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Singular Perturbations
of Curved Boundaries in Three Dimensions.

The Spectrum of the Neumann Laplacian

Antoine Laurain, Sergey Nazarov and Jan Sokolowski

Abstract. We calculate the main asymptotic terms for eigenvalues, both simple and
multiple, and eigenfunctions of the Neumann Laplacian in a three-dimensional domain
Ω(h) perturbed by a small (with diameter O(h)) Lipschitz cavern ωh in a smooth
boundary ∂Ω = ∂Ω(0). The case of the hole ωh inside the domain but very close to
the boundary ∂Ω is under consideration as well. It is proven that the main correction
term in the asymptotics of eigenvalues does not depend on the curvature of ∂Ω while
terms in the asymptotics of eigenfunctions do. The influence of the shape of the
cavern to the eigenvalue asymptotics relies mainly upon a certain matrix integral
characteristics like the tensor of virtual masses. Asymptotically exact estimates of
the remainders are derived in weighted norms.
Keywords. Asymptotic analysis, singular perturbations, spectral problem, asymp-
totics of eigenfunctions and eigenvalues
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1. Introduction

1.1. Preamble. In the seventies and eighties of the last century two asymp-
totic methods, namely the method of matched [9] and compound [20] expan-
sions, were successfully developed to construct asymptotic expansions of solu-
tions to elliptic boundary value problems in domains with singularly perturbed
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boundaries as well as intrinsic functionals calculated for these solutions. In
this context the singular perturbation of the boundary means the creation of
a small hole (opening) inside the domain, smoothing corner and conical points
or edges on the boundary and so on. Among the above-mentionned functionals
one finds the energy functional [15,21,24,25], eigenvalues [10,18,19,28,29], the
capacity [17] and others. The theory of elliptic problems in singularly perturbed
domains is presented in [16,20] in much generality: systems of partial differential
equations, elliptic in the Agmon-Douglis-Nirenberg sense, multi-dimensional do-
mains, two-scaled coefficients, miscellaneous perturbation types, and, besides,
the procedures to construct and justify asymptotics of solutions, a qualitative
analysis of the problems is performed, that is “almost inverse” operators (para-
matrices) are constructed, asymptotically sharp estimates in weighted norms
are derived and formulas for the index are obtained.

The asymptotic analysis of the Neumann Laplacian in a three-dimensional
domain with a small cavern (Figure 1 with the spatial domain and its two-
dimensional dummy) follows the general scheme in [16, 20] because a point on
a smooth surface can be readily regarded as the top of the cone R3

+, i.e., the
half-space. However, the most interesting and important question cannot be
answered by the general procedure which only gives a structure of the asymp-
totic ansätze, identifies problems to be solved, proves the existence of solutions
and provides the principal asymptotic forms. At the same time, the procedure
leaves open the appearance of logarithmic terms in the decomposition of the
auxiliary solutions, the detection of shape and integral characteristics of the
perturbed domain that appear in the asymptotic expansions, and annulling of
certain asymptotic terms. These particularities are to be specified by a direct
calculation which, quite often becomes a very complicated task.

In this paper we compute the main asymptotic terms of eigenvalues, simple
and multiple, and eigenfunctions of the Neumann problem for the Laplace op-
erator in a three-dimensional domain Ω(h) with the small cavity ωh (Figure 1);
notice that the case of a small hole at the distance O(h) from the boundary ∂Ω
(cf. the two-dimensional image in Figure 2) is also under consideration.

h

h

(h) (h)

Figure 1: The domains Ω(h) and ωh

The unperturbed boundary ∂Ω = ∂Ω(0) must be smooth but both ∂ωh and
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∂Ω(h) can be Lipschitz. We prove that the main correction term O(h3) in the
asymptotics for eigenvalues is independent of the curvature of the surface ∂Ω
at the point O to which the cavity ωh shrinks as h → +0. Nevertheless, some
asymptotic terms in the decomposition of eigenfunctions depend directly on the
curvatures. The shape of the cavity influences the eigenvalue correction term
by a special integral characteristics, like the virtual mass tensor [30]. The major
difficulty in the treatment of perturbations of curved boundaries performed in
this paper resides in the use of an appropriate system of curvilinear coordinates
to derive the asymptotic expansions.

h(h)

Figure 2: Small hole at the distance O(h) from the boundary

Similar results on the boundary perturbations of spectral problems for the
Laplace operator in two variables were recently obtained in [26, 27]. We also
mention publications on the perturbation of eigenvalues by smooth perturba-
tions of the boundary [2,7,8,32], by a small hole inside a domain [10,18,19,28,29],
[20, Chapter 9], or by changing the type of boundary conditions in a small part
of ∂Ω [4–6]. We especially emphasize that the case of a small cavern in the flat
boundary is not interesting. Indeed, by the mirror reflection of the domain and
the even extension of the eigenfunctions (Figure 3), one arrives at a domain
with the interior being a small hole, and such class of perturbation problems
has been investigated more than 25 years ago (see citations above).

