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Implicit Difference Schemes

for Evolution Functional Differential Equations
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Abstract. We give a theorem on an error estimate of approximate solutions for
functional difference equations of the Volterra type with unknown function of several
variables. We apply this general result in the investigations of the stability of quasilin-
ear implicit difference schemes generated by first order partial differential functional
equations and by parabolic problems. A comparison technique is used with nonlin-
ear estimates of the Perron type for given functions with respect to the functional
variable. Equations with deviated variables and differential integral equations can be
derived from a general model by specializing given operators.
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1. Introduction

We are interested in a numerical approximation of classical solutions to quasilin-
ear functional differential equations or systems with initial boundary conditions.
Difference schemes for evolution functional differential equations consist in re-
placing partial derivatives with difference operators. Moreover, because equa-
tions contain the functional variable, some interpolating operators are needed.
This leads to functional difference equations which satisfy consistency conditions
on classical solutions of original problems. The main task in these considera-
tions is to find difference approximations of original problems which are stable.
Comparison methods are used in the investigations of the stability of functional
difference problems.

It is not our aim to show a full review of papers concerning explicit difference
schemes for evolution functional differential equations. We shall mention only
those which contain such reviews. They are [4, 15,19] and the monograph [8].
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In recent years, a number of papers concerning implicit difference methods
for functional partial differential equations have been published. Difference
approximations of classical solutions to first order partial functional differential
equations were investigated in [9,10]. Initial problems on the Haar pyramid and
initial boundary value problems were considered. Implicit difference schemes for
parabolic equations with initial boundary conditions of the Dirichlet type were
studied in [5, 12]. Monotone iterative methods and implicit difference schemes
for computing approximate solutions to parabolic equations with time delays
were analyzed in [13, 20]. A numerical treatment of initial boundary value
problems of the Neumann–Robin type can be found in [14].

A method of difference inequalities and theorems on recurrent inequalities
are used in the investigations of the stability of implicit difference schemes.
These considerations as a rule require a lot of calculations to reach the conver-
gence result so the main property of the corresponding operators was not easy
to be seen. The aim of the present paper is to show that results mentioned
above as well as many others are consequences of a result on abstract difference
functional equations with an unknown function of several variables.

We formulate our functional differential problems. For any metric spaces
X and Y we denote by C(X,Y ) the class of all continuous functions from X

into Y . We will use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components. Let Mk×n be the
class of all k × n matrices with real elements. For x ∈ R

n, U ∈ Mk×n where
x = (x1, . . . , xn), u =

[

uij

]

i=1,...,k, j=1,...,n
we write

‖x‖ =
n

∑

i=1

|xi|, ‖U‖k×n;∞ = max

{ n
∑

j=1

|uij| : 1 ≤ i ≤ n

}

.

Suppose that a > 0, b = (b1, . . . , bn) ∈ R
n, bi > 0 for 1 ≤ i ≤ n, and d0 ∈ R+,

d = (d1, . . . , dn) ∈ R
n
+, R+ = [0,+∞), are given. Let c = b+ d and

E = [0, a] × (−b, b), D = [−d0, 0] × [−d, d], E0 = [−d0, 0] × [−c, c]

∂0E = [0, a] ×
(

[−c, c] \ (−b, b)
)

, Ω = E ∪ E0 ∪ ∂0E.

For a function z : Ω → R
k and for a point (t, x) ∈ Ē where Ē is the closure of E,

we define a function z(t,x) : D → R
k by z(t,x)(τ, y) = z(t + τ, x + y), (τ, s) ∈ D.

Then z(t,x) is the restriction of z to the set [t − d0, t] × [x − d, x + d] and this
restriction is shifted to the set D. Write Ξ = E × C(D,Rk) and suppose that

f : Ξ →Mk×n, f =
[

fij

]

i=1,...,k, j=1,...,n
, g : Ξ → R

k, g = (g1, . . . , gk)

ϕ : E0 ∪ ∂0E → R
k, ϕ = (ϕ1, . . . , ϕk)
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are given functions. Let z = (z1, . . . , zk) be an unknown function of the variables
(t, x). We consider the system of functional differential equations

∂tzi(t, x) =
n

∑

j=1

fij(t, x, z(t,x))∂xj
zi(t, x) + gi(t, x, z(t,x)), i = 1, . . . , k, (1)

with the initial boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E. (2)

Sufficient conditions for the existence and uniqueness of classical or generalized
solutions of first order partial functional functional problems can be found in
[1, 6, 8].

Now we formulate initial boundary value problems for parabolic functional
differential equations. Suppose that

G : Ξ → R, G : Ξ → R
n, G = (G1, . . . , Gn)

F : Ξ →Mn×n, F =
[

Fij

]

i,j=1,...,n
, φ : E0 ∪ ∂0E → R

are given functions. Let z be a real unknown function of the variables (t, x).
We consider the functional differential equation

∂tz(t, x) =
n

∑

i,j=1

Fij(t, x, z(t,x))∂xixj
z(t, x)

+
n

∑

i=1

Gi(t, x, z(t,x))∂xi
z(t, x) +G(t, x, z(t,x)),

(3)

with the initial boundary condition

z(t, x) = φ(t, x) on E0 ∪ ∂0E. (4)

Sufficient conditions for the existence and uniqueness of classical or generalized
solutions to parabolic functional differential functional problems can be found
in [2, 3, 7, 11,16].

Let us denote by CL(D,R) the class of all linear and continuous operators
defined on C(D,R) and taking values in R. Write Σ = E × C(D,R) × R

n and
suppose that F : Σ → R and φ : E0 ∪ ∂0E are given functions. Let z be an
unknown function of the variables (t, x). We consider the functional differential
equation

∂tz(t, x) = F (t, x, z(t,x), ∂xz(t, x)) (5)

with the initial boundary condition (4) where ∂xz = (∂x1
, . . . , ∂xn

z). Existence
results and a theory of difference methods for (4), (5) are based on the following
method of quasilinearization. Suppose that the function F of that variables
(t, x, w, q), q = (q1, . . . , qn), is continuous and:
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(i) the partial derivatives ∂xF = (∂x1
F, . . . , ∂xn

F ) and ∂qF = (∂q1
, . . . , ∂qn

F )
exist on Σ and ∂xF, ∂qF ∈ C(Σ,Rn);

(ii) there exists the Fréchet derivative ∂wF (P ) and ∂wF (P ) ∈ CL(D,R) for
P = (t, x, w, q) ∈ Σ.

Suppose that φ ∈ C(E0 ∪ ∂0E,R) and there exists ∂xφ = (∂x1
φ, . . . , ∂xn

φ) and
∂xφ ∈ C(E0 ∪ ∂0E,R

n). Let (z, u), u = (u1, . . . , un), be unknown functions of
the variables (t, x). First we introduce an additional unknown function u = ∂xz

in (5). Then we consider the following linearization of (5) with respect to u:

∂tz(t, x) = F (t, x, z(t, x), u(t, x))

+
n

∑

i=1

∂qi
F (t, x, z(t,x), u(t, x))

(

∂xi
z(t, x) − ui(t, x)

)

.
(6)

By virtue of (5) we get the functional differential equations for u:

∂tu(t, x) = ∂xF (t, x, z(t,x), u(t, x)) + ∂wF (t, x, z(t,x), u(t, x))u(t,x)

+ ∂qF (t, x, z(t,x), u(t, x))
[

∂xu(t, x)
]T (7)

where ∂wF (P )u(t,x) = ( ∂wF (P ) (u1)(t,x), . . . , ∂wF (P )(un)(t,x) ) and ∂tu =
(∂tu1, . . . , ∂tun). We consider the following initial boundary condition for the
equations (6), (7):

z(t, x) = φ(t, x), u(t, x) = ∂xφ(t, x) on E0 ∪ ∂0E. (8)

Under natural assumptions on given functions the above problems have the
following properties:

(i) if (z̃, ũ) : Ω → R
1+n is a solution of (6)–(8), then ∂xz̃ = ũ and z̃ is a

solution of (4), (5);

(ii) if v : Ω → R
n is a solution of (4), (5), then (v, ∂xv) satisfies (6)–(8).

