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On the Behavior of Periodic Solutions of
Planar Autonomous Hamiltonian Systems
with Multivalued Periodic Perturbations
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Abstract. Aim of the paper is to provide a method to analyze the behavior of T -
periodic solutions xε, ε > 0, of a perturbed planar Hamiltonian system near a cycle x0,
of smallest period T , of the unperturbed system. The perturbation is represented by
a T -periodic multivalued map which vanishes as ε → 0. In several problems from
nonsmooth mechanical systems this multivalued perturbation comes from the Filip-
pov regularization of a nonlinear discontinuous T -periodic term. Through the paper,
assuming the existence of a T -periodic solution xε for ε > 0 small, under the condition
that x0 is a nondegenerate cycle of the linearized unperturbed Hamiltonian system
we provide a formula for the distance between any point x0(t) and the trajectories
xε([0, T ]) along a transversal direction to x0(t).
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1. Introduction

Let x0 be a T -periodic cycle of the Hamiltonian system

ẋ = f(x), (1)

where f ∈ C1(R2, R2) is given by f(x) = −J∇φ(x), φ ∈ C2(R2, R) and J is
the symplectic matrix in R

2. Numerical simulations in the recent monographs
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e Reggio Emilia, 42100 Reggio Emilia, Italy; luisa.malaguti@unimore.it
P. Nistri: Dipartimento di Ingegneria dell’Informazione, Università di Siena, 53100
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[2, 3] have shown that the subharmonic Melnikov’s method ([10, Chapter 4, §6],
[21]) correctly predicts the existence of T -periodic solutions xε of the differential
inclusion

ẋ ∈ f(x) + εg(t, x, ε), (2)

where g : R×R
2× [0, 1] → K(R2) is a multivalued map taking the values in the

family K(R2) of nonempty compact and convex sets of R
2. Sufficient conditions

for the local and global existence of at least an absolutely continuous solution
of (2) starting from any initial condition can be found in ([1, Chapter 2]).

In [2, 3] the authors have observed that if θ0 is a simple zero of the sub-
harmonic Melnikov’s bifurcation function then (2) possesses a T -periodic solu-
tion xε such that

xε(t) → x0(t + θ0) as ε → 0, uniformly in t ∈ [0, T ].

A rigorous proof of this result is provided in the papers [7, 12, 17] by means
of topological degree arguments. In this paper we do not provide conditions
to ensure the existence of T -periodic solutions xε, for ε > 0 small, instead we
want to evaluate the distance between any point x0(t) and the curve xε([0, T ])
providing in this way a tool to study the behavior of the T -periodic solutions
of (2) near x0. This tool, together with the method based on the Melnikov’s
bifurcation function mentioned above, permits to perform a complete analysis
both for the existence and the behavior near the cycle x0 of the T -periodic
solutions xε to (2).

Topological degree methods to study the bifurcation from a periodic orbit
for system (2), when g is a singlevalued Carathéodory function, has been also
employed in [11]. The extensive references in [11] also provide an interesting
overview on the methods for the the study of the bifurcation of periodic solutions
in perturbed dynamical systems.

Since in this paper the existence of T -periodic solutions xε of (2) is assumed,
we only require to the multivalued map g the minimal regularity assumptions
needed for our analysis. In fact, through the paper we only assume that the
map g : R × R

2 × [0, 1] → K(R2) is measurable or upper semicontinuous.
The interest of considering multivalued perturbation of system (1) is mainly

related to the necessity, encountered in the applications, to deal with pertur-
bations, having jump discontinuities, of Hamiltonian autonomous systems. In
fact, many physical problems are modeled by ordinary differential equations
with discontinuous right hand side whose regularization produces a multivalued
map (see, for instance, [1, 9, 20]). Among them we like to cite the study of the
self-sustained oscillations induced by friction in one-degree of freedom mechani-
cal systems. This problem gives rise to a planar Hamiltonian system perturbed
by a periodic term of small amplitude with jump discontinuities, compare, e.g.,
[2, Chapter 15] where the analysis was numerically performed by means of the
Melnikov method.
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The paper is organized as follows. In Section 2, assuming that the linearized
system

ẏ = f ′(x0(t))y (3)

possesses a not T -periodic solution, we show the existence of a family {∆ε}ε>0

of real numbers with ∆ε → 0 as ε → 0 such that

‖xε(t + ∆ε) − x0(t)‖

ε
≤ const for any t ∈ [0, T ] and any ε > 0. (4)

This property has been already established by the authors in [17, 18] in the
case when x0 is an isolated limit cycle and g in (2) is a singlevalued continuous
function. In Section 3 we employ property (4) together with a suitably defined
multivalued function M⊥ ∈ C0(R, R) to obtain

xε(t + ∆ε) − x0(t) ∈ εM⊥(t)y(t) + αε(t)ẋ0(t) + o(ε), (5)

where y is a not T -periodic solution of the linearized system (3) and αε(t) is a
scalar function infinitesimal as ε → 0 of order greater or equal to 1. The function
αε(t) is given in the formula (39) of the paper. The formula to represent the
function M⊥ is provided in Section 3, thus (5) gives an explicit formula for the
distance between the trajectories x0 and xε along a transversal direction to x0.
Finally, in Section 4 we specialize the formula for M⊥ in the case when the
Hamiltonian system (1) possesses symmetry properties, as often is the case in
the applications.