Figure 3: Mirror reflection of a domain with flat boundary

1.2. Problem formulation. Let Ω ⊂ R3 be a domain with a smooth bound-
ary Γ. We assume that the origin O of the Cartesian coordinates x = (x1, x2, x3)
belongs to Γ. Since Γ is smooth, we can find a neighbourhood U of the point O
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such that there exists a conformal application which maps U onto a neigh-
bourhood of the origin in R3, and thus there exists an orthonormal curvilinear
coordinate system (n, s, ν) in U (see Figure 4), where (s, ν) are the parameters
associated with the local surface parameterization of the origin O, and n stands
for the oriented distance to Γ, with n > 0 in Ωc = R3 \ Ω.

Figure 4: Orthonormal curvilinear coordinate system (n, s, ν) in U

We denote (en, es, eν) the basis corresponding to the curvilinear coordinate
system (n, s, ν). By ω ⊂ R3

− = (−∞, 0)× R2 (see Figure 5), we understand an
open set (not necessarily connected) with the compact closure ω = ω ∪ ∂ω and
such that ∂ω is Lipschitz. The boundary ∂Ξ of the infinite domain Ξ = R3

− \ ω
is also assumed to be Lipschitz.

Figure 5: The domain ω

Introduce a family of domains depending on the small parameter h > 0 (see
Figure 1),

ωh = {(n, s, ν) | ξ = (ξ1, ξ2, ξ3) := (h−1n, h−1s, h−1ν) ∈ ω} (1.1)
Ω(h) = Ω \ ωh. (1.2)

Let us consider the spectral Neumann problem

−∆xu
h(x) = λhuh(x), x ∈ Ω(h) (1.3)

∂nhuh(x) = 0, x ∈ Γ(h) := ∂Ω(h), (1.4)
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with the Laplace operator ∆x, and where ∂nh = nh · ∇x denotes the normal
derivative along the outer normal nh. Problem (1.3)–(1.4) admits the sequence
of eigenvalues

0 = λh0 < λh1 ≤ λh2 ≤ · · · ≤ λhm ≤ · · · → +∞, (1.5)

where the multiplicity is explicitely indicated. The corresponding eigenfunc-
tions uh0 , uh1 , uh2 , . . . , uhm, . . . are subject to the orthogonality and normalization
conditions

(uhp , u
h
m)Ω(h) = δp,m, p,m ∈ N0, (1.6)

where (·, ·)D is the natural scalar product in the Lebesgue space L2(D), and
δp,m the Kronecker symbol.

Our aim is to derive asymptotic formulas for the solution of the spectral
problem (1.3)–(1.4) as h→ 0. We will intermediately conclude that for a fixed
index m and with h→ 0, the entry λhm of (1.5) converges to the element λ0m in
the sequence

0 = λ00 < λ01 ≤ λ02 ≤ · · · ≤ λ0m ≤ · · · → +∞ (1.7)

of eigenvalues for the limit spectral Neumann problem

−∆xv
0(x) = λ0v0(x), x ∈ Ω (1.8)

∂nv
0(x) = 0, x ∈ Γ. (1.9)

Therefore we will use an eigenfunction v0 as our first approximation of uh. The
eigenfunctions of (1.8)–(1.9) are smooth in Ω and admit the orthogonality and
normalization conditions

(v0p, v
0
m)Ω = δp,m, p,m ∈ N0. (1.10)

1.3. Preliminary description of the asymptotic procedure. We use the
following asymptotic ansätze for λhm and uhm.

λhm = λ0m + h3λ′m + · · · (1.11)

uhm(x) = v0m(x) + hχ(x)w1
m(ξ) + h2χ(x)w2

m(ξ) + h3v3m(x) + · · · (1.12)

Here v0m and v3m are terms of regular type, and w1
m, w2

m are terms of the bound-
ary layer type, which depend on the rapid variables ξ = (ξ1, ξ2, ξ3). Finally
χ ∈ C∞(Ω) is a cut-off function equal to one in a fixed neighbourhood, inde-
pendent of h, of the point O, and null outside of a bigger neighbourhood U . We
emphasize that the coefficients of h1 and h2 vanish in (1.11) and the same hap-
pens for regular terms in (1.12). This simplification of the asymptotic ansätze
is not predicted by the general procedure in [20] but is a result of our further
calculations, and we now accept it as granted and verify this assumption in the
sequel.
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Inserting v0m and λ0m into the singularly perturbed problem (1.3)–(1.4) brings
a discrepancy into the boundary condition on the surface ∂Ω(h) ∩ ∂ωh of the
cavern ωh. This discrepancy cannot be compensated by a function depending on
the variables n, s, ν smoothly and, using the stretched curvilinear coordinates ξ
from (1.1), we come across the boundary layer phenomenon so that the first
correction term becomes of the boundary layer type and must be found out
while solving the Neumann problem in the infinite domain Ξ (Figure 5). The
corresponding solution decays at infinity as a linear combination of derivatives
of the fundamental solution for the Laplacian,