The theory of implicit difference schemes for (4), (5) is based on the above
method of quasilinearization. More exactly: difference methods for (6)–(8) are
constructed and solutions of suitable difference functional problems approxi-
mate the solution v of (5) and its partial derivatives ∂xv, see [4, 10].

There are the following motivations for the construction of implicit differ-
ence schemes related to (1), (2) and (3), (4). Two types of assumptions are
needed in theorems on the stability of explicit difference schemes generated by
(1), (2) and (3), (4). The first type of conditions concerns the regularity of
given functions, and they are the same for explicit and for implicit difference
methods. It is required that f, g and F, G, G are continuous and that they
satisfy nonlinear estimates of the Perron type with respect to the functional
variable. The second type of conditions concern the mesh. It is required that
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explicit difference methods generated by (1), (2) satisfy the condition

1 − h0

n
∑

j=1

1

hj

|fij(t, x, w)| ≥ 0 on Ξ, for i = 1, . . . , k, (9)

where h0 and (h1, . . . , hn) are steps of the mesh with respect to t and (x1, . . . , xn),
respectively. The above assumption is known as the Courant–Friedrichs–Levy
condition for (1), (2), see [4, 8].

The following condition is needed in the analysis of the stability of explicit
difference schemes for (3), (4):

1 − 2h0

n
∑

i=1

1

h2
i

fii(t, x, w) + h0

n
∑

i,j=1
i6=j

1

hihj

∣

∣fij(t, x, w)
∣

∣ ≥ 0 on Ξ, (10)

see [19]. Note that assumptions (9) and (10) require some relations between
h0 and (h1, . . . , hn). It is important that conditions (9) and (10) are omitted in
theorems on the stability of implicit difference schemes.

The motivations for the construction of implicit difference schemes for quasi-
linear problem (6)–(8) are the same. Numerical examples given in [4,5,9,10,12]
show that implicit difference methods are natural tools for numerical solution
of evolution functional differential equations.

We show that all known results on implicit difference methods for evolu-
tion functional differential equations can be obtained as particular cases of this
general and simple theorem. We use a comparison technique with nonlinear
estimates of the Perron type for given functions with respect to the functional
variable.

The paper is divided into two parts. In the first part (Section 2) we propose
a new method of the investigation of implicit difference schemes corresponding
to initial boundary value problems for quasilinear evolution functional differen-
tial equations or systems. We formulate a general implicit difference functional
problem with an unknown function of several variables. We give sufficient con-
ditions for the existence and uniqueness of a solution of initial boundary value
problems and we prove a theorem on error estimates of approximate solutions.
The error is estimated by a solution of an initial problem for a nonlinear dif-
ference equation with an unknown function of one variable. In the second part
of the paper we apply the above general results to quasilinear functional sys-
tems with first order partial derivatives (Section 3) and to quasilinear parabolic
problems (Section 4). In Section 5 we construct implicit difference schemes for
(6)–(8).

We use in the paper general ideas for finite difference equations which were
introduced in [8, 17,18].
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2. Implicit difference functional equations

For any two sets V andW we denote by F(V,W ) the class of all functions defined
on V and taking values in W. Let N and Z be the sets of natural numbers and
integers, respectively. We define a mesh on Ω in the following way. Suppose that
(h0, h

′), h′ = (h1, . . . , hn), hi > 0 for 0 ≤ i ≤ n, stand for steps of the mesh. For
h = (h0, h

′) and (r,m) ∈ Z
1+n where m = (m1, . . . ,mn), we define nodal points

as follows: t(r) = rh0, x
(m) = (x

(m1)
1 , . . . , x

(mn)
n ) = (m1h1, . . . ,mnhn). Let us

denote by H the set of all h such that there are K0 ∈ Z and K = (K1, . . . , Kn) ∈
Z

n satisfying the conditions: K0h0 = d0 and (K1h1, . . . , Knhn) = d. Let N0 ∈ N

and N = (N1, . . . , Nn) ∈ N be defined by the relations:

N0h0 ≤ a < (N0 + 1)h0, Nihi < bi ≤ (Ni + 1)hi for i = 1, . . . , n,

and we assume that (Ni + 1)hi = bi if di = 0. Write

R1+n
h =

{(

t(r), x(m)
)

: (r,m) ∈ Z
1+n

}

and

Dh = D ∩ R
1+n
h , Eh = E ∩ R

1+n
h , E0.h = E0 ∩ R

1+n
h

∂0Eh = ∂0E ∩ R
1+n
h , Ωh = Eh ∪ E0.h ∪ ∂0Eh.

Set
E ′

h =
{(

t(r), x(m)
)

∈ Eh : 0 ≤ r ≤ N0 − 1
}

and
Ωh.r = Ωh ∩

([

− d0, t
(r)

]

× R
n
)

, 1 ≤ r ≤ N0.

We consider implicit difference functional equations with unknown functions
(z1, . . . , zp) = z of the variables (t(r), x(m)) ∈ Ωh. The norm in the space Rp is
denoted by ‖ · ‖⋆.

For z ∈ F(Ωh,R
p), w ∈ F(Dh,R

p) we write z(r,m) = z(t(r), x(m)) on Ωh and
w(r,m) = w(t(r), x(m)) on Dh. We will need a discrete version of the operator
(t, x) → z(t,x). If z : Ωh → R

p and (t(r), x(m)) ∈ Eh then the function z[r,m] :
Dh → R

p is defined by z[r,m](τ, y) = z(t(r) + τ, x(m) + y), (τ, y) ∈ Dh. For
w ∈ F(Dh,R

p) we put

‖w‖Dh
= max

{∥

∥w(r,m)
∥

∥

⋆
:

(

t(r), x(m)
)

∈ Dh

}

. (11)

Set ej = (0, . . . , 0, 1, . . . , 0) ∈ R
n with 1 standing on the j-th place, 1 ≤ j ≤ n.

Write

Λ =
{

λ = (λ1, . . . , λn) : λi ∈ {−1, 0, 1} for 1 ≤ i ≤ n and ‖λ‖ ≤ 2
}

Λ′ = Λ \ { θ }, θ = (0, . . . , 0) ∈ R
n,
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and χ = 1 + 2n2. Note that χ is the number of elements of Λ. Let ψ : Λ →
{1, . . . , χ} be a function such that ψ(λ) 6= ψ(λ̃) for λ 6= λ̃. We assume that ≺
is an order in Λ defined in the following way: λ ≺ λ̃ if ψ(λ) < ψ(λ̃). Elements
of the space R

χ will be denoted by ξ = {ξλ}λ∈Λ. Write

Ah =
{

x(m) : m = (m1, . . . ,mn) ∈ Λ
}

.

For ζ : Ah → R, η : Ah → R
p we put ζ(m) = ζ(x(m)) and η(m) = η(x(m)) on

Ah. If z : Ωh → R
p and (t(r), x(m)) ∈ Eh, then the function z〈r,m〉 : Ah → R

p is
defined by z〈r,m〉(y) = z(t(r), x(m) + y), y ∈ Ah.

