corollary 3.1] that the space Fpﬁg (R™) is independent of
the choices of ¢. Recall that F50(R") = F? (R™), FEd/P (R = Fs (R and
F;"’;ﬂ_a(R”) = Q.(R") for all a € (0,1); see [23, Proposition 3.1] and [22,
Corollary 3.1]. Also, for all s € R, ¢ € (0, 0] and 0 < u < p < o0,

Ss,1/u—1 n s (R™ . . 0,1/u—1 n n

Eoa/v VPR = quu( ), in particular, Fu72/ P(R") = MP(R™), where
quu(]R”) denotes the Triebel-Lizorkin-Morrey space, introduced and investi-
gated in [13,15], and M%(RR") is the well-known Morrey space; see [14, Theo-
rem 1.1]. Some useful characterizations of F;7(R"), including the ¢-transform
characterization, Sobolev-type embedding property, smooth atomic and molec-
ular decomposition characterizations, were obtained in [23], which generalize the

corresponding results on Triebel-Lizorkin spaces F;’q(R"); see [3,4,10,11,16,17].
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For x e R" and r > 0, let B(z, r) ={y € R": |z — y| < r}. We now recall
the notion of Hausdorff capacities; see, for example, [1,21]. Let £ C R"™ and
d € (0, n]. The d-dimensional Hausdorff capacity of E is defined by

Hd(E)Einf{ZT?: ECUB(xj,Tj)}, (2)

where the infimum is taken over all covers {B(x;, r;)}32, of countable open
balls of E. It is well known that H¢ is monotone, countably subadditive and
vanishes on the empty set. Moreover, H? in (2) when d = 0 also makes sense,
and H" has the properties that for all sets E C R", H*(E) > 1, and H°(F) = 1
if and only if E is bounded.

For any function f : R" — [0, 00], the Choquet integral of f with respect to
H? is defined by

fdH® = /OO H'({z e R*: f(z) > A})dA.

This functional is not sublinear, so sometimes we need to use an equivalent in-
tegral with respect to the d-dimensional dyadic Hausdorff capacity H?, which is
sublinear; see [21] (also [22,23]) for the definition of dyadic Hausdorff capacities
and their properties.

In what follows, for any p, g € (0,00], let p V ¢ = max{p, ¢} and p A
¢ = min{p,q}. Set R = R" x (0,00). For any measurable function w on
]R’frl and x € R", define its nontangential maximal function Nw by setting
Nw(r) = supj,_, < |w(y,t)|. We now recall the notion of the spaces FH;;;(R”)
in [22, Definition 5.1].

Definition 1.2. Let s € R, p, ¢ € (1,00), 7 € [0, (pv—lq),] and ¢ be as in Defini-

tion 1.1. The Triebel-Lizorkin—Hausdorff space FH;;;(R”) is defined to be the
set of all f € S/_(R"™) such that
)

{ o
where w runs over all nonnegative Borel measurable functions on RTFI satisfying

Qi

i % f [w(-27)] 7

||f||FH;;;(Rn) = igf < 00,

jEZ Lp (Rn)

/ [Nw(x)](pwz)’ dH"T(pV‘Z)'(x) <1 (3)

and with the restriction that for any j € Z, w(-,277) is allowed to vanish only
where ¢; * f vanishes.
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It was proved in [22, Section 5] that the space FH Sr(R™) is independent
of the choices of ¢. Recall that FHSO(R") = F¥ (R") and FH,}" /2o Ry =
HH! _(R"); see also [22, Section 5]. It was proved in [22, Theorem 5. 1] that

TS, 7 (PN\\* __ ST (Mn 1
(FHy7(R™)* = F, (R ).for 'all seR, p, qge(l,00) ane 7 € [0, Gvarl- Also,
the -transform characterization, Sobolev-type embedding property, smooth
atomic and molecular decomposition characterizations of F'H,7(R") were ob-
tained in [24].

In what follows, for simplicity, we use FPS’T(R") to denote Flf;; (R™) and
F HjT(R") to denote FH;;; (R™), respectively. The main result of this paper is
the following dual theorem. Recall that VF;’qT (R™) is defined to be the closure
of Su(R™) in F57(R™),

Theorem 1.3. Let s € R, p € (1,00) and 7 € |0, %] Then the dual space of
VF;’T(R“) is FH;S’T(R") in the following sense: if [ € FHIO_,S’T(R”), then the
linear map
Vi f(z)v(z)dx (4)
R”
defined initially for all v € So(R™), has a bounded extension to VF”(]R”)
with operator norm no more than a positive constant multiple of HfHFH a7 (Rny;

conversely, if L € (VF”(]R")) , then there exists an f € FHP_ST(R”) with
1Nl =7 ny M0 more than a positive constant multiple of ||L|| such that L has

the form (4) for all v € S (R™).

(R

Recall that FHO’I/Q( R") = H'(R"™); see [22, Remark 5.2]. We also remark
that VFQO’I/Q(R”) CMO (R™) (see Corollary 2.2 below). Then Theorem 1.3,
when taking s = 0, 7 = % and p = 2, generalizes the well-known duality
obtained in [6] that (CMO (R™)* = HY(R").

Notice that when 7 = 0, Theorem 1.3 has a more general version, that
is, for all s € R and ¢ € (O oo, (VFS (R™))* F o(R™) with p € [1 00)
and (VB;’q(R”))* = B;Z,(]R”) with p € [1, 0], where ¢ = oo when ¢ € (0, 1];
see, for example, [16, pp. 121-122] and [17, p. 180, Remark 2]. However, to
be surprised, the dual property in Theorem 1.3 are not possible to be correct
for all F57(R"), Bsr(R™), FH3T(R") and BHST(R") with 7 > 0, p € (1, 00),
q € [1,00) and p # ¢, which is quite different from the above classical cases; see
Remark 4.3 below for more details.

Set R = R" x {2% : k € Z}. Let C®(R") be the set of all smooth
functions f on R™ with compact support. For all M € NU {0}, let C29,(R")
be the set of all f € CZ(R™) satisfying that [, f(x)x? dx =0 for all |'y| < M.
We also write C¢° | (R") = C°(R").

In Section 2, we prove that for all admissible indices s, 7, p and ¢, the space
VF;;qT (R™) comc1des with the closure of C29,(R™) N F[f;(; (R™) in F}f’g (R™) for
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certain M (see Theorem 2.1 below), which further implies that y F} 1 *(R") =
CMO (R™). In Section 3, we recall the notion and some known results on the
tent spaces F' T;’; (Ry™!) and F szqT (R2*), which are, respectively, correspond-
ing to FH3T(R") and F7(R"). Then for s € R, p € (1,00) and 7 € [0, 2],
we prove that the dual space of cFW2T(Rp™) is just F T;;’f (R2*™), where
cFW2T(RE™Y) is the closure of the set of all functions in FW2T(Ry™) with
compact support. Via this, in Section 4, we give the proof of Theorem 1.3. As
applications, in Section 5, we establish the Sobolev-type embedding property
of I HI‘;”T(R”). We also obtain its smooth atomic and molecular decomposition
characterizations, boundednesses of pseudo-differential operators and the trace
operators on F' H;’T(R”), which improve the corresponding conclusions in the
case that p = ¢ in [24] .

Recall that in [6], the atomic decomposition characterization of H'(R")
plays an important role in establishing the duality between CMO (R™) and
H'(R"). However, for the space F H{;’T(R"), we have no such analogous atomic
decomposition characterization so far. To overcome this difficulty, in this paper,
different from [6], by fully using the atomic decomposition characterization of
the tent space F Tzf; (R2™) corresponding to F H;’T(]R”), we first obtain the
predual space of the tent space FT TR (see Theorem 3.4 below), which
further induces a dual theorem for the spaces of sequences corresponding to
F;’T(R”) and FH;’T(R") (see Proposition 4.2 below). This combined with the

e-transform characterizations of both F;’T(R”) and F H;”(R”) then yields the
desired conclusion of Theorem 1.3.