2. Evaluation of the distance between the periodic
solutions of the perturbed system and the cycle
of the unperturbed one

In this Section we establish the validity of inequality (4) which is the starting
point for (5). This result does not depend on the perturbation term g, indeed
the only property we need is that the cycle x0 is nondegenerate according to
the following definition, see [23].

Definition 2.1. We say that the cycle x0 of an autonomous system as (1) is
nondegenerate if the linearized system (3) has a not T -periodic solution.

If (1) is Hamiltonian and x0 is nondegenerate then the period T of x0 is
noncritical and viceversa (compare [5]).

Definition 2.2. ([20, Definition 2.2.1]) A function x : [0, T ] → R
2 is said to be

a solution of the differential inclusion (2) on [0, T ] if x is absolutely continuous
and the inclusion in (2) holds for almost all (a.a.) t ∈ [0, T ].
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Definition 2.3. ([13, Definition 1.3.1]) For any ε > 0 the multivalued map
g(·, ε) : R × R

2 → K(R2) is said to be measurable if, for any open V ⊂ R
2, the

set g−1(V, ε) := {(t, x) ∈ R × R
2 : g(t, x, ε) ∩ V 6= ∅} is measurable.

We assume the following condition.

(H): for any bounded set B ⊂ R
2 there exists µB ∈ L∞

loc(R) such that

‖g(t, x, ε)‖ := sup {‖y‖ : y ∈ g(t, x, ε)} ≤ µB(t)

for all t ∈ R, x ∈ B and ε ∈ [0, 1].

Here L∞
loc(R) denotes the space of locally essentially bounded functions, namely

the space of the functions whose restrictions to any compact set of R are es-
sentially bounded. Note that the notion of nondegenerate cycles has been used
in [17, 18] in a stronger sense, i.e., x0 is called nondegenerate if the linearized
system (3) has only one characteristic multiplier equal to +1.

In order to introduce the family {∆ε}ε>0, following [18], we define a curve
S ∈ C(R, R2) as follows

S(v) = Ω(T, 0, h(v))

h(v) = x0(0) + A1v,
(6)

where Ω(·, t0, ξ) is the solution of (1) satisfying Ω(t0, t0, ξ) = ξ and A1 is an
arbitrary 2 × 1 vector such that the 2 × 2 matrix (ẋ0(0), A1) is nonsingular.

The following result shows that the curve S intersects x0 transversally.

Lemma 2.4 ([18, Lemma 2.2]). Assume f ∈ C1(R2, R2). Let x0 be a nonde-

generate T -periodic cycle of (1). Then ẋ0(0) 6∈ S ′(0)(R).

Using the previous Lemma we can prove the following result.

Lemma 2.5. Assume f ∈ C1(R2, R2) and that g : R × R
2 × [0, 1] → K(R2)

is measurable and satisfying (H). Let x0 be a nondegenerate T -periodic cycle

of (1). Let xε be a T -periodic solution to perturbed system (2) satisfying

‖xε(t) − x0(t)‖ → 0

as ε → 0 uniformly with respect to t ∈ R, then there exists ε0 > 0 and r0 > 0
such that for any ε ∈ (0, ε0] the equation xε(∆) = S(v) has a unique solution

(∆ε, vε) in [−r0, r0] × {v ∈ R : |v| ≤ r0}. Moreover, the functions ε → ∆ε,

ε → vε are continuous at ε = 0 with ∆0 = 0 and v0 = 0.

In the case when g in (2) is singlevalued and continuous Lemma 2.5 is a
simple consequence of Lemma 2.4 ([18, Corollary 2.3]). In the present case of g

multivalued map we should provide a proof.
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Proof. Define the function F : R
2 × [0, 1] → R

2 as F ((t, v), ε) = xε(t) − S(v),
then F ((0, 0), 0) = 0. Our assumptions and definitions (6) guarantee that F is a
continuous function at the points R

2×{0}. Since F (·, 0) is differentiable at (0, 0)
and F ′

(t,v)((0, 0), 0) = (ẋ0(0),−S ′(0)) is nonsingular by Lemma 2.4, then there

exists r0 > 0 such that d(F (·, 0), [−r0, r0] × [−r0, r0], 0) 6= 0. Here d(Φ, V, 0)
denotes the topological degree of the map Φ in the set V with respect to 0, see,
for instance, [16]. Therefore, there exists ε0 > 0 such that

d(F (·, ε), [−r0, r0] × [−r0, r0], 0) 6= 0 for any ε ∈ [0, ε0].