Suppose that

fh : E ′
h × F(Dh,R

p) → R
p, fh =

(

f
(1)
h , . . . , f

(p)
h

)

G
(i)
h : E ′

h × F(Dh,R
p) → R

χ, G
(i)
h =

{

G
(i)
h.λ

}

λ∈Λ
, i = 1, . . . , p,

are given functions. For (t, x, w) ∈ E ′
h×F(Dh,R

p), ζ ∈ F(Ah,R), η ∈ F(Ah,R
p),

η = (η1, . . . , ηp), we put

G
(i)
h (t, x, w) ◦ ζ =

∑

λ∈Λ

G
(i)
h.λ(t, x, w) ζ(λ), i = 1, . . . , p,

and
Gh(t, x, w) ⋄ η =

(

G
(1)
h (t, x, w) ◦ η1, . . . , G

(p)
h (t, x, w) ◦ ηp

)

.

Set Σh = E ′
h × F(Dh,R

p)× F(Ah,R
p). Let Fh : Σh → R

p, Fh = (F
(1)
h , . . . , F

(p)
h ),

be defined by

Fh(t, x, w, η) = fh(t, x, w) +Gh(t, x, w) ⋄ η. (12)

For (t(r), x(m), w, η) ∈ Σh we write

Fh[w, η]
(r,m) = Fh

(

t(r), x(m), w, η
)

, fh[w](r,m) = fh

(

t(r), x(m), w
)

Gh[w](r,m) = Gh

(

t(r), x(m), w
)

, G
(i)
h [w](r,m) = G

(i)
h

(

t(r), x(m), w
)

, 1 ≤ i ≤ p.

Let δ0 be the difference operator defined by

δ0z
(r,m) =

(

δ0z
(r,m)
1 , . . . , δ0z

(r,m)
p

)

=
1

h0

[

z(r+1,m) − z(r,m)
]

.

Given ϕh : E0.h ∪ ∂0Eh → R
p, we consider the functional difference equation

δ0z
(r,m) = Fh[ z[r,m], z〈r+1,m〉 ]

(r,m) (13)

with the initial boundary condition

z(r,m) = ϕ
(r,m)
h onE0.h ∪ ∂0Eh. (14)
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Note that the vectors z(r+1,m+λ) where λ ∈ Λ appear in z〈r+1,m〉. Then (13), (14)
is an implicit functional difference problem.

There are the following motivations for investigations of problem (13), (14).
Explicit difference equations for (1), (3) or (6), (7) have the form

δ0z
(r,m) = Φh

(

t(r), x(m), z
)

(15)

where Φh : E ′
h × F(Ωh,R

p) → R
p is an operator of the Volterra type and p = k

for (1), p = 1 for (3) and p = n + 1 for (6), (7). Discretization of partial
derivatives ∂xzi = (∂x1

zi, . . . , ∂xn
zi) and ∂2zi = [∂xµxν

zi]µ, ν=1,...,n, i = 1, . . . , p,

leads to the following observation: the numbers z
(r,m+λ)
i where λ ∈ Λ, 1 ≤ i ≤ p,

appear in definitions of difference operators corresponding to these derivatives.
It follows that the right hand side of the i-th equation in (15) depends on the
functional variable (zi)〈r,m〉, 1 ≤ i ≤ p. Since (1), (3) and (6), (7) contain the
functional variable we conclude that Φh in (15) depends on z[r,m]. It is clear that
assumptions on z[r,m] and z〈r,m〉 are not the same in theorems on convergence
of difference methods. Then it is convenient to consider the following explicit
difference scheme for (1) and (3):

δ0z
(r,m) = Fh

(

t(r), x(m), z[r,m], z〈r,m〉

)

(16)

where Fh : Σh → R. The initial boundary condition (14) is associated with (16).
It is important that two functional variables: z[r,m] and z〈,m〉 appear in (16).

Systems (1) and (6), (7) and equation (3) are linear with respect to partial
derivatives. It follows that explicit difference schemes for (1), (3) and (6),
(7) are linear with respect to δzi = (δ1zi, . . . , δnzi) and δ(2)zi = [δµνzi]µ,ν=1,...,n,
i = 1, . . . , p. Then they have the form (16) with Fh defined by (12). The implicit
difference methods corresponding to (16) have the form (13).

We give sufficient conditions for the existence and uniqueness of a solution
to (13), (14).

Assumption H[Gh]. The functions G
(i)
h : E ′

h × F(Dh,R
p) → R

χ, 1 ≤ i ≤ p,

satisfy the conditions:

G
(i)
h.λ(t, x, w) ≥ 0 for λ ∈ Λ′ and

∑

λ∈Λ

G
(i)
h.λ(t, x, w) = 0, i = 1, . . . , p.

We beginwith a lemma on difference inequalities corresponding to (13), (14).

Lemma 2.1. Suppose that Assumption H[Gh] is satisfied and h ∈ H, zh : Ωh →
R

p, zh = (zh.1, . . . , zh.p).

(I) If zh satisfies the difference inequality

z
(r+1,m)
h ≤ h0Gh[(zh)[r,m]]

(r,m) ⋄ (zh)〈r+1,m〉,
(

t(r), x(m)
)

∈ E ′
h,
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and z
(r,m)
h ≤ θ[p] on E0.h ∪ Eh where θ[p] = (0, . . . , 0) ∈ R

p, then

z
(r,m)
h ≤ θ[p] on Eh. (17)

(II) If zh satisfies the difference inequality

z
(r+1,m)
h ≥ h0Gh[(zh)[r,m]]

(r,m) ⋄ (zh)〈r+1,m〉,
(

t(r), x(m)
)

∈ E ′
h,

and z
(r,m)
h ≥ θ[p] on E0.h ∪ ∂0Eh, then z

(r,m)
h ≥ θ[p] on Eh.

Proof. Consider the case (I). Suppose that 0 ≤ r ≤ N0 − 1 is fixed and there

exist m̃ ∈ Z
n, −N ≤ m̃ ≤ N , and j, 1 ≤ j ≤ p, such that z

(r+1,m̃)
h.j = M where

M = max{z
(r+1,m)
h.j , x(m) ∈ [−c, c]}, and

z
(r+1,m̃)
h.j > 0. (18)

Then (t(r), x(m̃)) ∈ E ′
h. It follows from Assumption H[Gh] that

z
(r+1,m̃)
h.j ≤ h0

∑

λ∈Λ′

G
(j)
h.λ[ (zh)[r,m̃] ]

(r,m̃) z
(r+1,m̃+λ)
h.j + h0MG

(j)
h.θ[ (zh)[r,m̃] ]

(r+1,m̃)

≤Mh0

∑

λ∈Λ

G
(j)
h.λ[ (zh)[r,m̃] ]

(r+1,m̃) = 0

which contradicts (18). Then the proof of (17) is completed. The case (II) can
be treated in a similar way. This proves the lemma.

Theorem 2.2. If Assumption H[Gh] is satisfied and ϕh : E0.h ∪ ∂0Eh → R
p,

h ∈ H, then there exists exactly one solution zh : Ωh → R
p to (13), (14).