h (c1∂ξ1 + c2∂ξ2)
1

4π|ξ|
, (1.13)

and after the multiplication with an appropriate cut-off function the main
asymptotic term (1.13) of the boundary layer produces lower order discrep-
ancies in the differential equation (1.3) and the Neumann conditions (1.4) on
∂Ω(h) \ ∂ωh. The expression (1.13) can be rewritten in the original coordinates
n, s, ν and becomes

h3 (c1∂s + c2∂ν)
(
4π
(
n2 + s2 + ν2

) 1
2

)−1

. (1.14)
We emphasize that there appears an additional small factor and that the func-
tion (1.14) is not singular at a distance from the point O where the discrepancies
are mainly located due to the cut-off function. The latter allows to compensate
for them by means of the lower-order term of regular type (in the variable x)
while the compatibility condition in the problem for this function gives the main
asymptotic correction of the eigenvalue λ0j .

The above is a very simplified description of the asymptotic procedure to
construct the compound expansion of the solution to the spectral problem (1.3)–
(1.4). Much complication arises from the fact that coefficients of differential
operators written in the curvilinear coordinates are no longer constant. The
latter crucially influences both, the procedure to construct asymptotics and the
derivation of estimates for the asymptotic remainders. For example, the dis-
crepancies of the expression (1.13) appear in the problem in Ξ for the next term
of the boundary layer type as well as in the problem for the above-mentionned
next element of regular type. The correct statement of these problems is made
by means of the procedure to rearrange discrepancies [20] which is silently used
many times in our paper.

The most complicated task is to examine the behaviour of regular and
boundary layer solutions for x → O and ξ → ∞, respectively. The general
structure is predicted by the Kondratiev theory [11] (see, e.g., monographs [12,
23]) but exact formulas for the decompositions of the solutions need scrupulous
and cumbersome calculations.

1.4. The asymptotic ansätze and the structure of the paper. In the
paper, the method of compound asymptotic expansions [20] is applied to identify
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different terms of ansätze (1.11)–(1.12). In Section 2.1 and 2.2 the first and
second boundary layers w1

m and w2
m in (1.11), respectively, are found out. Both

the functions w1
m and w2

m enjoy, unlike in dimension two, the canonic property
of boundary layers, i.e., they decay for |ξ| → ∞, with order |ξ|−2 and |ξ|−1,
respectively. The correction function of regular type v3m in (1.12) is determined
in section 2.3. From this correction we deduce λ′m of ansatz (1.11), given by
(2.46) in the case of a simple eigenvalue λ0m and by (2.53) in the case of multiple
eigenvalues in section 2.4.

The justification of asymptotics is based on the weighted Poincaré inequal-
ity (Lemma 3.1). We then reduce the problem to an abstract equation in a
convenient Hilbert space and use the lemma on “almost eigenvalues and eigen-
functions” (Lemma 3.4) which allows to give estimates for the remainders in
ansätze (1.11)–(1.12), for simple or multiple eigenvalues. The justification of
the asymptotics consists of many steps: We need to estimate a remainder which
is a combination of the terms appearing in ansätze (1.11)–(1.12). The remain-
der is then divided into several terms which, when combined in an appropriate
fashion, provide an estimate of order h

7
2 . The estimates of different terms rely

mainly on the analysis of the behaviour of the boundary layers as x → O and
|ξ| → ∞.

Finally, in Theorem 3.6 we derive the estimates for the remainders corre-
sponding to ansätze (1.11)–(1.12), i.e., for the eigenvalues and the eigenfunc-
tions, respectively. In the proof of Theorem 3.6, we use Lemma 3.4 to obtain
the existence of a certain number of eigenvalues close to the eigenvalue λ0m with
the multiplicity κm in the sense of the desired estimate, and the main task
of the proof is then to show that these eigenvalues exactly coincide with the
eigenvalues corresponding to a small perturbation of the eigenvalue λ0m with
the multiplicity κm.

2. Constructing the asymptotics
2.1. First term of the boundary layer type. Let P be a point in a neigh-
bourhood U of O, and PΓ its projection onto Γ. Then we have P =nen+PΓ(s, ν).
Thus, the components of the metric tensor are given by (see [3, pp. 83])

gnn = |∂nP |2 = |en|2 = 1

gss = |∂sP |2 = |n∂sen + ∂sPΓ(s, ν)|2

= |nκs(s, ν)es + nτs(s, ν)eν + es|2

= (1 + nκs(s, ν))
2 + (nτs(s, ν))

2

gνν = |∂νP |2 = |ν∂νen + ∂νPΓ(s, ν)|2

= |νκν(s, ν)eν + nτν(s, ν)es + eν |2

= (1 + nκν(s, ν))
2 + (nτν(s, ν))