This implies that for any ε ∈ [0, ε0], by the solution property of the topological
degree, there exists at least one pair (∆ε, vε) ∈ [−r0, r0] × [−r0, r0] such that
xε(∆ε) − S(vε) = 0.

Let us show that this solution is unique in [−r0, r0]× [−r0, r0] provided that
r0 > 0 and ε0 > 0 are sufficiently small. Assume the contrary, hence there exist
εk → 0 as k → ∞ and (∆̃εk

, ṽεk
) → (0, 0) as k → ∞ such that

xεk
(∆̃εk

) − S(ṽεk
) = 0 and (∆̃εk

, ṽεk
) 6= (∆εk

, vεk
) for any k ∈ N.

Since S : [−r0, r0] → S([−r0, r0]) is invertible then (∆̃εk
, ṽεk

) 6= (∆εk
, vεk

) im-

plies ∆̃εk
6= ∆εk

, say ∆̃εk
< ∆εk

. On the other hand ẋ(0) 6= 0 and so we can
assume ṽεk

6= vεk
. For any v1, v2 ∈ R

2 we define ∠(v1, v2) as follows

∠(v1, v2) = arccos
〈v1, v2〉

‖v1‖ · ‖v2‖
.

Then we have ∠(xεk
(∆εk

)−xεk
(∆̃εk

), ẋ0(0)) = ∠(S(vεk
)−S(ṽεk

), ẋ0(0)). Passing

to a subsequence if necessary we have that
{ vεk

−ṽεk

|vεk
−ṽεk

|

}∞

k=1
converges. Denote by

q ∈ R, |q| = 1, the limit of this sequence. Then

∠(S(vεk
) − S(ṽεk

), ẋ0(0)) → ∠(S ′(0)q, ẋ0(0)) as k → ∞,

with ∠(S ′(0)q, ẋ0(0)) 6= 0, since, by Lemma 2.4, ẋ(0) 6∈ S ′(0)(R). Therefore,
there exists α > 0 such that

∣∣∣∠(xεk
(∆εk

) − xεk
(∆̃εk

), ẋ0(0))
∣∣∣ ≥ α > 0 for any k ∈ N. (7)

On the other hand t → xεk
(t) is a solution of (2) then, by Filippov’s Lemma [8],

(see also [4, Theorem 1.5.10]), there exists a singlevalued measurable function
hεk

: [0, T ] → R
2 such that

ẋεk
(t) = f(xεk

(t)) + εkhεk
(t) for a.a. t ∈ [0, T ]

hεk
(t) ∈ g(t, xεk

(t), εk) for a.a. t ∈ [0, T ].
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Therefore

xεk
(∆εk

) − xεk
(∆̃εk

) =

∫ ∆εk

∆̃εk

f(xεk
(τ)) dτ + εk

∫ ∆εk

∆̃εk

hεk
(τ) dτ.

Due to the uniform convergence of xε to x0 as ε → 0 we have supk∈N{‖xεk
(τ)‖ :

τ ∈ [0, T ]} < ∞. Thus the assumptions on f and g permit to conclude that

∠(xεk
(∆εk

) − xεk
(∆̃εk

), ẋ0(0)) → ∠(f(x0(0)), ẋ0(0)) as k → ∞,

hence ∠(f(x0(0)), ẋ0(0)) = 0 since f(x0(0)) = ẋ0(0). This is a contradiction
with (7) and so the proof is complete.

We are now in the position to prove inequality (4).

Theorem 2.6. Assume f ∈ C1(R2, R2) and g : R × R
2 × [0, 1] → K(R2) is

measurable and satisfying (H). Let xε be a T -periodic solution to the perturbed

system (2) satisfying

‖xε(t) − x0(t)‖ → 0 as ε → 0 (8)

uniformly with respect to t ∈ [0, T ], where x0 is a nondegenerate T -periodic

cycle of the unperturbed system (1). Let ε0 > 0 and {∆ε}ε∈(0,ε0] ⊂ R be as in

Lemma 2.5. Then there exists M > 0 such that

‖xε(t + ∆ε) − x0(t)‖ ≤ Mε for any t ∈ [0, T ] and any ε ∈ (0, ε0].