Finally we make some conventions on notation. Throughout the whole
paper, we denote by C' a positive constant which is independent of the main pa-
rameters, but it may vary from line to line, while C'(«, /3, . . .) denotes a positive
constant depending on the parameters «, 3, .... The symbol A < B means that
A< CB. If A< Band B < A, then we write A ~ B. If E is a subset of R”,
we denote by x g the characteristic function of E. For a dyadic cube @ € Q(R")
and all = € R, set oo (z) = |Q| 2¢(272 (x —x0)) and Yo (z) = |Q| 2 xo(z), and
for r > 0, let rQ be the cube concentric with @ having the side length r¢(Q).
We also set N={1,2,...} and Z, = NU {0}.

2. An equivalent characterization of VF;,’;(R”)

In this section, we establish an equivalent characterization of VF;;qT (R™), the
closure of Soo(R™) in F:7(R™); precisely, we prove that v F,:7(R™) coincides
with the closure of C9,(R™)NEST(R™) in F7(R™) for certain M, which further
implies that CMO (R") is a special case of v F)7 (R").
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For all M € Z, U {—1}, denote by MF;;;(R”) the closure of C29,(R™) N
Fyr(RY) in Fyr(R™).  Obviously, an F7(R™) C apFp7 (R™) if My > M.
Throughout the whole paper, for all p, ¢ € (0,00] and s € R, set

1

/= (L)

and N =max{|J—n—s|,—1}, (5)

where and in what follows, for any a € R, |a] denotes the mazimal integer no
more than a.

The main result of this section is the following theorem.

Theorem 2.1. Let s € R, p € (0,00), g € (0,00], M € Zy U{—1}. Let J and
N be as in (5).
(i) Let T € [0,%—1—%) when N > 0 or 7 € [0,%—1—%) when
N < 0. Then v F;;7(R") C mEFST(R™). ‘
(ii) Let 7 € [0,00). Then yEF57(R") C vE57(R™) if M > max{p%q -n—
L—s+2%—n—1}.
As an immediately corollary of Theorem 2.1, we have the following conclu-
sion.

Corollary 2.2. Let s € R, p € (0,00), q € (0,00], and J and N be as in (5).
Let 7 € [O,%—FHLJ_TSJ_HS) when N >0 or 7 € [O,%—l—”%]) when N < 0
an¢M€Z+U{—1} such that]\/[>max{]%1—n—l,—s+%—n—1}. Then
MF;”;(R”) = VFZ‘;’;(R").

Notice that Fy'"/?(R™) = BMO (R") and _1Fy/?(R") = CMO (R"). Ap-
plying Corollary 2.2, we then have y Fy"'/*(R") = CMO (R™).
For all L € Z; and ¢ € S(R™), set [|¢|ls, = sup,cgn supp, <, [07¢(x)[(1 +

|z|)" 41 where and in what follows, for all v = (v1,...,7,) € (Zy)", &7 =
g1 9 To prove Theorem 2.1, we need the following lemma. Its proof is

a:pjl Oz *

similar to that of [22, Lemma 2.2]. We omit the details.

Lemma 2.3. Let M € Z, U{—1}, ¢ € So(R") and f € C9,(R").

(i) If j € Z, then for all L € 7., there exists a positive constant C(L,n),
depending only on L and n, such that for all v € R",

|90j * f($)| < C(L,n)ngHSLH||fHSL+12—J'L<1 + ’xD_n_L_l'

(ii) If j € Z \ Z, then there exists a positive constant C(M,n), depending
only on M and n, such that for all x € R",

lp; * f(2)] < C(M,n)||@llsarinll Fllsaria @77 + )M
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We now recall the sequence space corresponding to Fps,’g (R™); see [23, Defi-
nition 3.1]J.

Definition 2.4. Let s € R, p € (0, 00), ¢ € (0, oo] and 7 € [0,00). The
sequence space f7(R™) is defined to be the set of all t = {tg}geo®n) C C such
that [[¢] s~ gny < 00, Where

P

1 o0 on g
Wi = o e |25 2 gt o

PeQ®") i=ip 0(Q)=2-i

An important tool used in the proof of Theorem 2.1 is the smooth atomic
decomposition characterization of F;7(R") in [23, Theorem 4.3] (see also [10,

Theorem 4.1]). Recall that a smooth atom for F;’g (R™) is defined as follows.

Definition 2.5 ( [23, Definition 4.1]). Let s € R, p € (0,00), ¢ € (0,00],
and J and N be as in (5). Let 7 € [O,% + M) when N > 0 or
T € [0,217 + =227} when N < 0. A C*°(R") function ag is called a smooth
atom for F:7(R™) supported near a dyadic cube Q if there exist integers K >
max{|s+n7+1],0} and N > N such that suppag C 3Q, [g. 27ag(zx)dz =0

1_ Il

if |y| < N and |0%ag(z)| < Q|2+ for all z € 3Q if |y < K.
We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. (i) Since py, F;;(]R”) C MQF;”qT(R") if My > M,, we only
need to prove (i) when M > N = max{|J —n—s]|, —1}; equivalently, it suffices
to prove that for any ¢ € (0,00) and f € So(R"), there exists a function
g € Coy(R™) N Fo7(R") with M > N such that || f — gl pormey <€

Let ¢ be as in Definition 1.1. By [23, Theorem 4.3] and its proof together
with Soo(R”) C F7(R") (see [23, Proposition 3.1(ix)]), we know that each f €
Soo(R™) has a repre'sentation f=2%21e220co,mm tuq in S, (R"), where aq is
a smooth atom for F7'7(R") supported near () satisfying that Jan TVag(x) dz =0
for all |y| < M,

|<f7 90R>|p/\q PR
tQ = Cl Z ol .
(reo@atr—qy L T QI wr = 2l)

and |[{tq}oeomm [l j7 @ny < Collfll 57 @y, Where A > n can be sufficiently large,
which is determined later, and C7, C5 are positive constants independent of f.

For L € N, set

fL = Z tQa’QX{RGQ(R”): 2-L<y(R)<2L, Rc[—zL,QL)"}(Q)-
QeQ(R™)



Dual Properties of Triebel-Lizorkin-Type Spaces 37

Obviously, f, € C25,(R") N F;g (R™). By [23, Theorem 4.3] again, we see that

If = fellz

<, {tQX{ReQ(R"):Z(R)%[Z*LQL] or RQ[—2L,2L)"}(Q)}

QEQ(R™) || ¢s, £5T (Rm)

< CCy | sup |P| /[Z Z 2059 10| Ixq (x )] dx
P

PeQ(R") 15 o2

Qs
bS]

+ sup
PeQ(R™)

‘P‘T /P [ Z Z Qj(s+g)‘1|tQ|qXQ(x)] dx

J=ip  ¢(Q)=27J
[FI<L Q¢ [-2L,2L)n

ECCQ( sup Ip+ sup Jp),

PeQ(R™) PeQ(R™)

where C' is a positive constant independent of f and L.

Since f € So(R"), by [22, Lemma 2.2, we see that for all j € Z and
ke (Z+)n>

v 1
9~ %5 +|i| K+(iA0) K] (pAq) o

6
Z (1 + |l = k|)M(2-GA0)  |2-3]|) (n+E)(pAg) ’ (6)

lezm

tij 5 C [

where we chose K € Z, such that K > max {n[ﬁ — 1},3 + n[T + (% -y
0},—3—|—n(§—1)}.