2,
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where κs and κν stand for the two curvatures corresponding to the curves
ν = const and s = const containing the surface point (s, ν), respectively, while
τs and τν are the torsions of these curves, respectively. Since the coordinates
system corresponding to (n, s, ν) is orthogonal, we have gns = gnν = gsν = 0.
We can always assume, shrinking the neighbourhood U , that 1 + nκs > 0 and
1 + nκν > 0 in U . The Jacobian is thus equal to

J(n, s, ν) =
[
(1 + nκs)

2 + (nτs)
2
] 1

2
[
(1 + nκs) + (nτν)

2
] 1

2

The Laplace operator ∆x in the curvilinear coordinates (n, s, ν) admits the
representation

∆x = J−1

[
∂n(J∂n) + ∂s

(
J

gss
∂s

)
+ ∂ν

(
J

gνν
∂ν

)]
= ∂2n + g−1

ss ∂
2
s + g−1

νν ∂
2
ν + J−1∂nJ∂n

+ J−1

([
∂sJ

gss
− J∂sgss

g2ss

]
∂s +

[
∂νJ

gνν
− J∂νgνν

g2νν

]
∂ν

) (2.1)

Under the transformation to the rapid variable ξ = (ξ1, ξ2, ξ3) introduced in
(1.1), the elements depending on the torsion in J(n, s, ν) are of order h2 and
thus the Laplace operator is independent of the torsions at orders h−2 and h−1,
i.e.,

∆x = h−2∆ξ + h−1
(
κs(O)(∂ξ1 − 2ξ1∂

2
ξ2
) + κν(O)(∂ξ1 − 2ξ1∂

2
ξ3
)
)
+ · · · . (2.2)

In the coordinates (n, s, ν) the gradient takes the form

∇x =
(
gnn

− 1
2∂n, gss

− 1
2∂s, gνν

− 1
2∂ν

)
=
(
∂n, (1 + nκs)

−1∂s, (1 + nκν)
−1∂ν

)
.

The decomposition of the unit normal vector nh to Ω(h) in the basis (en, es, eν)
is as follows

nh = d−
1
2 [N1Jen +N2(1 + nκν)es +N3(1 + nκs)eν ] (2.3)

with d = [N1J ]
2 + [N2(1 + nκν)]

2 + [N3(1 + nκs)]
2 and N = (N1, N2, N3) is the

outward unit normal vector on the boundary ∂Ξ ⊂ R3. Therefore, denoting
by ∂N the directional derivative along N , we obtain in the rapid coordinates
the formula

∂nh = ∇x · nh

= d−
1
2

(
N1J∂n +N2

1 + nκν

1 + nκs

∂s +N3
1 + nκs

1 + nκν

∂ν

)
= h−1∂N + ξ1

(
N2

2κs(O) +N2
3κν(O)

)
∂N

− 2ξ1 (N2κs(O)∂ξ2 +N3κν(O)∂ξ3) + · · · .

(2.4)
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In view of the homogeneous Neumann condition (1.9), the function v0 in the
Ch-neighbourhood of the point O has the expansion

v0(x) = v0(O) + s∂sv
0(O) + ν∂νv

0(O)

+
1

2

(
n2∂2nv

0(O) + s2∂2sv
0(O) + ν2∂2νv

0(O) + 2sν∂2sνv
0(O)

)
+O

(
(n2 + s2 + ν2)

3
2

)
= v0(O) + h(ξ2∂sv

0(O) + ξ3∂νv
0(O))

+
1

2
h2
(
ξ21∂

2
nv

0(O) + ξ22∂
2
sv

0(O) + ξ23∂
2
νv

0(O) + 2ξ2ξ3∂
2
ξ2ξ3

v0(O)
)

+O(h3).

Under the coordinate dilation by factor h−1 and setting h = 0, the domain Ω(h)
becomes Ξ = R3\ω, thus the boundary layer w1 is defined in Ξ. After replacing
uh and ∆, ∂nh by their respective expansions (1.12) and (2.2), (2.4) one may
collect terms of order h−1 in the equation, and of order h0 in the boundary
conditions. Then, setting formally h = 0, we arrive at the problem

−∆ξw
1(ξ) = 0, ξ ∈ Ξ (2.5)

∂Nw
1(ξ) = −N2(ξ)∂sv

0(O)−N3(ξ)∂νv
0(O), ξ ∈ ∂Ξ. (2.6)

For j, k = 1, 2, 3 we have the evident formulas∫
∂Ξ∩∂ω

Nk(ξ) dsξ = 0,

∫
∂Ξ∩∂ω

ξjNk(ξ) dsξ = −δj,k mes3(ω). (2.7)

The first formula in (2.7) shows that the right-hand side of the boundary con-
dition in (2.6) has null integral over the surface ∂Ξ; note that N2 = N3 = 0
on the plane surface ∂Ξ \ ∂ω of the boundary, and, therefore, the right-hand
side is compactly supported. Thus, there exists a unique generalized solution
w1 ∈ H1

loc(Ξ) of problem (2.5)–(2.6), decaying at infinity. The solution is rep-
resented in the form

w1(ξ) = ∂sv
0(O)W2(ξ) + ∂νv

0(O)W3(ξ), (2.8)

where W2 and W3 are canonical solutions of the Neumann problem

−∆ξWk(ξ) = 0, ξ ∈ Ξ (2.9)
∂nWk(ξ) = −Nk(ξ), ξ ∈ ∂Ξ. (2.10)

