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Formal Solutions of
Second Order Evolution Equations

Grzegorz Lysik

Abstract. We study the initial value problem for a second order evolution equa-
tion dyu = F(m,u, Vi, V%u), ult=0 = wg, where F(:L",u,p, q) is a polynomial func-
tion in variables u € R,p € R% ¢ € R% with coefficients analytic on a domain
Q C R% d > 1 and ug is analytic on . We construct a formal power series solution
u(t,z) =Y o7 en(z)t" of the equation and prove that it satisfies Gevrey type esti-
mates |p,(z)] < O™ lnl for z € K € Q and n € Ny, where C' does not depend on n.
The proof is based on some combinatorial identities and estimates which may be of
independent interest.
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1. Introduction

We study the initial value problem for a second order evolution equation

{ ou = F(x, u, Vu, Viu) )

U|t:0 = U,

where F' (x, u, p, q) is a polynomial function in variables u € R,p € R?, ¢ € R¥
with coefficients analytic on a domain 2 C R?% d > 1. The initial data ug is
supposed to be analytic on €2 and we are interested in solving (1) in the class
of formal power series in variable t,

Ut ) =) pula)t". (2)

In order to study the growth properties of formal solutions we use the
following definition.
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Definition. Let Q C R? and s > 1. A formal power series (2) is said to belong
to the Gevrey class G*(Q2)-in time if for any compact set K € 2 one can find
L < oo such that

sup sup len(@)l < 00. (3)

neNo zek L™(n!)*~!

Equivalently, the class G*(€2)-in time consists of power series (2) for which
the Borel transform of order s, B*u(r,z) =Y~ #%T" is convergent for
small |7] locally uniformly in Q. In particular, for s = 1 we get the convergence
of (2) for small |¢|.

Let us mention here that formal power series solutions to nonlinear partial
differential equations were studied by H. Chen and Z. Luo [1], H. Chen, Z. Luo
and H. Tahara [2], H. Chen, Z. Luo and C. Zhang [3], H. Chen and Z. Zhang [4],
R. Gérard and H. Tahara [6], and by S. Ouchi [9-11]. In particular, S. Ouchi [9]
obtained, by means of majorant functions, Gevrey estimates of formal solutions
for a quite general class of nonlinear PDEs. From his results one should be able
to infer an estimation for formal solutions of (1). However in the main theorems
of Ouchi’s paper (Theorems 1.7, 1.8, 2.4, 2.6 and 2.7 in [9]) he imposed very
technical assumptions on the equation which are difficult to check in concrete
cases. Also the estimations of the Gevrey index given in that theorems are
difficult to compute.

In our paper F' is an arbitrary polynomial and the Gevrey index is given
explicitly, so the result is more user friendly. Also our proof is direct and more
elementary. In fact, we construct a formal power series solution (2) to (1) and
prove that it belongs to the formal Gevrey class G? provided that the initial
data ug is analytic. Our main result is a Maillet type theorem and reads as
follows.

Main Theorem. Let Q be a domain in R, F(:c,u,p, q) be a polynomial func-

tion in variables u € R,p € R%,q € R? with coefficients analytic on €2 and let
ug be an analytic function on Q. Then there exists a unique formal power series
solution (2) of (1) and it belongs to G*(Q)-in time.

The Main Theorem is an extension of [8, Theorem 1] and [7, Theorem 1],
where the semilinear heat equation 0;u = Au+ f(u) and the Burgers type equa-
tion dyu = Au+ 8%1 f(u) were treated. However it applies to a much wider class
of equations including the nonlinear Schrédinger equation idyu = Au+ f(u, Vu)
and the fast diffusion equation dyu = A(u™). Note that by an analytic change
of coordinates the initial hyperplane {t = 0} can be replaced by an arbitrary
analytic hypersurface S in R*!. The Main Theorem can be also regarded as an
extension of the well known Cauchy-Kowalevski theorem (see [5, Chapter 1.D])
to the case of initial data on a characteristic hypersurface. Finally, let us men-
tion that our combinatorial method of the proof of the Main Theorem can be
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extended to higher order equations of the type dlu = F(z,u, Vu, ..., VFu) with
[ <k.