If jp > —L, we then have

RS YA YD SECLNE

j=(jpVL) kezZm

P

] vha ] q v
. d .
X (;Z: A+ =k (1t 1231\)(n+K)(pAq)) ] v

€

Notice that j > (jp V L) > 1. Then [279k| < |277| + |l — k|, which implies
that 1+ (2791 > (1 + [279k|)(1 + |k — I|)~". In what follows, we always choose
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A>n+(n+ K)(pAq). By this, we then have

At [ ST 3 2 g )+
P

(jpVL) keZr

=

q b

1 pAgd | g P
X (Z (141 - k|)>‘(n+K)(p/\Q)> ] dx
lezn

<C|P|T /P[ Z D Py, ()14 277k g

(jpVL) keZr

When p < ¢, by K > max {s + n[r + (é — %)\/O],n(}—l7 ~1)}, (jp VL) > L and
the inequality that for all d € (0, 1] and {«;}; C C,

(i) <Xt )

Jun

we obtain that Ip < C1|P|” T{Z (GpvI)
C,2H+n7=K) When p > ¢, by Minkowski’s inequality, we also have

1

q
I 2] q2]n 5_*)‘1 < C 2L[S—K+n(7’+%—%)]‘
S |P| { Z P } =~ G

=(jpVL)

24(37K)p}5 < C,20pVL)L(s+nT—K) <

If jp < —L, we see that

—L-1

1 ,
I <CCy W /P [ Z Z 2J(s+n+K)‘1Xij(.T)

Jj=jp kezr

=

q D

1 pha | q P
" (Z T u|><n+f<><w>> ] o

1
+|p|r /P[Z ZQJ XQ]k )

j=L+1kezn

S =

9 P

1 pAg | q
g Z A 1\ (n+K ) ] dx
<ZGZn (1 + [ = kD1 + [2730]) o+ B o)

= CCl (Il + 12),
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where C' is a positive constant independent of L. The estimate of I is the same
as the estimate for Ip in the case that jp > —L, by noticing that in the estimate
for Ip, we did not use the fact that jp > —L. To estimate Iy, by |P|™7 < 1,
(L4+[l—k])(L+]l]) > (14 1k|]) and K > —s—f—n(% —1), applying (7) when p < ¢
or Minkowski’s inequality when p > ¢, we obtain

1
» 1
—L q p
I, 5 / [Z Z 2j(s+n+K)q(1 + |k|)_(n+K)qXij (l’) dx S 27L[5+K+n(17%)}‘
Pl =
=jp kez"

Therefore, we have Ip < €} max {QL{SJF”[TJF(***)VO] K} 2 Lis+K4n(1- )]}

Next we estimate Jp. Notice that (14 |l —k|)(2~ UAO +127791]) > 2701 (1 4
1270VOE|) for all j € Z and I, k € (Z,)". By (6) and A > n+ (n+ K)(p A q),
we have

Jp S

|P|T /[Z Y 20T, (2)

Jj=ip kezZ™
FISL Qjgl—2L 2L)n

P

1
o[ K-+ (GA0) K] (pAg) il |7
\Z o mre e papeea | | @

lezn

1
» o—lilk—-Groma 5|7
ois , ey .
VAP

UISL Qpgl-2L2l)n

When p < ¢, applying (7) yields that

9~ ilKp+(iA0)np—jn

1
>y e
(1 + |2-GVO )+ Fp

i=ip kezn
lilSL Q p¢l-2L,2)n

Jp S

IPIT

=

SO o=d Y 2P KRGOt VO (LGN K)pn] |
|P| ]':jP
lFI<L

Iij > L, then JP =0.If0 < jP < L, then
Jp < Cl2*L[K+n(1f%)]2jP(s+nT—K) < 0127L[K+n(17%)]‘

If jp <0, then

3 =

-1

L
Jp < Clz—L[KJrn(l—%)] [Z 9i(s=K)p 4 Z 2]'810]
L)

Jj=0 J=jpV(—
<C'1max{L2 LIK+n(1-2)] 2" L{s+K+n(1— )]}.
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Thus, we always have Jp < C maX{LZ*L[KJF"(l’%)], 9~ LlstK4n(1=1/p)]}

When p > ¢, applying Minkowski’s inequality, we see that

Qi

9~ lilKa+(A0)ng— 252
JpSC 2754
P 1 |P|T Z Z (1 + [2-GVO k) (n+EK)g
Jj=ip kezZ™
l5ISL Qjpgl-2L 20)m
1
1 > . : ing !
< 93549~ |11 Ka+(iA0)ng— 2 4(jV0)ng —[L+(jA0)][(n+K)g—n]
~ WP\T{ 2
Jj=ip
liI<L

Similarly, we have Jp < C] max {L2_L[K+n(l_%)1, 2_L[S+K+”(1_%”}.

Combining the estimates of Ip and Jp implies that there exists a positive
constant C, independent of L, such that

”f fLHFSg(Rn
< CC.0, max{ oListnlr+(3—35)VOI-K} L L2 L(K+n[1- (piq)]),Q_L[SJFKﬂL"(l—%)]}.

For any given € > 0, choosing L large enough such that

Y

CC1Cy max {2 G KT o UGl -t tanO=01

we then have ||f — fr|

for @y < €, which completes the proof of (i).

(ii) To prove MF;:J(R”) C VF;;J(R"), it suffices to show that for any ¢ €
(0,00) and f € C25,(R") N F;;;(R"), there exists a function g € S, (R™) such
that ||/ — gl 7 gn) < €. Since the proof is similar to that of (i), we only give
a sketch.

Let ¢ be as in Definition 1.1. By [11, Lemma (6.9)], there exists a function

Y € S(R") satisfying (1) such that 32, B(27€)1(27¢) = 1 for all € € R™\ {0}.
Then by the Calderén reproducing formula in [23, Lemma 2.1], we know that

f=2"5e22qe0;mm)(f> 9Q)Vq in S (R"). For L € N, set

=Y > (feve=Y Y. e

JISL Qe Em L Qeom
Qc[—2L 2L)n Qcl—2L,2Lyn

Obviously, g1, € Sw(R™). From the @-transform characterization of F;}g (R™)
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(see [23, Theorem 3.1]), we deduce that

1f = gcll g memy

Y
1 = _— ’
<c| swp o d [ 13 3 2 ()| d
PEQ(R”) |P| P i=ip Z(Q):Q_j
131> J
Y
q
+ sup / 22 N\ |9y (x) | da
PeQ(R™) ‘P‘T p []ZJP Z
<L QQ[ 2L 2L) /
EC( sup Tp+ sup jp),
PeQ(R") PcQ(R")

where C' is a positive constant independent of f and L.

The estimate of 1p is similar to the estimate of Ip in (i). In fact, since
f e C5yR?) and ¢ € S(R"), by Lemma 2.3, we see that for Q@ = Qj,

Aol S 2_*_3K(1 + [279k|)™" K~ when j > 0, where K is the same as in (6),
and [\o| <277 20+MH) (1 4 |k)~"M~1 when j < 0.

If jp > — L, similarly to the estimate of Ip, we have

I Z Z qXQ]k( ) Zd p< 2L(S K+n[T+(***)VO])
PS ’p’T i 14_‘2 ik])m+K+a v

=(jpVL) keZn

If jp < —L, we see that

Ip <
#=| o /[

qXQ (@) ! ’
|P|T /P[Z Z |2 ik])" n]+K+1) dz

L+1 kEZ"

1
Loy
q

—-L-1 (s+n )
Z Z fntM+1 qXij(I)] o

(n+M+1)
‘7 JP keZn 1+‘k‘|) q

= C(Tl —FTQ),

where C' is a positive constant independent of L. Similarly to the estimate
~ 1 1 ~

of I, in (i), we obtain I, < 2FC~ K@=V For T, by [P|™ < 1 and

M > max {n L D —1]-1,-s+ n(l — 1) — 1}, similarly to the estimate of I;

in (i), we see that I; <2~ L(H"(IJHMH) Thus,

Tp < max {QL(stJrn[TJr(%*%)\/O])’ 2*L(s+n(lf%)+M+1)} .
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The estimate of Jp is similar to that of Jp. Indeed, if jp > L, then Jp=0.
If 0 < jp < L, then Jp < 2 FUEFII=5Gl 1t J, <0, then

jp SJ max {Q—L(s-&-n(l—%)-l—M-&-l)’ LQ_L{M+1+n[1_ﬁ]}} ’

which together with the estimate of Ip yields that

If — gl

for ey < C'max {QL(stJrn[TJr(%f%)voD’ 27L{K+1+n[1fﬁ]}’

2—L[s+M+n(1—%)+1}’ L2—L{M+1+n[1—ﬁ]}} ,
where C' is a positive constant independent of L. For any given € > 0, choosing

L sufficiently large, we then have [|f — g1 || zsr @) < €, which completes the
proof of Theorem 2.1. [l

~ Finally, we point out that Theorem 2.1 is also true for Besov-type spaces
By7(R"). Since the proof is similar, we omit the details.