They admit the representation

Wk(ξ) = −
3∑

j=2

mkj

2π

ξj
ρ3

+O(|ξ|−3), |ξ| ≥ R, (2.11)

where the coefficients mkj have been introduced in Note G on virtual mass
tensor in the classical monograph [30].
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Remark 2.1. The approach we discussed in Section 1, with even extension
of a harmonic function over the boundary with the homogeneous Neumann
condition (see Figures 3 and 6), is applicable to the function W .

Figure 6: Even extension of the domain Ξ

As a result, problem (2.9)–(2.10) can be transformed to the exterior Neumann
problem in the domain Ξ00 = {ξ = (ξ1, ξ2, ξ3) ∈ R3 : (−|ξ1|, ξ2, ξ3) /∈ ω}. In
this way, the extended functions W2,W3 become solutions to exactly the same
problems as introduced in monograph [30, p. 239] for the description of the
virtual mass tensor. Hence, the first term on the right-hand side of (2.11) is
half the corresponding term of the virtual mass matrix (see [30, Note G]).

In the spherical coordinate system (ρ, θ, ϕ) we have (ξ1, ξ2, ξ3) = (ρ cosϕ,
ρ cos θ sinϕ, ρ sin θ sinϕ) and

W2(ξ) = −m22

2π
ρ−2 cos θ sinϕ− m23

2π
ρ−2 sin θ sinϕ+O(ρ−3)

W3(ξ) = −m33

2π
ρ−2 sin θ sinϕ− m32

2π
ρ−2 sin θ sinϕ+O(ρ−3).

In order to observe general properties of mkj, we apply Green’s formula on the
set ΞR = {ξ ∈ Ξ : ρ < R} with the functions Wk and Yk = ξk +Wk, k = 2, 3,∫

∂Ξ

Y2∂NW2 dsξ =

∫
{ξ∈R3

−: ρ=R}
(W2∂ρY2 − Y2∂ρW2) dsξ

= −
∫ 2π

0

∫ π

π
2

(
3m22

2π
R−2 cos2 θ sin2 ϕ

)
R2 sinϕ dϕdθ

−
∫ 2π

0

∫ π

π
2

(
3m23

2π
R−2 cos θ sin θ sin2 ϕ

)
R2 sinϕ dϕdθ +O(R−1)

= −3m22

2π

∫ 2π

0

∫ π

π
2

cos2 θ sin3 ϕ dϕdθ +O(R−1)

= −m22 +O(R−1).
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On the other hand, applying Green’s formula in ω and changing the direction
of the normal, we have∫

∂Ξ

Yj∂NWk dsξ =

∫
∂Ξ

Wj∂NWk dsξ −
∫
∂Ξ

ξjNk dsξ

=

∫
Ξ

∇ξWk · ∇ξWj dξ + δkj mes3(ω).

(2.12)

Therefore, as R → ∞, and in a similar way for m33 and m23 = m32 we get

mkj = −
∫
Ξ

∇ξWk · ∇ξWj dξ − δkj mes3(ω), k, j = 1, 2. (2.13)

In other words, the 2× 2-matrix

m(Ξ) =

(
m22 m23

m32 m33

)
(2.14)

is symmetric and negative definite as it is the sum of two Gram matrices.

Example 2.2. For a semi-ball of radius R, m(Ξ) is a multiple of the identity
matrix with the coefficient −πR3.

Example 2.3. If ω is a plain crack then mes3(ω) = 0 and the matrix (2.14)
becomes singular. For example, if ω belongs to the plane {ξ2 = 0}, then m33 =
m23 = 0 while obviously W3 = 0. However, for a curved or broken crack (cf.
Figure 7b) the solutions W2 and W3 are linear independent and m(Ξ) is non-
degenerate although mes3(ω) = 0.

Figure 7: Straight a) and broken b) cracks

2.2. Second term of the boundary layer type. The right-hand sides in
the problem

−∆ξw
2(ξ) = F 2(ξ), ξ ∈ Ξ (2.15)

∂Nw
2(ξ) = G2(ξ), ξ ∈ ∂Ξ. (2.16)
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are to be determined using (1.12), (2.2) and (2.4), and collecting terms of or-
der h0 in the equation, and of order h1 in the boundary conditions. As a result,
we arrive at the following functions written in rapid variables

F 2(ξ) =
[
κs(O)(∂ξ1 − 2ξ1∂

2
ξ2
) + κν(O)(∂ξ1 − 2ξ1∂

2
ξ3
)
]
w1(ξ) (2.17)

G2(ξ) = G2
1(ξ) +G2

2(ξ) +G2
3(ξ) +G2

4(ξ) +G2
5(ξ)