Proof. In the sequel ε ∈ (0, ε0] and τ ∈ [0, T ]. Consider the change of variables
νε(τ) = Ω(0, τ, xε(τ + ∆ε)) in system (2). Observe that

xε(τ + ∆ε) = Ω(τ, 0, νε(τ)). (9)

Taking the derivative in (9) with respect to τ we obtain

ẋε(τ + ∆ε) = f(Ω(τ, 0, νε(τ))) + Ω′
ξ(τ, 0, νε(τ))ν̇ε(τ). (10)

On the other hand from (2) we have

ẋε(τ + ∆ε) ∈ f(Ω(τ, 0, νε(τ))) + εg(τ + ∆ε, Ω(τ, 0, νε(τ)), ε). (11)

Since Ω′
ξ(τ, 0, νε(τ)) is the fundamental matrix of a linear system thus it is

invertible, then from (10) and (11) it follows

ν̇ε(τ) ∈ ε
(
Ω′

ξ(τ, 0, νε(τ))
)−1

g(τ + ∆ε, Ω(τ, 0, νε(τ)), ε),

and νε(0) = xε(∆ε) = xε(T + ∆ε) = Ω(T, 0, νε(T )). Since g is measurable
then again by Filippov’s Lemma there exists a measurable singlevalued function
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hε : [0, T ] → R
2 such that hε(τ) ∈

(
Ω′

ξ(τ, 0, νε(τ))
)−1

g(τ + ∆ε, Ω(τ, 0, νε(τ)), ε)
for a.a. τ ∈ [0, T ], and ν̇ε(τ) = εhε(τ), for a.a. τ ∈ [0, T ]. Therefore, hε ∈
L∞([0, T ], R2) and

νε(τ) = Ω(T, 0, νε(T )) + ε

∫ τ

0

hε(s) ds for any τ ∈ [0, T ]. (12)

Since, for any τ ≥ 0, νε(τ) → x0(0) as ε → 0 we can write νε(τ) in the following
form

νε(τ) = x0(0) + εµε(τ). (13)

Now we prove that the functions µε are bounded on [0, T ] uniformly with
respect to ε ∈ (0, ε0]. For this, we first subtract x0(0) from both sides of (12),
with τ = T, obtaining

εµε(T ) = ε Ω′
ξ(T, 0, x0(0))µε(T ) + o(εµε(T )) + ε

∫ T

0

hε(s) ds, (14)

where, from (13), o(εµε(T ))
‖εµε(T )‖

→ 0 as ε → 0. Since xε(∆ε) ∈ S ({v ∈ R : |v| ≤ r0) ,

then by Lemma 2.5 there exists vε ∈ R, |vε| ≤ r0, such that

xε(∆ε) = Ω(T, 0, x0(0) + A1vε) (15)

and vε → 0 as ε → 0. Now by using (15) we can represent εµε(T ) as follows

εµε(T ) = νε(T ) − x0(0) = Ω(0, T, Ω(T, 0, x0(0) + A1vε)) − x0(0) = A1vε. (16)

Therefore (14) can be rewritten as follows

A1vε = Ω′
ξ(T, 0, x0(0))A1vε + o(A1vε) + ε

∫ T

0

hε(s) ds. (17)

Let us show that there exists M1 > 0 such that

|vε| ≤ εM1 for any ε ∈ (0, ε0]. (18)

Arguing by contradiction we assume that there exist sequences {εk}k∈N ⊂ (0, ε0],
εk → 0 as k → ∞, such that |vεk

| = εkck, where ck → ∞ as k → ∞. Let
qk =

vεk

|vεk
|
, then from (17) we have

A1qk = Ω′
ξ(T, 0, x0(0))A1qk +

o(A1vεk
)

|vεk
|

+
1

ck

∫ T

0

hεk
(s) ds, (19)

where
o(A1vεk

)

|vεk
|

→ 0 as k → ∞, in fact
o(A1vεk

)

|vεk
|

=
o(A1vεk

)

‖A1vεk
‖
·
‖A1vεk

‖

|vεk|
.

Let B = {vε(τ) : τ ∈ [0, T ], ε ∈ [0, 1]}. The continuity of Ω and condition (8)
imply that B is bounded. Since also (Ω′

ξ)
−1 is continuous, we can find Λ > 0
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satisfying
∥∥ (

Ω′
ξ(T, 0, vε(τ)

)−1 ∥∥ ≤ Λ for any τ ∈ [0, T ] and any ε ∈ [0, ε0].
Therefore, from assumption (H) we obtain

∥∥∥∥
∫ T

0

hε(s) ds

∥∥∥∥ ≤ εΛ

∫ T

0

µB(s + ∆ε) ds < +∞ for ε ∈ [0, ε0]. (20)

Without loss of generality we may assume that the sequence {qk}k∈N ⊂ R

converges, let q0 = limk→∞ qk with |q0| = 1. By passing to the limit as k → ∞
in (19) we have that A1q0 = Ω′

ξ(T, 0, x0(0))A1q0. Therefore A1q0 is the initial
condition of a T -periodic solution to (3). On the other hand the cycle x0 is
nondegenerate, hence A1q0 is linearly dependent with ẋ0(0) contradicting the
choice of A1. Thus (18) is true for some M1 > 0. From (13) and the fact that
νε(0) = xε(∆ε) we have

‖xε(∆ε) − x0(0)‖ = ε‖µε(0)‖

≤ ε‖µε(T )‖ + ‖εµε(T ) − εµε(0)‖

= ε‖µε(T )‖ + ‖νε(T ) − νε(0)‖.