TheoNrem 2.6. Lft seR,pe (0,00),qe (0,00], M € Z,U{-1}, J = m
and N = max {|J —n—s|,—1}.
(i) Let T € [0,%+W) when N > 0 or 7 € [0,%+5++_‘7) when
N <0. Then vB7(R") C wBi7(R").
(ii) Let 7 € [0,00). Then yB,7(R") C vB,7(R") if M > max {n(% —-1) -
L—s+n(;—1)—1}.

3. Dual properties of tent spaces

In this section, we focus on the tent spaces FT57(Rp'!) and FWsT(RZM).
These tent spaces are originally introduced in [22, Definition 4.2] and applied
therein to establish the dual relation between FJ7(R") and FH;7(R"). We

first recall some results on FT57(Rp™) and FW3ST(RZ™) in [22], and then
establish the duality that for s, 7, p as in Theorem 1.3, (OFW;})T (R2H))* =
FT;;’T(RZ“), where CFW;;(R%H) denotes the closure of the set of all func-
tions in I W;; (R%il) with compact support.

We begin with recalling the notions of F757(R3*") and FW27(Rp*). For
all functions F' on R or R?™ and j € Z, we set F/(z) = F(x,277) for all
x € R™. For any set A C R", define T(A4) = {(z,t) € R} : B(z,t) C A}.
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Definition 3.1 ( [22, Definition 4.2]). Let s € R.
(i) Let p, ¢ € (1, 00) and 7 € |0, m}. The tent space FT;;;(R%H) is
defined to be the set of all functions F' on R}*! such that {F7},cz are

Lebesgue measurable and || F'[| ps 7 gn+1) < 00, Where

ol

JEZ

”F“FTS g (RATH) =

Y

Ly (R)

where the infimum is taken over all nonnegative Borel measurable func-
tions w on R satisfying (3) and with the restriction that w is allowed
to vanish only where F' vanishes.

(ii) Let p € (1,00), ¢ € (1, oo] and 7 € [0, 00). The tent space FW;’;(R%“)
is defined to be the set of all functions F' on R%™ such that {F7};c; are
Lebesgue measurable and || F|| Py RptY) < 00, Where

1
IFllwig ez =500 5 {sz [ 1@ e 2 de }

JEZ
where B runs over all balls in R™.

Also, for simplicity, we use F1T ;’T(R%H) and F W;’T(REH) to denote the
spaces FT57 (Ry™) and FW3T(REM), respectively.
Remark 3.2. (i) We recall that when s = 2%, 7 = L and p = ¢ = 2, the tent
spaces F T;’qT (RZ™) and F W;’g (RZ1) are, respectlvely, the discrete variants of
THRYM) and TR in [7, p.391]); see [22, p.2786]. In particular, when
s=0,17= % and p = g = 2, FT”(R”H) and FW”(R”H) are, respectively,
the discrete variants of Ty and T5°, the well-known tent spaces introduced by
Coifman, Meyer and Stein in [5].

(ii) We also remark that the space FWO 1/p= 1/q(R”H) is a discrete variant
of T77%, where T7™ is introduced in [18, Definition 1. 3.

(111) It was pomted out in [22, p. 2786, (4.6)] that || - ||FT”(RTL+1) is a quasi-
norm, namely, there exists a positive constant p such that for all functions F
and G on R,

IF + Gllrsgg ety < 2° {IP g sy + ol iy oo }

Let ¢ be as in Definition 1.1. Define an operator p, by setting, for all
f €S (RY) and (z,t) € RT, p (f)(x,t) = ¢ * f(). Tt is easy to check that
||f|F;;;(Rn) ~ ||Pw(f)||FW;;;(Rg+1) and |_|f||FH;;;(Rn) ~ ||P_<p(f)||FT';;;(Rg+1)- We
also recall the dual relation between FT37(Ry™) and FW_ >T(R;™) in [22] as
follows.
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Theorem 3.3 ( [22, Theorem 4.1(iii)]). Let s € R, p,q € (1, 00) and 7 €
(0, =2=]. Then the dual space of FT;,’QT(R%“) is FWp*,Z’,T(R%“) under the

(pva) o
following pairing:

(.G = [ 3 P@6 @), (s)
R" ez
where F € FT;”;(R%H) and G € FWP_/’Z’/T(R%H).
Now we turn to the main result of this section.

Theorem 3.4. Let s € R, p € (1, 00) and 7 € (0, %] The dual space of
CFW;”(R%H) is FTP_/S’T(RQH) under the pairing (8).

To prove this theorem, we need the atomic decomposition characterization
of the space FT57(R}*!) established in [22, Theorem 4.1(i)]. We first recall the

notion of F' T;’T(R%ﬂ)—atoms; see [22, Definition 4.3].

Definition 3.5. Let s € R, p € (1, 00) and 7 € (0, ]%] A function a on

R2*T is called an F T;’T(R?l)—atom associated to a ball B, if a is supported in
T(B) = {(z,t) € Ri™ : B(x,t) C B} and satisfies that

| S 2@ (e, 27) do < B
R™ jez

Proposition 3.6. Let s € R, p € (1, 00) and 7 € (0, z%] IfF e FT;’T(]R%H),
then there exist a sequence {a;}; of FT;’T(REH)-atoms and a sequence {\;}; C
C such that F =}, \;a; in FT;’T(R%+1) and 32 ; |A\j] < Cl|F|| psm oty

Conversely, for a sequence {a;}; of FT;’T.(RZH)—atoms and an ' -sequence
{NY € € F = 35 \a; converges in FTs™(R3*Y) and HFHFT;,T(RZH) <
C’Zj ||, where C'is a positive constant independent of F.

For all F € FT57(R3™), set

T/ —— inf{z M: f = Zw},
J

J

where the infimum is taken over all possible atomic decompositions of F' as in
Proposition 3.6. It is easy to see that ||| - H]FT;,T(Rgﬂ) is a norm of FT:™(R*).
Furthermore, by Proposition 3.6, we know that ||| - [|[ pz: - (rp+1) Is equivalent to

|| - ||FT-;,T(R2+1) and hence (FT;’T(REH), IE |||FT~;,T(R%+1)) is a Banach space.
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Lemma 3.7. Let s € R, p € (1, 00) and T € (0, 1%] Then there exists a positive
constant C' such that for all F € FT;’T(REH),

2@

JEZ

C*HFHFT-;WH)SG sup { }chF||FT~;,T(RgH).

- <1
II HFWPIS,T(IRZ+1 r

G has compact support
Proof. The second inequality is an immediate consequence of Theorem 3.3. To
finish the proof of Lemma 3.7, we still need to show the first inequality.
Recall tha't |- e (ot Is equivalent to the norm ] - |]|FT-;,T(R7Z1+1) and
the space (FT;’T(R%H) - s Rn+1)) is a Banach space. For each F €

F T;’T(REH), by Theorem 3.3 and the Hahn-Banach theorem, there exists a
function H € FWPTS’T(RZH) with HH||FWP_/5,T(R£+1) < 1 such that

IE | e gty ~ WE pagr gy ~

/R " P () B (2) da

" jez.