Proof. Suppose that 0 ≤ r ≤ N0 − 1 is fixed and that zh is known on the set
Ωh.r. Consider the linear system

z(r+1,m) = z
(r,m)
h + h0fh[ (zh)r,m] ]

(r,m)

+ h0Gh[(zh)[r,m]]
(r,m) ⋄ z〈r+1,m〉,

−N ≤ m ≤ N, (19)

and

z(r+1,m) = ϕ
(r+1,m)
h for

(

t(r+1), x(m)
)

∈ ∂0Eh (20)

with unknowns z(r+1,m). It follows from Lemma 2.1 that the homogeneous
system corresponding to (19), (20) has exactly one zero solution. Then system
(19), (20) has exactly one solution and zh is defined on the set Ωh.r+1. Since
zh is given on E0.h then the proof is completed by induction with respect to r,
0 ≤ r ≤ N0.
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We will consider approximate solutions to (13), (14). Let Xh ⊂ F(Dh,R
p)

and Yh ⊂ F(Ah,R
p) be fixed subsets. Suppose that the functions vh : Ωh → R

p

and α0, γ : H → R+ satisfy the conditions:

∥

∥ δ0v
(r,m)
h − Fh

[

(vh)[r,m], (vh)〈r+1,m〉

](r,m) ∥

∥

⋆
≤ γ(h) on E ′

h (21)
∥

∥ϕ
(r,m)
h − v

(r,m)
h

∥

∥

⋆
≤ α0(h) on E0.h ∪ ∂0Eh (22)

lim
h→0

γ(h) = 0, lim
h→0

α0(h) = 0 (23)

and
(

(vh)[r,m], (vh)〈r,m〉

)

∈ Xh × Yh for
(

t(r), x(m)
)

∈ Eh. (24)

The function vh satisfying the above relations is considered as an approximate
solution to (13), (14). It is important in our considerations that we look for
approximate solutions to (13), (14) such that condition (24) is satisfied with a
fixed subspace Xh×Yh ⊂ F(Dh,R

p)×F(Ah,R
p). Remark 2.4 contains additional

comments on (24).

We give a theorem on the estimate of the difference between the exact and
approximate solutions to (13), (14).

Assumption H[σ]. The function σ : [0, a]×R+ → R+ satisfies the conditions:

1) σ is continuous and it is nondecreasing with respect to the both variables;

2) σ(t, 0) = 0 for t ∈ [0, a] and the maximal solution of the Cauchy problem

ω′(t) = σ( t, ω(t)), ω(0) = 0

is ω̃(t) = 0 for t ∈ [0, a].

We formulate a general result on error estimates of approximate solutions
to (13), (14).

Theorem 2.3. Suppose that

1) h ∈ H, Assumption H[Gh] is satisfied and zh : Ωh → R
p is the solution to

(13), (14);

2) vh : Ωh → R
p and there are α0, γ : H → R+ such that conditions (21)–(24)

are satisfied;

3) there exists σ : [0, a] × R+ → R+ such that Assumption H[σ] is satisfied

and for each (w̃, η) ∈ Xh × Yh, w ∈ F(Dh,R
p) we have

∥

∥Fh[w, η]
(r,m) − Fh[w̃, η]

(r,m)
∥

∥

⋆
≤ σ

(

t(r), ‖w − w̃‖Dh

)

where (t(r), x(m)) ∈ E ′
h.

Then there is α : H → R+ such that

∥

∥(zh − vh)
(r,m)

∥

∥

⋆
≤ α(h) on Eh and lim

h→0
α(h) = 0. (25)



Implicit Difference Schemes 115

Proof. Write

Γ
(r,m)
h = δv

(r,m)
h − Fh[(vh)r,m], (vh)〈r+1,m〉]

(r,m), Γ
(r,m)
h = (Γ

(r,m)
h.1 , . . . ,Γ

(r,m)
h.p ).

We conclude from (12) that, for i = 1, . . . , p,

(

zh.i − vh.i

)(r+1,m)[
1 − h0G

(i)
h,θ[(zh)[r,m]]

(r,m)
]

=
(

zh.i − vh.i

)(r,m)

+ h0

{

F
(i)
h [(zh)[r,m], (vh)〈r+1,m〉]

(r,m) − F
(i)
h [(vh)[r,m], (vh)〈r+1,m〉]

(r,m)
}

+ h0

∑

λ∈Λ′

G
(i)
h.λ[(zh)[r,m]]

(r,m)
(

zh.i − vh.i

)(r+1,m+λ)
− h0Γ

(r,m)
h.i .

(26)

Write ε
(r)
h = max

{

‖(zh − vh)
(i,m)‖⋆ : (t(i), x(m)) ∈ Ωh.r

}

, 0 ≤ r ≤ N0. It follows
from Assumptions G[Gh], H[σ] and (21), (22), (26) that

ε
(0)
h ≤ α0(h), ε

(r+1)
h ≤ ε

(r)
h + h0σ

(

t(r), ε
(r)
h

)

+ h0γ(h), 0 ≤ r ≤ N0 − 1. (27)

Let us denote by ω( · , h) the maximal solution of the Cauchy problem

ω′(t) = σ(t, ω(t)) + γ(h), ω(0) = α0(h). (28)

It follows that ω( · , h) is defined on [0, a] and limh→0 ω(t, h) = 0 uniformly

on [0, a]. We conclude from (27) that ε
(r)
h ≤ ω(t(r), h) for 0 ≤ r ≤ N0. Then

condition (25) is satisfied with α(h) = ω(a, h). This completes the proof.

Remark 2.4. Let us consider the following condition:

3’) there exists σ : [0, a] × R+ → R+ such that Assumption H[σ] is satisfied
and for each w, w̃ ∈ F(Dh,R

p), η ∈ F(Ah,R
p), we have

∥

∥Fh[w, η]
(r,m) − Fh[w̃, η]

(r,m)
∥

∥

⋆
≤ σ

(

t(r), ‖w − w̃‖Dh

)

where (t(r), x(m)) ∈ E ′
h.

It is clear that Theorem 2.3 remains true if assumption 3) is replaced by 3’).
There are differential functional problems such that the corresponding operators
Fh satisfy 3’). We show that assumption 3) is important in our considerations.
The operators Fh generated by (1), (3) or (6), (7) satisfy condition 3) and they
do not satisfy 3’).

Now we formulate a particular case of Theorem 2.3. We assume that the
function σ(t, · ) is linear.
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Remark 2.5. Suppose that all the assumptions of Theorem 2.3 holds true
and σ(t, p) = Lp on [0, a] × R+ where L ∈ R+. Then we have assumed that
the operator Fh satisfies the Lipschitz condition with respect to the functional
variable w for each fixed (w̃, η) ∈ Xh × Yh. Then

‖(zh − vh)
(r,m)‖⋆ ≤ α̃(h) on Eh

where

α̃(h) = α0(h)e
La + γ(h)

eLa − 1

L
if L > 0 (29)

α̃(h) = α0(h) + aγ(h) if L = 0. (30)

The above estimates are obtained by solving problem (28) with σ(t, p) = Lp.

3. Implicit difference schemes for hyperbolic functional
differential systems

In this part of the paper we put R
p = R

k. For ζ ∈ R
k, ζ = (ζ1, . . . , ζk), we

define the norm

‖ζ‖⋆ = ‖ζ‖∞ = max{|ζi| : 1 ≤ i ≤ k}.

For w ∈ C(D,Rk) we put

‖w‖D = max{‖w(t, x)‖∞ : (t, x) ∈ D}.

The norm of w ∈ F(Dh,R
k) is defined by (11) with the above given ‖ · ‖⋆.