(21)

From (12) and (20) we have that there exists M2 > 0 such that

‖νε(T ) − νε(0)‖ ≤ εM2 for any ε ∈ (0, ε0]. (22)

Therefore, combining (16) with (18) and taking into account (22), from (21)
we have that ‖xε(∆ε) − x0(0)‖ ≤ ε‖A1‖M1 + εM2 for any ε ∈ (0, ε0]. Since
ẋε(t + ∆ε) ∈ f(xε(t + ∆ε)) + εg(t + ∆ε, xε(t + ∆ε), ε) and g is measurable then
Filippov’s Lemma ensures the existence of a measurable singlevalued function
mε : [0, T ] → R

2 such that

ẋε(t + ∆ε) = f(xε(t + ∆ε)) + εmε(t) for a.a. t ∈ [0, T ]

and mε(t) ∈ g(t + ∆ε, xε(t + ∆ε), ε) for a.a. t ∈ [0, T ]. This allows to conclude
that

xε(t+∆ε)−x0(t) = xε(∆ε)−x0(0)+

∫ t

0

(
f(xε(s+∆ε))−f(x0(s))

)
ds+ε

∫ t

0

mε(s)ds.

Therefore, there exists a constant M3 ≥ 0 such that, for any ε ∈ (0, ε0], we have

‖xε(t+∆ε)−x0(t)‖ ≤ ε(‖A1‖M1+M2)+M3

∫ t

0

‖xε(s+∆ε)−x0(s)‖ds+εM3. (23)

By means of the Gronwall-Bellman Lemma (compare, e.g., [6, Chapter II, § 11]),
inequality (23) implies

‖xε(t + ∆ε) − x0(t)‖ ≤ ε (‖A1‖M1 + M2 + M3) eM3T for any ε ∈ (0, ε0].

and thus the proof is complete.

Remark 2.7. Observe that Theorem 2.6 does not require that (1) is a Hamil-
tonian system, indeed the crucial assumption is that the linearized system (3)
has a not T -periodic solution.
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3. First approximation formula for periodic solutions
of the perturbed system

Denote by z̃ a non-trivial T -periodic solution of the adjoint system

ż = −(f ′(x0(t)))
∗z. (24)

Observe that, since +1 is a characteristic multiplier of (3) then +1 is also a
characteristic multiplier of (24), see [6, Chapter III, §23]), and so z̃ exists.

Let t∗ ∈ [0, T ] such that z̃1(t∗) = 0, hence z̃2(t∗) 6= 0. We begin the section
by studying the behavior, as ε → 0, of the scalar product

〈
z̃(t), xε(t+∆ε)−x0(t)

ε

〉

which is the starting point for deriving the first approximation formula (5). To
this end we denote by ẑ = (ẑ1, ẑ2) any solution of (24) defined in [0, T ] linearly
independent with z̃ and introduce the multivalued map M⊥ : [0, T ] → K(R) as
follows

M⊥(t) =

{
γ(t∗)

∫ t

t−T

〈−ẑ(τ), h(τ)〉 dτ :

h ∈ L∞([−T, T ], R2), h(t) ∈ g(t, x0(t), 0) for a.a t ∈ [−T, T ]

}
,

(25)

where γ(t∗) = z̃2(t∗)
ẑ2(T+t∗)−ẑ2(t∗)

. We can prove the following result.

Theorem 3.1. Assume f ∈ C1(R2, R2) and g : R × R
2 × [0, 1] → K(R2)

upper semicontinuous and satisfying (H). Let xε be a T -periodic solution to the

perturbed system (2) such that

‖xε(t + ∆ε) − x0(t)‖ ≤ Mε for any t ∈ [0, T ] and any ε ∈ (0, ε0],

where ∆ε → 0 as ε → 0, M and ε0 are positive constants and x0 is a nondegen-

erate cycle of the Hamiltonian system (1). Then

lim
ε→0

ρ

(
1

ε
〈z̃(t), xε(t + ∆ε) − x0(t)〉,

z̃2(t∗)

ẑ2(T + t∗) − ẑ2(t∗)
M⊥(t)

)
= 0

uniformly with respect to t ∈ [0, T ], where for any v ∈ R
n and S ⊂ R

n the

distance ρ(v, S) is defined as ρ(v, S) = infs∈S ‖v − s‖.

To prove Theorem 3.1 we need the following Lemma.

Lemma 3.2. Assume that the T -periodic system

u̇ = A(t)u, u ∈ R
2 (26)

has the characteristic multiplier +1 of algebraic multiplicity 2. Let us denote

by ũ = (ũ1, ũ2) a T -periodic solution of (26) such that ũ1(0) = 0, ũ2(0) 6= 0.
Denote by û = (û1, û2) any solution of (26) satisfying û1(0) 6= 0. Then

û(t + T ) = û(t) +
û2(T ) − û2(0)

ũ2(0)
ũ(t) for any t ∈ R.
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This result has been proved in [19, Lemma 4.2] under the additional assump-
tion û2(0) = 0. Though it is immediate to see that avoiding this assumption
does not affect the proof of [19, Lemma 4.2] at all we provide here a proof of
Lemma 3.2 for a sake of completeness.