The formal power series solution (2) of (1) is constructed in Section 2. In
Section 3 we prove some lemmas of combinatorial type which are useful in the
proof of the Main Theorem, but may be of independent interest, too. Finally,
the proof of the Main Theorem is done in Section 4.

2. Formal solutions

In this section we construct the formal power series solution of (1). To this end
note that the IVP (1) can be written in the form

Oyu = Z a'u (Vou)' (V2u)"
0=(10,0112)eA (4)
Ul =0 = o,

where the sum is over a finite subset A € Ny x N¢ x N&*| o € A(Q) and

uy € A(£2). Now let us look for a solution of (4) in the form of a formal power
series (2). Then

[e.9]

atiL\(t’x) = Z(n + 1)90n+1(x)tn’

n=0

and for ¢ = (1°,1*,1?) € A,

(@(t,2))" (Vaa(t, )" (V2i(t, z)

- (anmt“) H(Zaﬁonu)t") 11 (Z gl )

3,j=1

— Z ( Z On - Pu O - ..algpnlll;l . ..ad%?d . "8”5}{‘1

k€EK§(n) ! d

10 2

where the internal sum is over the set

0
( ROENé; )
. . 0 1! .
, o 1 o k= (kY. YD) KMENg;, i=1,...,d;
Ko(n) =< k= (k,Kk,K") )
T 2 _ .21, 2d,dy. 23] Nli,j,- 1 d-
RE= (kT rRTYY) kP eNgT i =1, .00, d;

\ n=|r’| + s + |°| )
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So the formal solution of (4) is given by (2), with ¢y = uy and ¢,, given by the
recurrence relations

1 ¢

Yot = T 20 Z (o - (Vo) - (Vip)z, n €N, (5)
LeA KEKE(n)
I P a B
where ()0 = [[en, (Vo) = [[ 10000, (Vie)e = [ []97,0.20-
In particular, " - e
01 = Z a‘ul) (Vu0) (V2uo)" = F(z, up, Vauo, Vug).

0=(10,11,12)eA

3. Combinatorial lemmas

Here we prove combinatorial lemmas useful in the proof of the Main Theorem.

Lemma 1. Let d,j € Na € N¢, k € NJ. Then

L R 4 B IR (B S i ©)

Bk, ! Bk, al(|s| +7—1)!
where the sum is over B*,... 37 € Nd with B* +--- + 39 = «.

Proof. For xz € R? with o(z) := 21+ +z4 < 1 put f(z) = (1_;(1))|N|H. Then

(sl +4)--- ([ +j+laf = 1) (laf +[k[+5 - 1)!

T I = T e |, T (e
On the other hand using the Leibniz formula we get
O f ()],
K1+l wj+1
:m((l—i(a:)) (i) )

= 2 (ﬁl.o.é.ﬁf) (361(1—c17(:v>>m'1"8ﬁj<1—i<x>>ﬁj+l)‘xo (®)

B4t fi=a
L B 0 eyl B R I R )
T B ... 3l (1—0’(1;))n1+|ﬁ1\+1 (1_g($)>ﬁj+|ﬂj|+1 _
_ (I8 +r)! (18] +k;)!
=a! -61+.“Z+Bja T il

Comparing right hand sides of (7) and (8) we get (6). O
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Corollary 1. Let d,j € Na € N¢, k € NJ. Then

BB+ k)t (U8 + k) (el + K]+ )
Z g1 Blky! ﬁj!lij!] Ak +4) (9)

where the sum is over 3°, 3%, ... 37 € N with 3° + ' + -+ + 37 = a.

Lemma 2. Let v € N, { = (I%1Y1*) € A and n = (0°,n",n*) € A with
0<n</l. ForneNy set

Ajm) = Y lofiz) - (10

o ot 1]+ 212
ZE’CI(’VL) -0 )
e, 0 _p0 it 4 1, 1, yi® + 2,2, 2p2_,p

where the sum 1s over the set

i’ e N7,
1 1;1 1idy . nt 3_ B -
Ki(n)=<i=(i"3i',:) F= 0 CeNT v=1,....d
1 - - y 0y )
ZQ:(Z.271717--- 2dd) QVMENZV” V,/,L:l,...,d;
= %] + [d*| + |2°;