For any M e N, x € R" and j € Z, set
Hy(x,277) = H(z, 27j)X{(z,2fj)eRg+1; al<n, M1<2-i<ary (T 27).

Then ||HM||FW_/S,T(R2+1) < ||H||FW7S,T(R2+1) < 1 and H), has compact support.
Notice that ’

| S I @I @) do S WPl 1 ety S 1o,
JEZ

Lebesgue’s dominated convergence theorem implies that if M is large enough,

(e 9]

/R S P () H () do

" jez

Y

1E | pig oty ~ || pig ey ~

which completes the proof of Lemma 3.7. O
The following lemma is a variation of [6, Lemma 4.2] for tent spaces.

Lemma 3.8. Let p € (1, 00), 7 € (0, ]%] and {Fn}men be a uniformly bounded
sequence in FTOT(Ry™). Then there exist a function F € FTO7(Ry™) and
a subsequence {Fy,, }ien of {Fm}tmen such that for all G € FWE,’T(]RZZ‘H) with
compact support, (F,.,G) — (F,G) as i — oo, where (F,G) is defined as
in (8), and HFHFT-S,T(R%H) < C'sup,,ey HFmHFTZ()),T(Rngl) with C' being a positive
constant independent of F'.
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Proof. Without loss of generality, we may assume that || F,|| FioT@ety <1 for
all m € N.

By [22, Theorem 4.1] and its proof (see [22, pp. 2792-2793]), each F,, has
an atomic decomposition representation Fn, = 307 Do 0m AmjQlm,Q
FTO7 (R, where I C QR™), Am = {Amjo},ey geyom C C satisfies that
ZjEZ ZQGIJ(-W> A
T(Bg), where and in what follows, for all Q € Q(R"), Bg = B(cg, 2v/nl(Q)).

miol < 1and each a,, g is an FTS’T(RQH)—a‘com supported in

For all m € N, define a sequence A = {)\m] Q}iez, geomny C C by setting,
for all y € Z, )\m]Q = A\, When @) € I ) and )\m]Q = 0 otherwise, and a set
{am.j.0}iez. geomn of functions on Ry by setting, for all j € Z, G j0 = Am.j.0
when Q € I ng) and a,, ;o = 0 otherwise. We see that for each m € N,

Palle =" D0 Pmgel =2 > Pl S1 (9)

]GZ QEQ(R” jeZ QGIJ(_"L)

and each @y, ¢ is still an FT 0T(R"“) atom supported in T'(Bg). Moreover,
we have Fy, = 3757 > 0comn) A 0lm.s0 I FTO(RyH).

Since (9) holds for all m € N, a diagonalization argument yields that there
exist a sequence A = {\;0}jez geomn) € ' and a subsequence {Am, ien of
{ A men such that A, 30 — Ajgasi—ooforall j €Z and Q € Q(R"), and
[Alln < 1.

On the other hand, recall that suppa,, ;o C T(Bg) for all m € N and
J € Z. From Definition 3.5, it follows that {||dm.;qllLr@r(r(Bg)) tmen is a uni-
formly bounded sequence in LP(IP(T'(Bg))), where LP(IP(T'(Bg))) consists of all
functions on T'(Bg) equipped with the norm that

1
1F'l| e e r(Bq))) = {/ > F(@,27)Pxr(sg) (.27 )d}-

JEZL

Then by the Alaoglu theorem, there are a unique function a; g € LP(I?(T'(Bg)))
and a subsequence of {G, ;o }ien, denoted by {anm, jotien again, such that for
all functions G € L¥ (I" (T(Bg))), (m, j0,G) — (aj0,G) as i — oo and each
a;q is also a constant multiple of an FT27 (R )-atom supported in T(2Bg)
with the constant independent of 7 and ). Applying a diagonalization argument
again, we conclude that there exists a subsequence, denoted by {@m, ;o }ien
again, such that for all G € LP (I"(T(Bg))), (Gm, 0,G) — (a0, G) as i —
oo for all j € Z and Q € Q(R"). Let F' = > . ;> ncomn) Voo By

Proposition 3.6, we see that F € FT7(R3*") and 1 o o1y S 1.
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Let G € FW,7(R3™) such that suppG C B(0,2M) x {27M ... 2M} for
some M € N. Without loss of generality, we may assume that ||G|| PO @ty = L
p/

We need to show that (F,,,,G) — (F,G) as i — oo. It is easy to see that
Gl 2o @' (r(B0,20)))) S ||G||FW§/,T(R£+1) ~ 1. Therefore, by the above argument,

(A, j.0, G) — (aj0,G) as i — oo for all j € Z and Q € Q(R").
Recall that ||al| ppo.r g1y < C for all FTO"(Ry™)-atoms a, where Cis a

positive constant independent of a. By ;) > ncomn |Xmi7j7Q| < 1, we see
that for any € > 0, there exists an L € N such that

3 3 Al < 5

{sez: 171>L} {QEQER™): |jo|>L or Q&[-2L,28)"}

and hence
> > Amigel - {am.j0, G|
= Qeo®n)
[7|>L |jQ|>Long[—2L,2L)n
<> > Amis@l - @m0l pior @) 1Gll o @oey
je QeQ®) :

II>L g > Lor @g[—2L,2L)n

< 6 Z Z |Xmi,ij| <E.

jez QeQ(rR™)
=L 01> Lor @g[—2L 2L)n

Similarly, by > .7 > gcomn) [Nl S 1, there exists an L € N such that

> > Vel - a0, G <,

JEL QEQ(R™)
I>L Jjg > Lor Qg [—2L 2L)n

which further implies that lim; . (F,,,, G) = (F, G) and completes the proof of
Lemma 3.8. O

Now we turn to prove Theorem 3.4

Proof of Theorem 3.4. By Theorem 3.3 and the definition of CFW;’T(R%“),
we have that ¢ FW ™ (RpH) € FW2™(Rp*) = (FT,*(Rg*))*, which implies
that F'17,*7(Ry*™) C (FT,*"(RyH)™ C (cFW3™(R))*.

To show (cFW2m(RgH)* € FT,*"(Rg*"), we first claim that if this is
true when s = 0, then it is also true for all s € R. To see this, for all
u € R, define an operator A, by setting, for all functions F' on Rg“, reR"
and j € Z, (A F)(z,277) = 2/“F(x,277). Obviously, A, is an isometric
isomorphism from FW37™(RE™) to FWs+tem(RE) and from FT37(RE) to



48 D. Yang and W. Yuan

FTsren (R, If L € (cFWE™(Ry™))*, then Lo A, € (CFWQ’T(RQH))* and
hence, by the above assumption, there exists a function G € FT [?,’T(R%H) such
that Lo A(F) = [p. Y ez F/(2)G7(x) d for all F € ¢ FWOT(R™). Notice
that Ag o A_S is the identity on ¢ F W;’T(REH) and A_, is an isometric isomor-
phism from ¢ F W;”(R%H) onto o F' W]E’T (R2*™). Therefore,

L(F)=LoA,0A_,(F /ZA_SF 2)G? (z) d

JEZ

- / S Fi(2)(A_GY (z) da
R™ jez

for all F' € CFWPS’T(R%H). Since G € FTZS’T(R%H), we obtain that A_,G €
FT*"(Ry*) and ||A_SGHFTP_/5,T(RTZL+1) = ||G||FT-£/,T(R2+1). Thus, the above claim
is true.

Next we prove that (¢ FWo™ (Rp™))* C FT]?,’T(R%“). To this end, we chose
L € (cFWo(Rp*))*. It suffices to show that there exists a G € FT),"(Ry*™)
such that for all ' € F WI?’T(R%“) with compact support, L has a form as
n (8). In fact, for F € FWO7(R3™) with compact support, if (H, F) = 0 holds
forall H € F TIS’T(REH), then Theorem 3.3 implies that /' must be the zero
element of FIWO™(Ry*). Thus, 17 (R3™) is a total set of linear functionals
on (;FW;’T(R%H).