We formulate a difference method for (1), (2). Let Th : F(Dh,R
k) →

C(D,Rk) be an interpolating operator. We consider the system of functional
difference equations

δ0z
(r,m)
i =

n
∑

j=1

fij

(

t(r), x(m), Thz[r,m]

)

δjz
(r+1,m)
i

+ gi

(

t(r), x(m), Thz[r,m]

)

,

i = 1, . . . , k, (31)

with the initial boundary condition

z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh (32)

where ϕh : E0.h ∪ ∂0Eh → R
k is a given function. The difference operators

(δ1, . . . , δn) are defined in the following way. Suppose that (t(r), x(m)) ∈ E ′
h and

that the function z = (z1, . . . , zk) is known on the set Ωh.r. We put

if fij

(

t(r), x(m), Thz[r,m]

)

≥ 0, then δjz
(r+1,m)
i =

1

hj

[

z
(r+1,m+ej)
i − z

(r+1,m)
i

]

if fij

(

t(r), x(m), Thz[r,m]

)

< 0, then δjz
(r+1,m)
i =

1

hj

[

z
(r+1,m)
i − z

(r+1,m−ej)
i

]

,
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and we take i = 1, . . . , k, j = 1, . . . , n in the above definitions. We claim that
we have obtained a difference problem which is a particular case of (13), (14).

Consider the operator Fh : Σh → R
k, Fh = (F

(1)
h , . . . , F

(k)
h ), defined in the

following way. Suppose that (t(r), x(m), w, η) ∈ Σh. Write

J
(r,m)
i.+ [w] =

{

j ∈ {1, . . . , n} : fij

(

t(r), x(m), Thw
)

≥ 0
}

J
(r,m)
i.− = {1, . . . , n} \ J

(r,m)
i.+ [w]

and

F
(i)
h

(

t(r), x(m), w, η
)

=
n

∑

j=1

fij

(

t(r), x(m), Thw
)

δjη
(θ)
i

+ gi

(

t(r), x(m), Thw
)

,

i = 1, . . . , k .

The expressions (δ1η
(θ)
i , . . . , δnη

(θ)
i ), 1 ≤ i ≤ k, are defined in the following way:

jη
(θ)
i =

1

hj

[

η
(ej)
i − η

(θ)
i

]

for j ∈ J
(r,m)
i.+ [w]

δjη
(θ)
i =

1

hj

[

η
(θ)
i − η

(−ej)
i

]

for j ∈ J
(r,m)
i.− [w],

and we put i = 1, . . . , k, j = 1, . . . , n in the above formulas. It is clear that
system (31) is equivalent to (13) with the above defined Fh and p = k.

Lemma 3.1. Suppose that f : Ξ → Mk×n, g : Ξ → R
k, ϕh : E0.h ∪ ∂0Eh → R

k

and Th : F(Dh,R
k) → C(D,Rk), h ∈ H. Then there exists exactly one solution

zh : Ωh → R
k of system (31) with initial boundary condition (32).

Proof. We apply Theorem 2.2. Let us define

fh : E ′
h × F(Dh,R

k) → R
k, fh =

(

f
(1)
h , . . . , f

(k)
h

)

G
(i)
h : E ′

h × F(Dh,R
k) → R

χ, i = 1, . . . , k,

in the following way. Suppose that (t(r), x(m), w) ∈ E ′
h × F(Dh,R

k). Write

Λ
(r,m)
i.+ [w] =

{

λ ∈ Λ : there is j ∈ J
(r,m)
i.+ [w] such that λ = ej

}

Λ
(r,m)
i.− [w] =

{

λ ∈ Λ : there is j ∈ J
(r,m)
i.− [w] such that λ = −ej

}

,

where i = 1, . . . , k. Set

fh[w](r,m) = g
(

t(r), x(m), Thw
)

G
(i)
h.θ[w](r,m) = −

n
∑

j=1

1

hj

∣

∣fij

(

t(r), x(m), Thw
)∣

∣



118 Z. Kamont

and

G
(i)
h.ej

[w](r,m) =
1

hj

fij

(

t(r), x(m), Thw
)

for j ∈ J
(r,m)
i.+ [w]

G
(i)
h.−ej

[w](r,m) = −
1

hj

fij

(

t(r), x(m), Thw
)

for j ∈ J
(r,m)
i.− [w]

G
(i)
h.λ[w](r,m) = 0 for λ ∈ Λ \

[

Λ
(r,m)
i.+ [w] ∪ Λ

(r,m)
i.− [w] ∪ {θ}

]

.

We take i = 1, . . . , k in the above definitions. Then Assumption H[Gh] is
satisfied and Fh is given by (12). Our theorem follows from Theorem 2.2.

Assumption H[Th]. The operator Th : F(Dh,R
k) → C(D,Rk) satisfies the

conditions:

1) for any w, w̃ ∈ F(Dh,R
k) we have ‖Thw − Thw̃‖D ≤ ‖w − w̃‖Dh

;

2) if w : D → R
k is of class C1, then there is γ̃ : H → R+ such that

‖w − Thwh‖D ≤ γ̃(h) and limh→0 γ̃(h) = 0 where wh is the restriction w

to the set Dh.

Remark 3.2. The above condition 1) states that Th satisfies the Lipschitz
condition with the constant L = 1. The meaning of condition 2) is that Thwh is
an approximation of w and the error of the approximation is estimated by γ̃(h).

An example of the operator Th satisfying Assumption H[Th] can be found in [8,
Chapter 5].

Assumption H⋆[σ]. The function σ : [0, a]×R+ → R+ satisfies the conditions:

1) σ is continuous and it is nondecreasing with respect to both variables;

2) σ(t, 0) = 0 for t ∈ [0, a], and for each c̃ ≥ 1 the maximal solution of the
Cauchy problem

ω′(t) = c̃ σ(t, ω(t)), ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a].

Assumption H[f, g]. The functions f : Ξ →Mk×n, g : Ξ → R
k are continuous

and there is σ : [0, a] × R+ → R+ such that Assumption H⋆[σ] is satisfied and,
on Ξ,

‖f(t, x, w) − f(t, x, w̃)‖k×n;∞ ≤ σ(t, ‖w − w̃‖D)

‖g(t, x, w) − g(t, x, w̃)‖∞ ≤ σ(t, ‖w − w̃‖D) .

Theorem 3.3. Suppose that Assumptions H[Th] and H[f, g] are satisfied and:

1) ϕ : E0 ∪ E → R
k is of class C1 and v : Ω → R

k is a solution to (1), (2)
and v is of class C1;
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2) h ∈ H and zh : Ωh → R
k is a solution of equation (31) with the initial

boundary condition (32) and there is α0 : H → R+ such that

∥

∥ϕ
(r,m)
h − ϕ(r,m)

∥

∥

∞
≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Then there is α : H → R+ such that

‖(zh − vh)
(r,m)‖∞ ≤ α(h) on Eh and lim

h→0
α(h) = 0, (33)

where vh is the restriction of v to the set Ωh.

Proof. We apply Theorem 2.3 to prove (33). WriteXh = F(Dh,R
k). Let c̃ ∈ R+

be defined by the relation:

‖∂xv(t, x)‖k×n;∞ ≤ c̃ for (t, x) ∈ E. (34)

Let us denote by Yh the class of all η ∈ F(Ah,R
k), η = (η1, . . . , ηn), such that

∣

∣

∣

∣

1

hj

(

η
(ej)
i − η

(θ)
i

)

∣

∣

∣

∣

≤ c̃

∣

∣

∣

∣

1

hj

(

η
(θ)
i − η

(−ηj)
i

)

∣

∣

∣

∣

≤ c̃, i = 1, . . . , k, j = 1, . . . , n.

Then
(

(vh)[r,m], (vh)〈r,m〉

)

∈ Xh × Yh for (t(r), x(m)) ∈ Eh. It follows from As-
sumption H[Th] and from (34) that condition (21)–(23) are satisfied. For
w, w̃ ∈ F(Dh,R

k) and η ∈ Yh we have
∥

∥Fh[w, η]
(r,m) − Fh[w̃, η]

(r,m)
∥

∥

∞
≤ (1 + c̃)σ

(

t(r), ‖w − w̃‖Dh

)

,

where (t(r), x(m)) ∈ E ′
h, Then all the assumptions of Theorem 2.3 are satisfied

and the assertion (33) follows.