_ n° — n*| _ In?|
and 0,0 = (0,...,0) € NI', 1,0 = (1,...,1) e NIl 2. = (2,...,2) e NJ'|.
Then there ezists a constant L = L(¢,n) < oo such that

L
(n+ 1)E2IP-2

Af;(n) < forn € No. (11)

Proof. First of all note that for n < n°+ |n'| + || the set K}(n) is empty and
so Af(n) = 0. Next, for n > n° + |n'[ + [?| take a term in the sum (10),

(o5 2)
40 41 42

( yn+[1t+2[12] )
710,00, 0vit+1,1,00 17242 2,22 2

(ot T ()Nt L)t 1P (i 2,00 - 21
101311421 (yn + |11 + 2[2))!

< g T (80 4 2,0) (3t 4 20)! (732 4 2,2))!

o 01311421 (yn + |11 + 2[12])!

Since the last expression is symmetric with respect to the group of permutations

of (770 + |n'| + |7]2|) elements we can assume that i} > - > @)y > iyt > >
U Fa 122dd Set j; = 9,5 = (49, .. 222d d) and note that a term
d,d d,d
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in the sum is bounded by

2"l (yj + 20010 %))’ . (n_!)7—1 ) (71 +2)!
Ja! (

G T+ [+ 27
. . : -1
B 2|12—n2\(,y]/ + 2(710_177717”2))! . ((]1 + 1)(]1 + 2) . n)v
G (Vi +3) (v +4) - (ym + 1]+ 2[12])
Clearly the numerator of the last factor is bounded by (n + 1)0~D(™=31) Next,
since n — |j'| = j1 > T We get
) mn . 2
Y+ k> +k2mm< ,k>'(n+1)
1’ + n'f + 7] n° =+ [0t + ||

for k=3,4,...,yn+ [I'| +2|i*| —vj1 and n > 0. So the nominator of the last
factor is not less then
Co
(n + 1)yl 202 =y -2

with some ¢y > 0.

Hence a term in the sum (10) is bounded by

L L
<
(n + 1)|zl|+2|l2|+n—j1—2 = (n+ 1)|l1|+2|l2|+n0+|n1\+|n2|73

with some L < oo (since n — j; = |j/| > n° + |n*| + |n?| — 1). Finally since the
sum (10) contains no more then (n + 1)"" "' +7*1=1 terms we get (11). O

Lemma 3. For / € A and n € Ny set

Ae(n> _ Z (I{O,H17I‘i2)

( yn+[11|+2]12] ) :
KEKE(n) \YRO yRI 11, 7K2+2)2

Then there ezists a constant L() < oo such that

L(¢)
(n+ 1)|ll|+2|l2|72

-2 ()0

where the sum is over 7 = (7°,7',7?) with 7° € No,n' € N¢,»*> € N and
0< <0<yt <! 0<n?<I? Hence Lemma 3 is a consequence of
Lemma 2. O]

Af(n) < forn € Ny.

Proof. Note that
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4. Proof of the Main Theorem

The existence and uniqueness of a formal solution to (1) was established in
Section 2. Furthermore, the functions ¢, of the formal solution (2) satisfy
recurrence relations (5). Hence we only need to show that formal solution
belongs to G%(Q)-in time. To this end set v = maxycp 7%, where ~* = [0 +
2|I'| + 3|1%|. Note that if v < 2, then |I?| = 0 for all £ € A. In that case the
equation satisfies the assumption of the Cauchy-Kowalevski theorem (see [5,
Theorem 1.25]), and hence the solution of (1) is analytic in time at {t = 0}. So
we can assume that v > 3.

First off all we shall prove inductively that for any compact set K & €2 one
can find 1 < C < oo such that for any n € Ny and a € Ng,

“ aliamat (| +yn)!
sup 0%, ()| < b, C! I+ Hw, (12)
rzeK n!
with by = 1 and
1 (n+1)! (yn + 1M + 2)12))!
bn+1 — n + 1 n!,y_l [Z (’}/TL + /y)| Z (b)HO . (b)H1 . (b)RZ
LeA KEKE(n) (13)

n 7t yn + |1 + 2|12 -
X . .
KO, kL, K2 YO, vk + 10, yK2 + 252
Fix K € Q. Clearly, since uy = ¢y € A(£2), (12) holds for n = 0 with by = 1
and some 1 < C' < co. Now assume that (12) holds some for n € Ny. Since
a € A(Q) for £ € A, for any x € K, £ € A and $° € N increasing eventually