G2
1(ξ) := −N1ξ1∂

2
nv

0(O)−N2ξ2∂
2
sv

0(O)−N3ξ3∂
2
νv

0(O)

− (N2ξ3 +N3ξ2)∂
2
sνv

0(O),

G2
2(ξ) := −ξ1

(
N2

2κs(O) +N2
3κν(O)

) (
N2∂sv

0(O) +N3∂νv
0(O)

)
,

G2
3(ξ) := +2N2ξ1κs(O)∂sv

0(O) + 2N3ξ1κν(O)∂νv
0(O),

G2
4(ξ) := −ξ1

(
N2

2κs(O) +N2
3κν(O)

)
∂Nw

1(ξ),

G2
5(ξ) := +2N2ξ1κs(O)∂ξ2w

1(ξ) + 2N3ξ1κν(O)∂ξ3w
1(ξ).

(2.18)

We immediately notice that G2
2(ξ) + G2

4(ξ) = 0 according to the boundary
conditions (2.6). In view of formulas (2.17) and (2.11), the following expansion
holds true:
F 2(ξ) =

[
κs(O)(∂ξ1 − 2ξ∂2ξ2) + κν(O)(∂ξ1 − 2ξ∂2ξ3)

]
×
[
∂sv

0(O)W2(ξ) + ∂νv
0(O)W3(ξ)

]
= κs(O)∂sv

0(O)
m2

π

(
15
ξ1ξ2
ρ5

− 30
ξ1ξ

3
2

ρ7

)
+ κν(O)∂νv

0(O)
m3

π

(
15
ξ1ξ3
ρ5

− 30
ξ1ξ

3
3

ρ7

)
+ κs(O)∂νv

0(O)
m3

π

(
−27

ξ1ξ3
ρ5

+ 30
ξ31ξ3 + ξ1ξ

3
3

ρ7

)
+ κν(O)∂sv

0(O)
m2

π

(
−27

ξ1ξ2
ρ5

+ 30
ξ31ξ2 + ξ1ξ

3
2

ρ7

)
+O(ρ−2),

(2.19)

as ρ→ ∞. The function

U2(ξ) =
[
κs(O)(∂ξ1 − 2ξ∂2ξ2) + κν(O)(∂ξ1 − 2ξ∂2ξ3)

]
×
[
∂sv

0(O)W2(ξ) + ∂νv
0(O)W3(ξ)

]
= κs(O)∂sv

0(O)
m2

π

(
15
ξ1ξ2
6ρ3

− 30
ξ31ξ2 + ξ1ξ

2
3ξ2 + ξ1ξ

3
2

20ρ5

)
+ κν(O)∂νv

0(O)
m3

π

(
15
ξ1ξ3
6ρ3

− 30
ξ31ξ3 + ξ1ξ

2
2ξ3 + ξ1ξ

3
3

20ρ5

)
+ κs(O)∂νv

0(O)
m3

π

(
−27

ξ1ξ3
6ρ3

− 30
3ξ31ξ3 + 2ξ1ξ

2
2ξ3 + 3ξ1ξ

3
3

20ρ5

)
+ κν(O)∂sv

0(O)
m2

π

(
−27

ξ1ξ2
6ρ3

− 30
3ξ31ξ2 + 2ξ1ξ

2
3ξ2 + 3ξ1ξ

3
2

20ρ5

)



Singular Perturbations of Curved Boundaries 157

has the homogeneity order −1 (the same as for the fundamental solutions) and
compensates for the leading term of F 2(ξ). Therefore, the expansion of w2(ξ)
at infinity can be written as follows :

w2(ξ) = aρ−1 + U2(ξ) +O(ρ−2). (2.20)

Remark 2.4. The formula z(ξ) = z0(ξ) + O(ρ−p) used in (2.11) and (2.19),
(2.20) means that

z(ξ) = z0(ξ) + z̃(ξ), |∇q
ξ z̃(ξ)| ≤ cqρ

−p−q, q = 0, 1, . . . , ρ = |ξ| ≥ R0, (2.21)

where ∇q
ξ z̃ is the collection of all order q derivatives of the function z̃, and the

radius R0 is selected such that ω ⊂ {ξ : ρ < R0}. For a solution w1 of problem
(2.5)–(2.6) the estimate of form (2.21) for the remainder w̃1 is straightforward,
since the remainder verifies the Laplace equation in the set {ξ ∈ R2 : ρ > R0}.
For such an equation, e.g., the Fourier method can be used in order to provide
a solution representation in the form of a convergent series, with harmonic
functions decaying at infinity. The pointwise estimates of the remainder in the
representation (2.20) are justified again by the general theory (see [14] and,
e.g., [23, Chapter 3] ).