Remark 3.4. Suppose that the assumptions of Theorem 3.3 are satisfied and
σ(t, p) = L̃p on [0, a] × R+ where L̃ ∈ R+. Then there is L ∈ R+ such that
‖(zh − vh)

(r,m)‖∞ ≤ α̃(h) on Eh where α̃ is given by (29), (30).

4. Implicit difference schemes for parabolic problems

In this part of the paper we apply the results presented in Section 2 for R
p = R.

We construct a class of difference schemes for (3), (4). Given φh : E0.h∪∂0Eh →
R, Th : F(Dh,R) → C(D,R, we consider the functional difference equation

δ0z
(r,m) =

n
∑

i,j=1

Fij

(

t(r), x(m), Thz[r,m]

)

δijz
(r+1,m)

+
n

∑

i=1

Gi

(

t(r), x(m), Thz[r,m]

)

δiz
(r+1,m)) +G

(

t(r), x(m), Thz[r,m]

)

(35)
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with the initial boundary condition

z(r,m) = φ
(r,m)
h on E0.h ∪ ∂0Eh. (36)

The difference operators (δ1, . . . , δn) are given by

δiz
(r+1,m) =

1

2hi

[

z(r+1,m+ei) − z(r+1,m−ei)
]

, i = 1, . . . , n.

Write

δ+
i z

(r+1,m) =
1

hi

[

z(r+1,m+ei) − z(r+1,m)
]

δ−i z
(r+1,m) =

1

hi

[

z(r+1,m) − z(r+1,m−ei)
]

,

i = 1, . . . , n.

In the same way we define the expressions δ+
i η

(θ) and δ−i η
(θ) for 1 ≤ i ≤ n where

η : Ah → R. We apply the difference operators δ(2) = [ δij ]i,j=1,...,n defined in
the following way. Put

δiiz
(r+1,m) = δ+

i δ
−
i z

(r+1,m) for i = 1, . . . , n.

The difference expressions δijz
(r+1,m) for 1 ≤ i, j ≤ n, i 6= j, are given in the

following way:

if Fi,j(t
(r), x(m), Thz[r,m]) ≥ 0, then δijz

(r+1,m) =
1

2

[

δ+
i δ

+
j z

(r+1,m) + δ−i δ
−
j z

(r+1,m)
]

if Fi,j(t
(r), x(m), Thz[r,m]) < 0, then δijz

(r+1,m) =
1

2

[

δ+
i δ

−
j z

(r+1,m)+δ−i δ
+
j z

(r+1,m)
]

.

We claim that difference functional equation (35) is a particular case of (13)
for k = 1. Consider the operator Fh : Σh → R defined in the following way.
Suppose that (t(r), x(m), w, η) ∈ Σh. Write

S
(r,m)
+ [w] =

{

(i, j) : 1 ≤ i, j ≤ n, i 6= j, Fij(t
(r), x(m), Thw) ≥ 0

}

S
(r,m)
− [w] =

{

(i, j) : 1 ≤ i, j ≤ n, i 6= j, Fij(t
(r), x(m), Thw) < 0

}

,

and

Fh(t
(r), x(m), w, η) =

n
∑

i,j=1

Fij

(

t(r), x(m), Thw
)

δijη
(θ)

+
n

∑

i=1

Gi

(

t(r), x(m), Thw
)

δiη
(θ) + g

(

t(r), x(m), Thw
)

.

The expressions (δ1η
(θ), . . . , δnθ

(θ)) is given by

δiη
(θ) =

1

2hi

[

η(ei) − η(−ei)
]

for i = 1, . . . , n.
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The difference operators
[

δijη
(θ)

]

i,j=1,...,n
are defined in the following way:

δiiη
(θ) = δ+

i δ
−
i η

(θ) for i = 1, . . . , n.

and

δijη
(θ) =

1

2

[

δ+
i δ

+
j η

(θ) + δ−i δ
−
j η

(θ)
]

for (i, j) ∈ S
(r,m)
+ [w]

δijη
(θ) =

1

2

[

δ+
i δ

−
j η

(θ) + δ−i δ
+
j η

(θ)
]

for (i, j) ∈ S
(r,m)
− [w].

It is clear that equation (35) is equivalent to (13) with the above given Fh and
p = 1.

Lemma 4.1. Suppose that h ∈ H and F : Ξ →Mn×n, G : Ξ → R
n, G : Ξ → R,

ϕh : E0.h ∪ ∂0Eh → R, Th : F(Dh,R) → C(D,R). Then there exists exactly one

solution zh : Ωh → R of equation (35) with initial boundary condition (36).

Proof. We apply Theorem 2.2. We define fh : E ′
h × F(Dh,R) → R, Gh :

E ′
h × F(Dh,R) → R

κ, Gh = {Gh.λ }λ∈Λ, in the following way. Suppose that
(t(r), x(m), w) ∈ E ′

h × F(Dh,R). Write

Λ
(r,m)
0 [w] = {λ ∈ Λ : there is i, 1 ≤ i ≤ n, such that λ = ei or λ = −ei }

Λ
(r,m)
I [w] =

{

λ ∈ Λ :
there is (i, j) ∈ S

(r,m)
+ [w] such that

λ = ei + ej or λ = −ei − ej

}

Λ
(r,m)
II [w] =

{

λ ∈ Λ :
there is (i, j) ∈ S

(r,m)
− [w] such that

λ = ei − ej or λ = −ei + ej

}

Λ̃(r,m)[w] = Λ \
{

Λ
(r,m)
0 [w] ∪ Λ

(r,m)
I [w] ∪ Λ

(r,m)
II [w] ∪ { θ }

}

and

fh[w](r,m) = G
(

t(r), x(m)Thw
)

Gh.θ[w](r,m) = −2
n

∑

i=1

1

h2
i

Fii

(

t(r), x(m), Thw
)

+
n

∑

i,j=1
i6=j

1

hihj

∣

∣Fij

(

t(r), x(m), Tw

)∣

∣

Gh.ei
[w](r,m) =

1

h2
i

Fii

(

t(r), x(m), Thw
)

−
n

∑

j=1
j 6=i

1

hihj

∣

∣Fij

(

t(r), x(m), Thw
)∣

∣ +
1

2hi

Gi

(

t(r), x(m), w
)

Gh.−ei
[w](r,m) =

1

h2
i

Fii

(

t(r), x(m), Thw
)

−

n
∑

j=1
j 6=i

1

hihj

∣

∣Fij

(

t(r), x(m), Thw
)∣

∣ −
1

2hi

Gi

(

t(r), x(m), Thw
)

,
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Gh.ei+ej
[w](r,m) = Gh.−ei−ej

[w](r,m)

=
1

2hihj

Fij

(

t(r), x(m), Thw
)

, (i, j) ∈ S
(r,m)
+ [w]

Gh.ei−ej
[w](r,m) = Gh.−ei+ej

[w](r,m)

= −
1

2hihj

Fij

(

t(r), x(m), Thw
)

, (i, j) ∈ S
(r,m)
− [w]

Gh.λ[w](r,m) = 0 for λ ∈ Λ̃[w](r,m),

and we put i, j = 1, . . . , n in the above formulas. Then Fh satisfies (12) and
Assumption H[Gh] holds true. Then our theorem follows from Theorem 2.2.