Proof. Denote the fundamental matrix of system (26) by X such that X(0) = I.
Since X(T )

(
0
1

)
=

(
0
1

)
, then X(T ) =

(
a 0
b 1

)
with a, b ∈ R. By our assumption

X(T ) has two eigenvalues equal to +1, therefore X(T ) =
(

1 0
b 1

)
, b ∈ R. We have

X(t+T )û(0)=X(t)X(T )û(0)=X(t)û(0)+X(t)

(
0

bû1(0)

)
=X(t)û(0)+

bû1(0)

ũ2(0)
ũ(t).

On the other hand

X(T )û(0) =

(
1 0
b 1

)
û(0) = û(0) +

(
0

bû1(0)

)
,

which implies bû1(0) = û2(T ) − û2(0). This completes the proof.

Proof of Theorem 3.1. In what follows ε ∈ (0, ε0]; t, τ ∈ [−T, T ] and z̃, ẑ are the
functions introduced at the beginning of this section. Let A be a nonsingular
2 × 2 matrix such that

ẑ(0)∗ A = (0, 1). (27)

Let Y (t) be the fundamental matrix of the linearized system (3) with initial
condition Y (0) = A. Let

Z(t) = (Y (t)∗)−1 (28)

and define aε ∈ C([−T, T ], R2) as aε(t) = Z(t)∗ xε(t+∆ε)−x0(t)
ε

. Then we have

xε(t + ∆ε) − x0(t) = εY (t)aε(t). (29)

In what follows by o(ε), ε > 0, we will denote a function, which may depend

also on other variables, having the property that o(ε)
ε

→ 0 as ε → 0 uniformly
with respect to these variables when they belong to any bounded set. Since

ẋε(t + ∆ε) ∈ f(xε(t + ∆ε)) + εg(t + ∆ε, xε(t + ∆ε), ε) for a.a. t ∈ R

then, again by Filippov’s Lemma there exists a measurable singlevalued function
hε : R → R

2 such that

ẋε(t + ∆ε) = f(xε(t + ∆ε)) + εhε(t) for a.a. t ∈ R (30)

and hε(t) ∈ g(t + ∆ε, xε(t + ∆ε), ε) for a.a. t ∈ R. By subtracting (1) where
x(t) is replaced by x0(t) from (30) we obtain

ẋε(t + ∆ε) − ẋ0(t) = f ′(x0(t))(xε(t + ∆ε) − x0(t)) + εhε(t) + ot(ε) (31)
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for a.a. t ∈ [−T, T ]. Here ε → ot(ε) is such that ot+T (·) = ot(·) for any t ∈ R.

By substituting (29) into (31) we have

εẎ (t)aε(t) + εY (t)ȧε(t) = εf ′(x0(t))Y (t)aε(t) + εhε(t) + ot(ε)

for a.a. t ∈ [−T, T ]. Since f ′(x0(t))Y (t) = Ẏ (t) the last formula can be rewritten
as follows

εY (t)ȧε(t) = εhε(t) + ot(ε) for a.a. t ∈ [−T, T ]. (32)

By means of Perron’s Lemma [22] (see also Demidovich [6, Sec. III, §12]), for-
mula (27) implies that ẑ(t)∗ Y (t) = (0, 1) for any t ∈ R. Therefore, applying
ẑ(t)∗ to both sides of (32) we have

ε(ȧε,2)(t) = εẑ(t)∗ hε(t) + ẑ(t)∗ ot(ε) for a.a. t ∈ [−T, T ],

where aε,2(t) is the second component of the vector aε(t), and so

aε,2(t) = aε,2(t0) +

∫ t

t0

〈ẑ(τ), hε(τ)〉 dτ +

∫ t

t0

〈
ẑ(τ),

oτ (ε)

ε

〉
dτ (33)

for all t, t0 ∈ [−T, T ]. From (28) we have that Z(0)∗ Y (0) = I. Therefore
([Z(0)]2)

∗
A = (0, 1), where [Z(0)]2 denotes the second column of Z(0). Thus

[Z(0)]2 = ẑ(0). Therefore aε,2(t) =
〈
ẑ(t), xε(t+∆ε)−x0(t)

ε

〉
. Since ẑ is linearly in-

dependent with z̃ then ẑ1(t∗) 6= 0. Since system (1) is Hamiltonian then the
algebraic multiplicity of the characteristic multiplier +1 of linearized system (3)
is equal to 2. By Lemma 3.2 we have