To complete the proof of Theorem 3.4, we need the following functional anal-
ysis result (see [8, p. 439, Exercise 41]): Let X' be a locally convex linear topologi-
cal space and ) be a linear subspace of X*. Then ) is X-dense in X* if and only

if Y is a total set of functionals on X. From this functional result and the fact
that F7)7(R;*) is a total set of linear functionals on ¢ FWO™(R5*), we de-

duce that F T;)),’T(R%“) is weak #-dense in (cFWT(R5*"))*. Then there exists
a sequence {G(™}, oy in FT;,’T(R%H) such that (G F) — L(F) as m — oo
for all F'in oF WZ?’T(R%H). Applying the Banach-Steinhaus theorem, we con-
clude that the sequence {||G™|| IS (R }men is uniformly bounded. Then by
Lemmas 3.8 and 3.7, we obtain a subsequence {GM)},cy and G € FTO T(RE
such that L(F) = lim;_o(G™) F) = (G, F) for all F € FWgT(R”H) with

compact support and

||G||FT'OVTR’“L+1 S sup (G, F)| S sSup |L(F)|SIL| FWOTR 1))
p’ ( 7 ) T <1 P <1 (C P’ ( 7 ))
FW}(});T(RQH )= I \\FW;)/,T<R%+1)_

F has compact support F has compact support

which completes the proof of Theorem 3.4. [
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Remark 3.9. It is still unclear whether Theorem 3.4 is true for the spaces
cFTsT(RE) and F WJ"Z’,T(R%H) when p # ¢ or not. The difficulty lies in the
fact that the space FT5:7 (RZH) when p # ¢ is only known to be a quasi-Banach
space so far. Thus, Lemma 3.7 in the case that p # ¢ seems not available, due
to the Hahn-Banach theorem is not valid for these spaces.

4. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. We begin with recalling
the notion of the sequence space corresponding to F'Hy7(R"); see [24, Defini-
tion 2.1].

Definition 4.1. Let s € R, p, ¢ € (1,00) and 7 € [0 ;),] The space

3 ’ (pVa
fHy7(R") is then defined to be the set of all t = {tg}geomn) C C such that
||t||fH;:;'(Rn) < 00, where

1] £ z5:7 ey = inf {ZTH ( ) |tQ’XQ[W('a2j)]1> }
«

JEZ Q):Qij LP(R™)

and the infimum is taken over all nonnegative Borel measurable functions w
on R™™ such that w satisfies (3) and with the restriction that for any j € Z,
w(+,277) is allowed to vanish only where > _u(@)=2-i |t@|Xq vanishes.

Recall that for s, 7, p, ¢ as in Theorem 3.3, it was established in [24, Propo-
sition 2.1] that the dual space of fH;7(R") is f, 77 (R"). In what follows, for
simplicity, we write f57(R") = f7(R") and fH>"(R") = fH7(R").

Let Vf;’T(R”) be the set of all sequences with finite non-vanishing elements,
which is obviously a subspace of f7(R"). We have the following conclusion.

Proposition 4.2. Let s € R, p € (1,00) and 7 € [0, %] Then
(vfy"(R")" = fH,""(R")
in the following sense: for each t = {to}oecomn) € fHTs’T(R"), the map
A= {Aq}toeomn) — = ) lg (10)
QeQ(R™)

induces a continuous linear functional on Vf;’T(R”) with the operator norm no
more than a positive constant multiple of |[t|| ;p—sr gn)-
Pl

Conversely, every L € (Vfo’T(R”))* is of the form (10) for a certain t €
fHI;S,T(Rn) and ||t||pr—ls,T(Rn) is mo more than a positive constant multiple of

IL]]-
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Proof. Since Proposition 4.2 when 7 = 0 is just the classic result on f;:p(R”)
in [10, Remark 5.11], we only need consider the case that 7 > 0. By [24,
Proposition 2.1] and the definition of v f>7(R"), we have that v f5"(R") C
fam(R") = (fH,*"(R"))*, which implies that fH*"(R") C (fH,*"(R"))* C
(i@, |

To show (v f;7(R"))* C fH,>"(R"), we first claim that if this is true when
s = 0, then it is also true for all s € R. In fact, for all u € R, define an operator
T, by setting, for all sequences t = {to}gecomr) C C and Q € Q(R"), (Tut)g =
|Q| ntg. Then T, is an isometric isomorphism from fyT(R™) to fy+ 7 (R") and
from fH>7(R") to fH7(R"). If L € (v fy7(R)*, then L oT; € (vfym(R™))*
and hence there exists a sequence A = {Ag}oecomn) € fHI?,’T(R”) such that
Lc?TS(t) = > 0coEn) toAg for all t € VfI?’T(R”). Since T.S ol is the ide'ntity on
vfET(R™) and T_, is an isometric isomorphism from v f57(R") onto v f;"" (R™),
then

L(t) =LoTso T—s(t) = Z (T—st)QE = Z tQ(T—s)\)Q
QeQ(R™) QeQ(R™)

for all t € prS’T(]R”). Since \ € fHS,’T(R”), we see that T_ \ € fH};S’T(]R") and
HT,S)\HfH;s,T(Rn) = H)\HfH;)/,T(Rn). Thus, the above claim is true.

Next we prove that (yfg’T(R"))* C fH)"(R"). Notice that v 97 (R™) con-
sists of all sequences in f)'"(R™) with finite non-vanishing elements. We know
that every L € (v f7(R"))* is of the form \ ZQGQ(R”) Agtg for a certain
t = {tg}geomn C C. In fact, for any m € N, let {#f)7(R") denote the set of
all sequences A = {Ag}oecomn) € fS’T(R”), where \g =0if QN (=2",2™|" =0
or £(Q) > 2™ or £(Q) < 27™. Then L € ((?fg’T(R”))*. It is easy to see that
each linear functional in (7 fg’T(R”))* has the form (10). Thus, there exists
tm = {(tm)o}oeomn), where (t,,)g = 0 if @ N (=2™,2"]" = 0 or £(Q) > 2™
or £(Q) < 27™, such that L(\) for all A\ € ?}fz?’T(R”) has the form (10) with ¢
replaced by t¢,,. By this construction, we are easy to see that (t,,+1)g = (tm)o
it @ C (—=2™,2"" and 27™ < ((Q) < 2™. Thus, if let tg = (tn)g when
Q C (=2m,2™" and 27 < 4(Q) < 2™, then t = {tg}gecomn) is the desired
sequence. We need to show that

1l 20y ey S 1Ly g0 oy
To this end, for all m € N, define y,, by setting x,,(Q) = 1 if Q C (—2™,2™|"

and 27 < £(Q) < 2™, and x,n(Q) = 0 otherwise. For all A = {A\g}gecomn) €
fS’T(]R”) with ||>\Hfz()),7'(Rn) < 1, we see that A, = {A\oxm(Q)}ocomn) € VfS’T(R”)
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and || A, || Preey < 1 Thus, using Fatou’s lemma yields

> [Aelltel < lim > Pelhm(@ltel

QeQ(R") QeQ(R")
. Aolt _
" OOQEQ(R”) @
< L [|Lf[, for @y [ Aml] o @)
< L0 o ey

Notice that for all m € N, t,, = {toxm(Q)}ocorn) € ng,’T(]R”). For each m,
we define the function F™ on R%™ by setting, for all x € R™ and j € Z,

Fi(27) = 3 1QI 2 ltelxm(@Q)xe(@).