Assumption H[F,G, G]. The functions F : Ξ →Mn×n, G : Ξ → R
n, G : Ξ →

R are continuous and there is σ : [0, a]×R+ → R+ such that Assumption H⋆[σ]
is satisfied and the terms

‖F(t, x, w)−F(t, x, w̃)‖n×n;∞, ‖G(t, x, w)−G(t, x, w̃)‖, |G(t, x, w)−G(t, x, w̃)|

are bounded from above by σ(t, ‖w − w̃‖D).

Theorem 4.2. Suppose that Assumptions H[Th] and H[F, GG] are satisfied

and

1) ϕ : E0 ∪ ∂0E → R is of class C2 and v : Ω → R is a solution of (3), (4)
and v is of class C2,

2) h ∈ H, there is c0 > 0 such that hih
−1
j ≤ c0 for i, j = 1, . . . , n and

zh : Ωh → R is a solution of (35), (36) and there is α0 : H → R+ such

that

|φ(r,m) − φ
(r,m)
h | ≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Then there is α : h→ R+ such that
∣

∣(zh − vh)
(r,m)

∣

∣ ≤ α(h) and lim
h→0

α(h) = 0, (37)

where vh is the restriction of v to the set Ωh.

Proof. We apply Theorem 2.3 to prove (37). Let c̃ ∈ R+ be defined by the
relations

‖∂xv(t, x)‖ ≤ c̃, ‖∂xxv(t, x)‖n×n;∞ ≤ c̃ for (t, x) ∈ E. (38)

Set Xh = F(Dh,R). Let us denote by Yh the class of all η ∈ F(Ah,R) satisfying
the conditions:

1

2

∣

∣δ+
i η

(θ) + δ−i η
(θ)

∣

∣ ≤ c̃

1

2

∣

∣δ+
i δ

+
j η

(θ) + δ−i δ
−
j η

(θ)
∣

∣ ≤ c̃

1

2

∣

∣δ+
i δ

−
j η

(θ) + δ−i δ
+
j η

(θ)
∣

∣ ≤ c̃,



























i, j = 1, . . . , n.
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Then ((vh)[r,m], (vh)〈r,m〉) ∈ Xh × Yh for (t(r), x(m)) ∈ Eh. It follows from As-
sumption H[Th] and from (38) that conditions (21)–(23) are satisfied. There is
c̄ > 0 such that for w, w̃ ∈ F(Dh,R) and η ∈ Yh we have

∣

∣Fh[w, η]
(r,m) − Fh[w̃, η]

(r,m)
∣

∣ ≤ (1 + c̄)σ
(

t(r), ‖w − w̃‖Dh

)

.

where (t(r), x(m)) ∈ E ′
h. Then the assumptions of Theorem 2.3 are satisfied and

the assertion (37) follows.

Remark 4.3. If the assumptions of Theorem 4.2 are satisfied and σ(t, p) = L̃p

on [0, a] × R+ where L̃ ∈ R+, then there is L ∈ R+ such that |(zh − vh)
(r,m)| ≤

α̃(h) on Eh where α̃ is given by (29), (30).

5. Generalized Euler method for nonlinear functional dif-
ferential equations

In this part of the paper we put R
p = R

1+n). For ζ = (x0, x) ∈ R
1+n, x ∈ R

n, we
define the norm ‖ζ‖⋆ = |x0|+ ‖x‖. The norm in the space CL(D,R) generated
by the maximum norm in C(D,R) will be dented by ‖ · ‖C .

We construct implicit difference schemes for (6), (7). Let (z, u), u =
(u1, . . . , un), be unknown functions of the variables (t(r), x(m)) ∈ Ωh. Given
φh : E0.h ∪ ∂0Eh → R, ψh : E0.h ∪ ∂0Eh → R

n, Th : F(Dh,R) → C(D,R). Write

P (r,m)[z, u] =
(

t(r), x(m), Thz[r,m], u
(r,m)

)

and Thu[r,m] =
(

Th(u1)[r,m], . . . , Th(uh)[r,m]

)

. We consider the functional differ-
ence equations

δ0z
(r,m) = F (P (r,m)[z, u]) +

n
∑

j=1

∂qj
F (P (r,m)[z, u])

(

δjz
(r,m) − u

(r,m)
j

)

(39)

δ0u
(r,m) = ∂xF (P (r,m)[z, u]) + ∂wF (P (r,m)[z, u])Thu[r,m]

+ ∂qF (P (r,m)[z, u])
[

δu(r+1,m)
]T

(40)

with initial boundary conditions

z(r,m) = φ
(r,m)
h , u(r,m) = ψ

(r,m)
h on E0.h ∪ ∂0Eh, (41)

where δu(r+1,m) =
[

δju
(r+1,m)
i

]

i,j=1,...,n
. The difference operators (δ1, . . . , δn) is

defined in the following way. Suppose that the functions (z, u) are known on
the set Ωh.r and (t(r), x(m)) ∈ E ′

h. We put

if ∂qj
F (P (r,m)[z, u]) ≥ 0,

then δjz
(r+1,m) =

1

hj

(

z(r+1,m+ej) − z(r+1,m)
)

and δju
(r+1,m)
i =

1

hj

(

u
(r+1,m+ej)
i − u

(r+1,m)
i

)

, 1 ≤ i ≤ n.

(42)
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Moreover we put

if ∂qj
F (P (r,m)[z, u]) < 0,

then δjz
(r+1,m) =

1

hj

(

z(r+1,m) − z(r+1,m−ej)
)

and δju
(r+1,m)
i =

1

hj

(

u
(r+1,m)
i − u

(r+1,m−ej)
i

)

, 1 ≤ i ≤ n,

(43)

and we take j = 1, . . . , n in (42), (43). The difference problem consisting of
system (39), (40) and initial boundary conditions (41) is called a generalized
Euler method for (4), (5). We claim that (39), (40) is a particular case of (13).

Write k = 1 + n and Σh = E ′
h × F(Dh,R

1+n) × F(Ah,R
1+n). Consider the

operator Fh : Σh → R
1+n, Fh = (F

(0)
h , F

(1)
h , . . . , F

(n)
h ), defined in the following

way. Suppose that (t(r), x(m), w, η) ∈ Σh and w = (w0, w
′), w′ = (w1. . . . , wn),

η = (η0, η
′), η′ = (η1, . . . , ηn). Write

Q[w](r,m) =
(

t(r), x(m), Thw0, w
′((0, θ)

)

and

J
(r,m)
+ [w] =

{

j ∈ {1, . . . , n} : ∂qj
F (Q[w](r,m)) ≥ 0

}

J
(r,m)
− [w] = {1, . . . , n} \ J

(r,m)
+ [w].

Set

F
(0)
h (t(r), x(m), w, η) = F (Q[w](r,m)) +

n
∑

j=1

∂qj
F (Q[w](r,m))

(

δjη
(θ)
0 − w

(0,θ)
j

)

and

F
(i)
h (t(r), x(m), w, η) = ∂xi

F (Q[w](r,m)) + ∂wF (Q[w](r,m))Thwi

+
n

∑

j=1

∂qj
F (Q[w](r,m)) δjη

(θ)
i , i = 1, . . . , n.

The expressions δη
(θ)
i = (δ1η

(θ)
i , . . . , δnη

(θ)
i ), i = 0, 1, . . . , n, are defined in the

following way:

δjη
(θ)
i =

1

hj

[

η
(ej)
i − η

(θ)
i

]

for j ∈ J
(r,m)
+ [w]

δjη
(θ)
i =

1

hj

[

η
(θ)
i − η

(−ej)
i

]

for j ∈ J
(r,m)
− [w].