ẑ(t) = ẑ(t − T ) +
ẑ2(T + t∗) − ẑ2(t∗)

z̃2(t∗)
z̃(t) = ẑ(t − T ) +

1

γ(t∗)
z̃(t),

that implies aε,2(t0) = aε,2(t0 − T ) + 1
γ(t∗)

〈
z̃(t0),

xε(t0+∆ε)−x0(t0)
ε

〉
. Substituting

the last formula into (33) we obtain

∫ t0−T

t0

〈ẑ(τ), hε(τ)〉 dτ = − 1
γ(t∗)

〈
z̃(t0),

xε(t0+∆ε)−x0(t0)
ε

〉
−

∫ t0−T

t0

〈
ẑ(τ), oτ (ε)

ε

〉
dτ. (34)

We claim that

lim
ε→0

ρ

(
γ(t∗)

∫ t0−T

t0

〈ẑ(τ), hε(τ)〉 dτ,M⊥(t)

)
= 0, (35)

uniformly with respect to t0 ∈ [0, T ], with hε defined as in (30). To prove this
we observe that the subset of R given by

M :=
{

γ(t∗)

∫ T

−T

〈ẑ(τ), h(τ)〉 dτ :

h ∈ L∞([−T, T ], R2) and h(t) ∈ g(t, x0(t), 0) for a.a. t ∈ [−T, T ]
}
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is nonempty and compact; hence, for each ε ∈ (0, ε0], there exists kε : R → R

such that kε(t) ∈ g(t, x0(t), 0) for a.a. t and

ρ

(
γ(t∗)

∫ T

−T

〈ẑ(τ), hε(τ)〉 dτ,M

)
= |γ(t∗)|

∣∣∣∣
∫ T

−T

〈ẑ(τ), hε(τ) − kε(τ)〉 dτ

∣∣∣∣ .

The upper semicontinuity of g in the bounded set

[−T, T ] ×
{
xε(t) : t ∈ [0, T ], ε ∈ [0, ε0]

}
× [0, ε0]

implies that, given δ > 0, there exists ε1 ∈ (0, ε0] such that, for all ε ∈ [0, ε1],
we have that

hε(t) ∈ g(t + ∆ε, xε(t + ∆ε), ε) ⊂ Bδ(g(t, x0(t), 0)) for a.a. t ∈ [−T, T ]. (36)

Fix an arbitrary δ > 0 and let ε1 ∈ (0, ε0] satisfying (36). Let ε ∈ [0, ε1] and
t0 ∈ [0, T ]. We obtain

ρ

(
γ(t∗)

∫ t0

t0−T

〈ẑ(τ), hε(τ)〉 dτ,M⊥(t)

)
≤ |γ(t∗)|

∣∣∣∣
∫ t0

t0−T

〈ẑ(τ), hε(τ) − kε(τ)〉 dτ

∣∣∣∣

≤ |γ(t∗)|

∫ T

−T

|〈ẑ(τ), hε(τ) − kε(τ)〉| dτ

≤ 2T |γ(t∗)|δ‖ẑ‖C .

which implies our assertion (35). According to (34), the proof is complete.

Remark 3.3. The assumption that (1) is Hamiltonian ensures that the lin-
earized system (3) has a characteristic multiplier +1 of algebraic multiplicity 2
and so the assumption of Lemma 3.2. Alternatively, we could directly assume
that the algebraic multiplicity of the characteristic multiplier +1 of (3) is equal
to 2. The latter is a bit more general. The same consideration applies to
Theorems 3.6 and 4.2 below.

We have the following result.

Lemma 3.4. Let x0 be a nondegenerate T -periodic cycle of the Hamiltonian

system (1). Let z̃ be any T -periodic solution of the adjoint system (24). Then

〈ẋ0(t), z̃(t)〉 = 0 for any t ∈ R. (37)

Proof. Let t∗ ∈ [0, T ] be such that z̃1(t∗) = 0. Let ẑ be any solution of (24)
linearly independent with z̃. Then from Lemma 3.2 we have

〈ẋ0(t), ẑ(t + T )〉 = 〈ẋ0(t), ẑ(t)〉 +
ẑ2(T + t∗)

z̃2(t∗)
〈ẋ0(t), z̃(t)〉 for any t ∈ R.

Perron’s Lemma [22] implies that 〈ẋ0(t), ẑ(t + T )〉 = 〈ẋ0(t), ẑ(t)〉 for any t ∈ R

and thus (37).
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Lemma 3.4 allows the reader to better understand the substantial difference
between the situation when the cycle x0 is isolated, which is studied in [17, 18]
and the present situation when the cycle is non-isolated. In fact, in [17, 18] it
is shown that 〈ẋ0(t), z̃(t)〉 6= 0, for any t ∈ R, which is the contrary of (37).