QeQ;(R")

Then F(™) ¢ FTOT(]R"“) and | F(™) ||FToT 'ty ™ ||thfHoT(Rn) Applying
Theorem 3.4, we see that

S Y lohm(@IQr / Glx.27) d

J=0 QeQ;(R")

[ee)

/ S (5,279 G, 27) da

J=0

HF(m)HFT;/T(RZH) ~ sup {

< sup

where the supremum is taken over all functions G € FW" (Ry™) with compact
support satisfying ||G||FWoT @y < 1. Define, for all @ € Q,;(R™), Ao =

Q|2 f G(z,277)dz and A = {Ag}oeomn). Holder’s inequality yields that
H)\”ng(Rn < HGHFWST(RZ“) < 1 and hence

. ~ |lEM| .
”thng;T(Rn) |F "FTE,’T(R2+1)

5sup{ > Polltal: A€ IR, [\ jor gy < 1},

QEQ(R™)

which together with (11) implies that ||tm||fHoTRn ~ ||[Fm ||FToTRn+1) S
L1y for enyy~-

To show ¢t € ng,’T(R”), let F be the function on RZ™ defined by setting,
for all 2 € R" and j € Z, F(2,277) = Yo, @n) Q" 2|to|xq(x). Obviously,

F™ — F pointwise as m — oo. Notice that 121l 0.7 ey ~ ||F||FT0,T(RZ+1). It
»’ '
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suffices to prove that F € FT07T(R"+1)
Recall that || F( )HFTOT REH) < L (v 97 @) . By Lemma 3.8, there exist

a subsequence {F(™ }eN and a function F € F TOT(R"H) such that for all
G € FWOT(R"“) with compact support, (F™) G) — (F.G) as i — oo
and its quasi-norm HFHFTOT (R < L] (v f0 @@ny)-» Which together with the
uniqueness of the weak limit and the fact that ¥’ (m) — F pointwise as m — 00
yields that F = F in FT"(R;™) and IF || pgor oty S L, jor ny)-- This
finishes the proof of Proposition 4.2. O]

Now we are ready to prove Theorem 1.3, which is a consequence of Propo-
sition 4.2 and the p-transform characterizations of FHy7(R") and F;7(R")
obtained in [24, Theorem 2.1] and [23, Theorem 3.1].

Proof of Theorem 1.3. Since the case that 7 = 0 is known (see, for exam-
ple, [17, p.180] and [10, Remark 5.14]), we only need consider the case that
7 > 0. By [22, Theorem 5.1] and the definition of v F;7(R"), we have that

vEsT(R™) € F3T(R™) = (FH,*(R"))*, which implies that FH *"(R") C
(FH,“(R")™ C (vF;7(R™)".

To show (VF;’T(R”))* C FHP_,S’T(R"), let ¢ satisfy (1) such that for all
£ e R\ {0}, 3o,z [P27P = 1. If L € (vEsT(R™))*, then applying the
¢-transform characterization of F;7(R™) in [23, Theorem 3.1], we see that L =
LoT, € (vfy7(R"))*, where T, is the inverse ¢-transform (see [10, p. 46]).
By Proposition 4.2, there exists a A = {A\g}oecomn) € fH_ST(R”) such that

( ) ZQGQ Rn) tQAQ fOY all t = {tQ}QEQ R™) € VFST(RH) and H)‘HfH sr (R") S
HL||(VfST &y S 1L 57 gy« Notice that LoS =LoT,0S, =1L, WhereS
is the @-transform (see [10, p. 46]). Set g = T,(A) = D pegomrn) AoPqe- Hence, for

all f € Sul®"), L(f) = Lo S,(f) = Yoeon - #a)ha = (f,9). Furthermore,
by the ¢-transform characterization of F Hg:g(R”) in [24, Theorem 2.1], we
have [|g]| pg-s7@ny S 1A piz=57 @ny S 1Ll 57 () +» Which completes the proof
of Theorem 1.3. ’ O

We end this section by the following interesting remark.

Remark 4.3. (i) We first claim that when 7 > 0, the dual property in The-
orem 1.3 is not possible to be correct for VB;:;(R”) and BH;Z’,T (R™) with
p € (1,00), g € [1,00) and ¢ > p, which is quite different from the case that
7 = 0. Recall that when 7 =0, p € (1,00) and ¢ € [1, 00), VB’;:;(R”) = B}f,q(R”)
and (B;’;(R”))* = B, (R"); see [17, p. 244].

To show the claim, by [24, Propositions 2.2(i) and 2.3(i)], we see that if 1 <

po < p1 <00, —00 < 51 < §9 < 00, ¢ € [1,00) and 7 € [0, mln{ ovq)”(pqlvq)’}}
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such that so — = = s, — -+, then BH;(?;;(R") C BH;;:;(R”) if and only if
T(po V q) = 7(p1 V q). When 7 > 0, the sufficient and necessary condition
that 7(po V q) = 7(p1 V q)’ is equivalent to that ¢ > p;. If we assume that
Theorem 1.3 is correct for VB;:;(]R”) and BH;Z’,T(R”) with 7 > 0 and certain
1 < p < ¢ < o0, then by this assumption together with an argument by duality
and the embedding B;:;(R”) C B,"/PT9T (R (see [23, Proposition 3.3]), we
see that BH;,ZJ,F"/ Pmn/eT (R BHY",(R™), which is not true since ¢’ < p'.
Thus, the claim is true.

From the above claim, it follows that if 7 > 0 and p # ¢, only when

1 < g < p < oo, the conclusion of Theorem 1.3 may be true for the spaces
vBy7(R") and BH,, 7/ (R"), which is unclear so far to us; see also Remark 3.9.

(ii) Similarly, we claim that when 7 > 0, the dual property in Theorem 1.3 is
not possible to be correct for all v F7(R") and FH,% (R") with p, ¢ € (1,00)
and g > p.

~In fact, by [24, Propositions 2.2(i) and 2.3(ii)], we know that the embedding

FHYT(R") C FHI7(R") is true only when 7(po V 1) < 7(p1 V q)' + T(]%O —
) (poVr) (p1Va)'. If we assume that (vEsT(R™))* = FHI;Sq,T(R”) for all s € R,
7>0and 1 <p < ¢ < oo, then by the embedding F57(R") C F‘g;"/er"/q’T(R")
(see [23, Proposition 3.3]) with r > ¢ together with an argument by duality,
we have F' H;,f,r"/ penaT (R C F H;fq’f (R™), which is not possible by the above
conclusion. Thus, the claim is also true.

It is also unclear that when p # ¢, for which range of p, ¢ € (1,00), the
conclusion of Theorem 1.3 is true.

5. Some applications

We give some applications of Theorem 1.3 in this section. The first one is the
following Sobolev-type embedding property of F'H>"(R"™).

Proposition 5.1. Let sg, s1 € R, po, p1 € (1,00) and 7 € [0, I%] such that

po < p1 and so — o= = s; — 2. Then FH;(()”T(R”) C FH;;T(R")

p1

Proposition 5.1 follows from the corresponding Sobolev-type embedding
property of F.7(R™) in [23, Proposition 3.3], Theorem 1.3 and a dual argument.
We omit the details.

In [24, Proposition 2.2(ii)], it was proved that for all parameters sg, s; € R,

Po, P1, ¢, 7 € (1,00) and 7 € [O,min{(max{;o’r}),, (max{;hq}),}} such that pg <

P1, So — plo = 51 — pﬂl and 7(max{po,r}) < 7T(max{pi,q}), FH;S:(R”) C

FH?7(R™). Proposition 5.1 improves [24, Proposition 2.2 (ii)] in the case that

P1,9

p=gq.
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Recall that for all € € (0,00), the e-almost diagonal operators on f;g (R™)
are bounded when s € R, p € (0,00), ¢ € (0,00] and 7 € [0, % + 5.); see [23,
Theorem 3.1]. We now recall the notion of e-almost diagonal operators on

SH>T(R™) in [23, Definition 3.1].