We put i = 0, 1, . . . , n, j = 1, . . . , n in the above definitions. It is clear that
system (39), (40) is equivalent to (13) with the above defined Fh.
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Assumption H⋆[F ]. The function F : Σ → R is continuous and:

1) the partial derivatives ∂xF , ∂qF exist on Σ and ∂xF, ∂qF ∈ C(Σ,Rn);

2) there exists the Fréchet derivative ∂wF (P ) and ∂wF (P ) ∈ CL(D,R) for
P ∈ Σ.

Lemma 5.1. Suppose that Assumption H⋆[F ] is satisfied and φh : E0.h∪∂0E →
R, ψh : E0.h ∪ ∂0E → R

n, h ∈ H and Th : F(Dh,R) → C(D,R). Then there

exists exactly one solution (zh, uh) : Ωh → R
1+n, to problem (39)–(41).

Proof. We apply Theorem 2.2. Define

fh : E ′
h × F(Dh,R

1+n) → R
1+n, fh =

(

f
(0)
h , f

(1)
h , . . . , f

(n)
h

)

G
(i)
h : E ′

h × F(Dh,R
1+n) → R

1+n, G
(i)
h =

{

G
(i)
h.λ

}

λ∈Λ
, i = 0, 1, . . . , n,

in the following way. Suppose that (t(r), x(m), w) ∈ E ′
h × F(Dh,R

1+n). Write

S
(r,m)
+ [w] =

{

λ ∈ Λ : there is j ∈ J
(r,m)
+ [w] such that λ = ej

}

S
(r,m)
− [w] =

{

λ ∈ Λ : there is j ∈ J
(r,m)
− [w] such that λ = −ej

}

,

and

G
(i)
h.θ[w](r,m) = −

n
∑

j=1

1

hj

∣

∣ ∂qj
F (Q[w](r,m))

∣

∣

G
(i)
h.ej

[w](r,m) =
1

hj

∂qj
F (Q[w](r,m)) for j ∈ J

(r,m)
+ [w],

G
(i)
h.−ej

[w](r,m) = −
1

hj

∂qj
F (Q[w](r,m)) for j ∈ J

(r,m)
− [w],

G
(i)
h.λ[w](r,m) = 0 for λ ∈ Λ \

[

S
(r,m)
+ [w] ∪ S

(r,m)
− [w] ∪ { θ }

]

.

We take i = 0, 1, . . . , n in the above definitions. Set

f
(0)
h [w](r,m) = F (Q[w](r,m)) −

n
∑

j=1

∂qj
F (Q[w](r,m))w

(0,θ)
j

f
(i)
h [w](r,m) = ∂xi

F (Q(r,m)) + ∂wF (Q[w](r,m))Thwi, i = 1, . . . , n.

Then Assumption H[Gh] is satisfied and Fh is given by (12). Our theorem
follows from Theorem 2.2.

Assumption H⋆[σ]. The function σ : [0, a]×R+ → R+ satisfies the conditions:

1) σ is continuous and it is nondecreasing with respect to the both variables;
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2) σ(t, 0) = 0 for t ∈ [0, a] and for each C ∈ R+, c̃ ≥ 1 the maximal solution
of the Cauchy problem

ω′(t) = C ω(t) + c̃ σ(t, ω(t)), ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a].

Assumption H[F ]. The function F : Σ → R satisfies Assumption H⋆[F ] and:

1) there is L ∈ R+ such that, for P = (t, x, w, q) ∈ Σ,

‖∂xF (P )‖, ‖∂qF (P )‖, ‖∂wF (P )‖C ≤ L ;

2) there exists σ : [0, a] × R+ → R+ such that Assumption H⋆[σ] is satisfied
and the terms

‖∂xF (t, x, w, q) − ∂xF (t, x, w̃, q̃)‖, ‖∂qF (t, x, w, q) − ∂qF (t, x, w̃, q̃)‖

‖∂wF (t, x, w, q) − ∂wF (t, x, w̃, q̃)‖C

are bounded from above by σ(t, ‖w − w̃‖D + ‖q − q̃‖) on Σ.

Theorem 5.2. Suppose that Assumption H[F ] is satisfied and:

1) ϕ : E0 ∪ ∂0E → R is of class C2 and v : Ω → R is a solution of (4), (5)
and v is of class C2;

2) φh : E0.h ∪ ∂0Eh → R, ψh : E0.h ∪ ∂0Eh → R
n, h ∈ H and (zh, uh) : Ωh →

R
1+n is a solution of (39)–(41);

3) Th : F(Dh,R) → C(D,R) and Assumption H[Th] is satisfied with k = 1,

4) there is α0 : H → R+ such that

∣

∣φ(r,m) − φ
(r,m)
h

∣

∣ +
∥

∥∂xφ
(r,m) − ψ

(r,m)
h

∥

∥ ≤ α0(h) on E0.h ∪ ∂0Eh

and limh→)α0(h) = 0.

Then there is α : H → R+ such that

|(vh − zh)
(r,m)| + ‖( ∂xvh − uh )(r,m)‖ ≤ α(h) on Eh

and limh→0α(h) = 0 where vh and ∂xvh are the restrictions of v and ∂xv th the

set Ωh.

Proof. We use Theorem 2.3. It follows that the functions (v, ∂xv) : Ω → R
1+n

satisfy (6)–(8). Let c̄, C̄ ∈ R+ be define by the relations ‖∂xv(t, x)‖ ≤ c̄,
‖∂xxv(t, x)‖n×n;∞ ≤ C̄ on Ω.

Let Xh ⊂ F(Dh,R
1+n) be the class of all functions w = (w0, w

′), w′ =
(w1, . . . , wn), such that ‖w′(t(r), x(m))‖ ≤ c̄ for (t(r), x(m)) ∈ Dh. Let Yh ⊂
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F(Ah,R
1+n) denote the class of functions η : Ah → R

1+n, η = (η0, η1, . . . , ηn),
satisfying the conditions:

∣

∣

∣

∣

1

hj

[

η
(ej)
i − η

(θ)
i

]

∣

∣

∣

∣

,

∣

∣

∣

∣

1

hj

[

η
(θ)
i − η

(ej)
i

]

∣

∣

∣

∣

≤ max{ c̄, C̄ }

where i = 0, 1, . . . , n, j = 1, . . . , n. Write Vh = (vh, ∂xvh). Then we have

(

(Vh)[r,m], (Vh)〈r,m〉

)

∈ Xh × Yh for
(

t(r), x(m)
)

∈ Eh.

It follows from Assumption H[F ] that there are C ∈ R+, c̃ ≥ 1 such that for
w ∈ F(Dh,R

1+n), (w̃, η) ∈ Xh × Yh we have

∥

∥Fh[w, η]
(r,m) − Fh[w̃, η]

(r,m)
∥

∥

⋆
≤ C‖w − w̃‖Dh

+ c̃ σ
(

t(r), ‖w − w̃‖Dh

)

where ‖ · ‖Dh
is defined by (11) and (t(r), x(m)) ∈ E ′

h. It is easily seen that that
conditions (21)–(23) holds true. Then all the assumptions of Theorem 2.3 are
satisfied and our assertion follows.

Remark 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied and
σ(t, p) = L̃p on [0, a] × R+ where L̃ ∈ R+. Then there is L ∈ R+ such that

∣

∣v(r,m) − z
(r,m)
h

∣

∣ +
∥

∥∂xv
(r,m) − u

(r,m)
h

∥

∥ ≤ α̃(h) on Eh

where α̃ is given by (29), (30).

Remark 5.4. It is easily seen that the results on parabolic functional dif-
ferential equations and on nonlinear first order partial functional differential
problems can be extended on weakly coupled functional differential systems.
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