To evaluate the coefficient a, we compute the following integrals on the
semi-sphere of radius R taking the expansion (2.20) into account :∫

ΞR

F 2(ξ) dξ +

∫
∂ω∩∂Ξ

G2(ξ) dsξ = −
∫
∂ΞR

∂Nw
2(ξ) dsξ +

∫
∂ω∩∂Ξ

G2(ξ) dsξ

= −
∫
{ξ∈R3

−:ρ=R}
∂ρw

2(ξ) dsξ,

where we have used the fact that G2(ξ) = 0 on ∂ΞR \ ∂ω due to the evident
relations ξ1 = 0 and N2 = N3 = 0 on ∂ΞR \ ∂ω. In view of expansion (2.20) we
obtain

∂ρw
2(ξ) = −aρ−2 + ∂ρU

2(ξ) +O(ρ−3) = −aρ−2 − ρ−1U2(ξ) +O(ρ−3)

and thus

−
∫
{ξ∈R3

−:ρ=R}
∂ρw

2(ξ)dsξ = a

∫
{ξ∈R3

−:ρ=R}
ρ−2 dsξ

−
∫
{ξ∈R3

−:ρ=R}
∂ρU

2(ξ) dsξ +O(R−1).

= 2πa+O(R−1).

(2.22)

Note that all terms in U2(ξ) are odd in either ξ2, or ξ3, thus it is also true for
∂ρU

2(ξ) so that
∫
{ξ∈R3

−:ρ=R} ∂ρU
2(ξ) = 0. Using (2.18) we now study the integral
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∂ω∩∂ΞG

2(ξ) dsξ . If we denote by ω+ the domain obtained by adding to ω its
mirror image with respect to the plane ξ1 = 0 we, in view of (2.7), can write∫

∂ω∩∂Ξ
G2

1(ξ) dsξ =
1

2

∫
∂ω+

G2
1(ξ) dsξ

= −1

2

3∑
k=1

∂2kv
0(O)

∫
∂ω+

Nkξk dsξ

− 1

2
∂2sνv

0(O)

∫
∂ω+

(N2ξ3 +N3ξ2) dsξ

= −1

2
λ0v0(O)mes3(ω

+)

= −λ0v0(O)mes3(ω).

(2.23)

According to (2.7), we also have
∫
∂ω∩∂ΞG

2
3(ξ) dsξ = 0. Now we process the

integral
∫
ΞR
F 2(ξ) dξ. Owing to (2.17), we first compute∫

ΞR

∂ξ1(ξ) dsξ =

∫
∂ω∩∂Ξ

N1(ξ)w
1(ξ)dsξ +

∫
{ξ∈R3

−:ρ=R}
ρ−1ξ1w

1(ξ) dsξ. (2.24)

The last integral on the right-hand side of (2.24) is of order R−1. Indeed, the
main terms of w1(ξ) are of order R−2, however, according to (2.11), they are
odd functions in either the variable ξ2, or ξ3. Therefore, the terms O(1) vanish
in the last integral on the right-hand side of (2.24) due to the full symmetry of
the semi-sphere {ξ ∈ R3

− : ρ = R}. The first integral on the right-hand side of
(2.24) is equal to∫

∂ω∩∂Ξ
N1(ξ)w

1(ξ) dsξ =

∫
∂ω∩∂Ξ

w1(ξ)∂Nξ1 dsξ

=

∫
∂ω∩∂Ξ

ξ1∂Nw
1(ξ) dsξ

+

∫
{ξ∈R3

−: ρ=R}

(
ξ∂ρw

1(ξ)− w1(ξ)∂ρξ1
)
dsξ.

The integral
∫
{ξ∈R3

−:ρ=R}

(
ξ1∂ρw

1(ξ)−w1(ξ)∂ρξ1
)
dsξ is also of order R−1 by the

same argument as above, since ∂ρw1(ξ) has the same symmetry in ξ2 and ξ3 as
w1(ξ). We also have

∫
∂ω∩∂Ξ ξ1∂Nw

1(ξ) dsξ = 0 due to the boundary conditions
(2.10) and the second equality in (2.7).
We compute now

−2κs(O)

∫
ΞR

ξ1∂
2
ξ2
w1(ξ) dξ = −2κs(O)

∫
∂ω∩∂Ξ

ξ1N2(ξ)∂ξ2w
1(ξ) dsξ

− 2κs(O)

∫
{ξ∈R3

−:ρ=R}
ρ−1ξ1ξ2∂ξ2w

1(ξ) dsξ.
(2.25)
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The latter integral is of order R−1, hence the leading asymptotic term of order
ρ−2 coming from the expression ξ2∂ξ2 is still odd with respect to the variable ξ2
or ξ3, therefore it is annihilated by integration. The first integrand on the
right-hand side in (2.25) is the opposite of the first term in G2

5(ξ), and, hence,
they cancel each other. Finally, recalling that G2

2(ξ) + G2
4(ξ) = 0, collecting

the aforementionned integrals and taking (2.23) into account, we pass to the
limit R → ∞ and get the equality a = − 1

2π
λ0v0(O)mes3(ω). Note that the

coefficient a does not depend on the curvatures κs(O) or κν(O), although the
original expressions (2.18) and (2.19) do.