Definition 5.2. Let ¢ € (0,00), s € R, p € (1,00) and 7 € [0, ;]. For all
Q, P € Q(R™), define

17’ | I I AN ()
B IP — IQ . 2 2
wople) = |—==1| |1+ min ¢ [—= , | —= .
)= 53] 1+ i 4, { @) i }
An operator A associated with a matrix {agp}g pecomn), namely, for all se-
quences t = {to}tgecomr) C C and Q € Q(R"), At = {(At)g}gecomn) with

(At)g = > peomn) aqprtp, is called e-almost diagonal on fH,™(R"), if the ma-

trix {CZQP}Q’PEQ(RTL) satisfies SUPg, peo(rn)

lagp]

war@ =

By [23, Theorem 3.1], Theorem 1.3 and a dual argument, we obtain the
following proposition. The details are omitted.

Proposition 5.3. Let ¢ € (0,00), s € R, p € (1,00) and 7 € [0, Z%] Then all

the e-almost diagonal operators are bounded on fH;’T(R”).

We remark that Proposition 5.3 improves [24, Theorem 3.1] in the case that
p = q, since in [24, Theorem 3.1], we need an additional condition that & > 2n7.

Using Proposition 5.3 and repeating the arguments in [24, Sections 3|, we
can establish the smooth atomic and molecular decomposition characterizations
of F H;’T(R") as follows. We first introduce a slight variant of the smooth
molecules in [24].

Definition 5.4. Let p € (1,00),s € R, 7 € [0, ]%], N = max(|—s],-1), Q €
QR™), L=|s+n7] and s* =s— |s].
(i) A function mg is called a smooth synthesis molecule for FH;’T(]R”) sup-
ported near @, if there exist a § € (max{s*, (s+n7)*}, 1] and M > n such
that [, 27mg(x)de =0 if |y] < N,

me ()] < 1Q™% (1 + [((Q)] Y — zg|) M)
" mo()| < Q2% (14 Q) Mz —zol) ™ <L
and
07 mo(x) = OTma(y)|
1_vl_ ¢

<1QITF wTalr —yl” sup 1+ [UQ)N e~z — o)™ if]y| = L.
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A set {mqg}oecomn of functions is said to be a family of smooth synthesis
molecules for F H;’T(R”) if each m¢q is a smooth synthesis molecule for
FH;’T(R") supported near ().

(ii) A function bg is called a smooth analysis molecule for F' H;’T(R") sup-
ported near @, if there exist a p € ((n — s)*,1] and M > n such that
Jam bg(2) dzz = 0 for all |y] < L,

bo(@)] < Q7% (14 [6@Q)) |z — agl)” "M
07bo(x) < 1QI72 % (14 [UQ) e —zql) ™ iy <N
and
07bo () — 07bo(y)|
<1QIF Wt~y sup (1+ Q) e —z —aol) ™M if |y = N.

|z|<|z—y|

A set {bg}ocomn) of functions is said to be a family of smooth analysis
molecules for FH>7(R"), if each bg is a smooth analysis molecule for
FH;’T(R") supported near Q).

We remark that the molecules in Definition 5.4 are “weaker” than those
in [24, Definition 3.2] in the case that p = ¢, since in [24, Definition 3.2,
the corresponding numbers N = max(|—s + 2n7]|,—1), L = |s + 3n7] and
M > n+2nT.

Following the arguments in [24, Section 3], we obtain the following conclu-
sion, which improves [24, Theorem 3.2] in the case that p = q. We also omit
the details.

Theorem 5.5. Let s € R, p € (1,00) and 7 € [0,1/p'].

(i) If {mq}oecomn is a family of smooth synthesis molecules for FH;”(]R"),
then there exists a positive constant C' such that

Z tomq

QEQ(R™)

fOT’ all t = {tQ}QEQ(R") € fH;’T(Rn)
(ii) If {bq}qeomn) is a family of smooth analysis molecules for FH,™(R"),
then there exists a positive constant C' such that

< Clitlly sz @ny
FHy™ (R

H{<f7 bQ>}Q6Q(R”)||fH;’T(R”) < OHf”FHE’T(R”)

for all f € FH;’T(R").
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We now introduce the following smooth atoms for F H;’T(]R").

Definition 5.6. Let s € R, p € (1,00), 7 and N be as in Definition 5.2. A
function ag is called a smooth atom for F H“(R”) supported near a dyadzc

cube Q, if there exist K and N with K > max(|s + nt + 1],0) and N > N

such that ag satisfies the following support, regularlty and moment conditions:
1_ Il

supp aq C 3@, |07ag | Lee@ny < Q727w if |y] < K, and Jan ¥ag(z) dz = 0 if
W < N.

A set {ag}gecomn) of functions is called a family of smooth atoms for
FH;’T(R”), if each ag is a smooth atom for FH;’T(R") supported near Q.

Recall that in [24, Definition 3.3], the number N = max(|—s + 2n7 |, —1)
and the condition on K is that K > max(|s + 3n7 4+ 1],0). In this sense, the
smooth atoms in Definition 5.6 are “weaker” than those in [24, Definition 3.3].
Similarly to the proof of [24, Theorem 3.3|, we obtain the following conclusion,
which improves [24, Theorem 3.3] in the case that p = ¢. The details are
omitted.

Theorem 5.7. Let s, p, 7 be as in Theorem 5.5. Then for each f € FH;’T(R”),
there exist a family {aq}oeomn) of smooth atoms for FH>"(R"™), a coefficient
sequence t = {to}ocomr) € fHIf’T(]R”), and a positive constant C such that
= ZQGQ(R") tgag in SL(R") and ”tHfo,’T(R") < O”f”FHf,’T(R”)'

Conversely, there exists a positive constant C such that for all families
{ag}qeomn) of smooth atoms for FHy™(R") and coefficient sequences t =

{tQ}QeQ(R”) S fHZ’T(Rn); | ZQGQ(R") tQaQHFHf,‘T(R") < CHt”fH;’T(R")'

By Theorems 5.5, 5.7 and the arguments in [24, Section 4], the results in
(24, Theorems 4.1 and 4.2] about the mapping properties of pseudo-differential
operators and the trace properties on F'H>7(R™) can be improved when p = q.

Let m € Z. The class S{”l (R™) is the collection of all smooth functions a
on R} x (RE \ {0}) satisfying that, for all a, 8 € Z7,

sup ¢TI 920 a(x, £)] < oo;
zeR™, £e(RE\{0})

see, for example, [12] or [24, Definition 4.1]. For a € S{”l (R™), the corresponding
pseudo-differential operator a(x,D_) is defined by setting, for all z € R™ and
smooth synthesis molecules for F'Hs*"7(R"),

~

(@ D)f (@) = [ ale.OF (e ds.

Similarly to the proof of [24, Theorem 4.1], we obtain the following result.
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Proposition 5.8. Letm € Z, s e R, p € (1,00), 7 € |0, I%] and a € ST (R™).
Assume that a(x, D) is the corresponding pseudo-differential operator to a and
its formal adjoint a(z,D)* satisfies a(x, D)*(z%) = 0 in S'(R") for all B €
2 with |B] < max{—s, —1}. Then a(z, D) is a bounded linear operator from
FH* ™ (R") to FFHy™(R™).

Recall that in [24, Theorem 4.1], the condition on 5 is |#| < max{—s +
2nt,—1}. Thus, Proposition 5.8 improves [24, Theorem 4.1] in the case that
p=q.

Similarly to the proof of [24, Theorem 4.2], we have the following trace
property of F'Hy ™ (R").

Proposition 5.9. Let n > 2, p € (1,00), 7 € [0, ’;—;,1] and s € (Il),oo). Then
there exists a surjective and continuous operator

Tr: f € FHY(R") — Te(f) € FH;™/pr/(=br (R

such that Tr(a)(2") = a(a2’,0) holds for all ' € R and smooth atoms a for
FH™(R").
Notice that the condition s € (%+2n7, 00) in [24, Theorem 4.2] is replaced by

s € (]l), o0) in Proposition 5.9. Thus, Proposition 5.9 improves [24, Theorem 4.2]
in the case that p = ¢. The proofs of Propositions 5.8 and 5.9 are also omitted.
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