Remark 3.5. Let z̃ be any T-periodic solution of the adjoint system (24)
and ẑ any solution of (24) linearly independent with z̃. Lemma 3.4 ensures
that 〈ẋ0(t), z̃(t)〉 = 0 for any t ∈ R, moreover from the Perron’s Lemma
〈ẋ0(t), ẑ(t)〉 = 〈ẋ0(0), ẑ(0)〉 6= 0 for any t ∈ R. Without loss of generality
we can assume that 〈ẋ0(0), ẑ(0)〉 = 1. Let y be the function defined by

y(t)∗ =

(
−ẑ2(t)

det(ẑ(t), z̃(t))
,

ẑ1(t)

det(ẑ(t), z̃(t))

)

then

(ẋ0(t), y(t)) =

(
ẑ(t)∗

z̃(t)∗

)−1

(38)

is a matrix solution of the linearized system (3) ([6, Chapter III, §12]).

We can now formulate the following result.

Theorem 3.6. Assume f ∈ C1(R2, R2) and g : R×R
2 × [0, 1] → K(R2) upper

semicontinuous and satisfying (H). Let xε be a T -periodic solution to perturbed

system (2) such that

‖xε(t) − x0(t)‖ → 0 as ε → 0

uniformly with respect to t ∈ [0, T ], where x0 is a nondegenerate T -periodic

cycle of the Hamiltonian system (1). Let z̃, ẑ be as in Remark 3.5 and ẋ0, y as

in (38). Then there exists a family {∆ε}ε>0 such that ∆ε → 0 as ε → 0 and

lim
ε→0

ρ
(
xε(t+∆ε)−x0(t), εM

⊥(t)y(t)+
〈
ẑ(t), xε(t−∆ε)−x0(t)

〉
ẋ0(t)

)
= 0, (39)

uniformly with respect to t ∈ [0, T ].

Proof. The proof of Theorem 3.6 follows from the following representation

xε(t + ∆ε)− x0(t) = 〈z̃(t), xε(t+∆ε)− x0(t)〉y(t) + 〈ẑ(t), xε(t+∆ε)−x0(t)〉ẋ0(t),

which is a consequence of (38), and from Theorem 3.1.
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4. A symmetric case

In this section we consider the situation when the unperturbed Hamiltonian
system (1) possesses the following symmetry properties:

f1(ξ1, ξ2) = f1(−ξ1, ξ2), (40)

f2(ξ1, ξ2) = −f2(−ξ1, ξ2), (41)

(f1)
′
(1)(ξ1, ξ2) = −(f2)

′
(2)(ξ). (42)

where (h)′(i), i = 1, 2 denotes the derivative of h with respect to the i−variable.
The main consequence of this symmetry assumption is given by the following
Lemma whose prove is immediate.

Lemma 4.1 ([19, Lemma 4.4]). Assume f ∈ C1(R2, R2) and that properties

(40)–(42) hold true. Let x0 be a nondegenerate cycle of the Hamiltonian sys-

tem (1) and denote by y the solution of the linearized system (3) satisfying

(
y1(0)
y2(0)

)
=

(
−ẋ0,2(0)
ẋ0,1(0)

)
(43)

Then the functions ẑ(θ) =
(

y2(θ)
−y1(θ)

)
, z̃(θ) =

(
−ẋ0,2(θ)
ẋ0,1(θ)

)
, θ ∈ R, where ẋ0(θ) =

(ẋ0,1(θ), ẋ0,2(θ)), are linearly independent solutions of the adjoint system (24).

Lemma 4.1 allows us to rewrite the multivalued map M⊥ : [0, T ] → K(R)
defined in (25) as follows

M⊥(t) =

{
ẋ0,1(t∗)

y1(T + t∗)

∫ t

t−T

det (−y(τ), h(τ)) dτ :

h ∈ L∞([−T, T ], R2) : h(t) ∈ g(t, x0(t), 0) for a.a t ∈ [−T, T ]

}
.

where t∗ ∈ [0, T ] is such that ẋ0,2(t∗) = 0. Therefore Theorem 3.6 takes the
form of the following Theorem 4.2 when the symmetry assumptions (40)–(42)
are satisfied. In particular, observe that the statement of Theorem 4.2 refers
only to the linearized system (3) and not to the adjoint system (24).

Theorem 4.2. Assume f ∈ C1(R2, R2) and g : R×R
2 × [0, 1] → K(R2) upper

semicontinuous and satisfying (H). Let xε be a T -periodic solution to perturbed

system (2) satisfying

‖xε(t) − x0(t)‖ → 0 as ε → 0

uniformly with respect to t ∈ [0, T ], where x0 is a nondegenerate T -periodic cycle

of the Hamiltonian system (1). Let y be the solution of the linearized system (3)
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with the initial condition (43). Then there exists a family {∆ε}ε>0 such that

∆ε → 0 as ε → 0 and

xε(t+∆ε)−x0(t) ∈ εM⊥(t)y(t)+

〈(
y2(t)
−y1(t)

)
, xε(t + ∆ε) − x0(t)

〉
ẋ0(t)+o(ε),

uniformly with respect to t ∈ [0, T ].
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