C we have |07 a!(x)| < CVP’I1]391. So by (5), the Leibniz rule, the inductive
assumption and Corollary 1 we estimate for « € N¢ and x € K,

‘aa90n+1( )’
Y [0 (@) (o)) - (Vapl@)e - (Viple))

teh kekh(n)

(6] 0
= Y > 0% ()]
n+1 leA 0 0471142 ﬁ
€A kekf(n) po,p1,.. a0+t I+ |EN3
50+51+ .+/@lo+‘ll‘+|l2‘:a

“n+1

IN

0
x |07 pug(@)] -+ [0 o, (@)
0 0
x (07" drp 0 () ) ‘aﬁl +l1819011 ‘ )aﬂ’ *"‘adgpld( )‘
310+\z I+1 Ao 510+|z H-\z? 9
X a 8 SD 2 1, 1 ‘ ’a add(pKQQ;d,d (l’) ‘

d,d
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S XY (e
n
1 LeN kekCh(n) po,... 60+t I+112] end p
B0+ +ﬂlo+”1‘+”2|—a

.....

0
b, CWHHOHM b C‘BZOHW%HM
( 0‘)’7 1 K0 (FL?OU’Y_I
b, C’W 1y 41 (‘ﬁl 1+ ’Y’f )
1 (™)™

o 11 071 1;d
<’6l ‘Hlﬂ‘ +1 +7’€l} >| ) CWOHZ ||+1+7'€1 41 <’6l +l “ +1 +’Y/<Gl(li )!

X

0,1 1:1
B8 Ly 11
. b 1;10 4

Rl%

X 20 14
Lipv-l K1 Ldpyv—1
(k1) t (r5!)
O +1 21,1
x b mclﬁl Attt (18 [ +24+ym )
21,1\ 71
(k1)
. 10|11 +]i2) 2;d,d
b O|5lo+|lll+“2‘|+2+'yn123ddd (‘ﬁ + 2+ "}/K,
X )
ded 2d,d\ 71
(“12 )

_ Z C|a\+7n+1+lo+2|ll|+3|12| Z (b)no (b)nl(b)f#

0] 1( 1)y 21\

el teh weKE(n) (RO =1 (RH) 71 (K1) 77

cat Y LI (0D (5] )
' 301 BT g0

80,...,al0 I+ end
0k O]

(ﬁloH + 7&};1 + 1)! e (ﬁloﬂll' + wfll};d + 1)!
B+ B+
(ﬁz°+|lll+1 + W&%l’l + 2) (5l0+|l1|+|z2| + ’Vfi d 4 2)
ﬁlOHllHll 510+|ll|+|l2|l
© 1 3 glemt s s (la +m + [11] + 2022 +1° + [I'] + |7])!
L (4 0T+ 2]+ O+ 0]+ 2!
KON (yr! + 1) (vK2 + 2p2)!

X 0 1 2(7
P R O O e T

REKE(n)

X

X

_ 1 ZC|Q\+7n+7[+1<|a‘ +n+7")! (o + 1]+ 2[12])!
n+l (yn +79)! nl—1

LeA
(o)™
X Z (b)ﬁo(b)ml(b)nz- ( :nf|l17+2|12| )
KeEKE (n) VRO il 11 7R 422

< by, - CloHAmED (Ja| +~(n+1))!
- (n+ 1)1

b
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where b, is given by (13). To finish the proof assume that b; < L' for i < n
with L > L(¢) for ¢ € A, where L(¢) is the constant in Lemma 3. Then by
Lemma 3,

1 (n+1)b! yn A+ [ 212 1
bn+1 < ( | _)1 Z ( | ‘ " |) ’ ’ [11]+212|—2
n+1 nl = (yn +)! (n+1)
1 2 1
< 17 S (n 4 12
2 e G+ T 22T+ 1) G+ 7)
< Lt

if L > |A]. Hence applying (12) with m = 0 and (yn)! <~ - n!” we get,

sup lon(2)| < L0 O cpemmn o for ne N
reK

which implies (3) with s = 2. O
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