2.3. The correction term of regular type. We start by writing the bound-
ary layers in the following condensed form

wq(ξ) = tq(ξ) +O(ρq−4), as ρ→ ∞, q = 1, 2, (2.26)

where t1 and t2 denote the sum of functions of the homogeneity orders −2 and
−1 in (2.8), (2.11) and (2.20), respectively. In other words, t1(ξ) = h2t1(n, s, ν)
and t2(ξ) = ht2(n, s, ν). Outside a small neighbourhood of the point O we have,

hw1(ξ)+h2w2(ξ) = h3(t1(n, s, ν)+t2(n, s, ν))+O(h4) = h3T (x)+O(h4). (2.27)

In view of the multiplier h3, the expression for T should be present in the
following problem for the function v3 of regular type in the asymptotic ansatz
(1.12)

−∆xv
3(x) = λ0v3(x) + λ′v0(x) + f3(x), x ∈ Ω (2.28)

∂nv
3(x) = g3(x), x ∈ Γ. (2.29)

The first two terms on the right-hand side of (2.28) are obtained if we replace
the eigenvalues and eigenfunctions in (1.3) by the ansätze (1.11)–(1.12) and
collect terms of order h3 written in the slow variables x. The right-hand side g3
of the boundary condition (2.29) is the discrepancy which results from the
multiplication of the boundary layers with the cut-off function χ. If we assume
that in the vicinity of the boundary the cut-off function χ depends only on the
tangential variables s and ν, and it is independent of the normal variable n, then
g3 = 0, since the boundary conditions (2.6), (2.16) on ∂Ξ\∂ω are homogeneous.
It is clear that such a requirement can be readily satisfied, and thus we further
assume g3 = 0. The correction f 3 in (2.28) is given by

f3(x) = λ0χ(x)T (x) + ∆x(χ(x)T (x)). (2.30)

We will verify that the function f3, smooth outside a neighbourhood of the
origin O, is of the growth O(|x|−2) as x → O which means that f 3 belongs
to H−1(Ω), since a function of order |x|− 5

2
+δ is in H−1(Ω) for all δ > 0. This
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ensures that f 3 is admissible for the right-hand side of equation (2.28). The
observation is obvious for the first term of f 3, since t1(n, s) = O(|x|−2) and
t2(n, s) = O(|x|−1). Let us consider the second term ∆x(χ(x)T (x)). According
to (2.1), the representation of the Laplacian in curvilinear coordinates can be
rewritten in the form

∆x = L0(∂n, ∂s, ∂ν) + L1(n, ∂n, ∂s, ∂ν) + L2(n, s, ν, ∂n, ∂s, ∂ν), (2.31)

with the ingredients

L0(∂n, ∂s, ∂ν) = (∂2n + ∂2s + ∂2ν) (2.32)

L1(n, ∂n, ∂s, ∂ν) = κs(O)(∂n − 2n∂2s ) + κν(O)(∂n − 2n∂2ν) (2.33)

L2(n, s, ν, ∂n, ∂s, ∂ν) = a11∂
2
n + a22∂

2
s + a33∂

2
ν + a1∂n + a2∂s + a3∂ν , (2.34)

while the functions ajj and aj are smooth in a neighbourhood of O, in variable n
and s, and in addition they have the property

ajj(0, 0) = 0, ∂kajj(0, 0) = 0, aj(0, 0) = 0, j = 1, 2, 3. (2.35)

Therefore, we can write

∆xT = L0t1 + (L0t2 + L1t1) + L1t2 + L2(t1 + t2). (2.36)

We readily check that L0t1 = 0 and L0t2 + L1t1 = 0 due to the definition
of w1 and w2, see (2.5) and (2.15). Function t2 is of order |x|−1 thus L1t2 is of
order |x|−2, and L2(t1 + t2) is also of order |x|−2 due to (2.35). Thus, we have
concluded that g3 = 0 and f3 ∈ H−1(Ω).

According to the Fredholm alternative, and under the assumption that λ0
is a simple eigenvalue, the problem (2.28)–(2.29) with the described right-hand
sides admits a solution v3 in the Sobolev space H1(Ω) if and only if the following
orthogonality condition is satisfied by the right-hand side of (2.28)–(2.29) :

λ′(v0, v0)Ω + (f 3, v0)Ω + (g3, v0)∂Ω = 0. (2.37)

Owing to the normalization condition and since g3 = 0, relation (2.37) becomes
λ′ = −(f 3, v0)Ω. Integral of the product f 3v0 is convergent, which means that

(f 3, v0)Ω = lim
δ→+0

∫
Ωδ

(λ0χT +∆x(χT ))v
0 dx, (2.38)

where Ωδ = Ω \ {x : n2 + s2 + ν2 ≤ δ2}. The surface patch Sδ = ∂Ωδ \ ∂Ω
turns out to be a semi-sphere in the curvilinear coordinate system. We imi-
tate the spherical coordinate system in the curvilinear coordinates by setting
n = r sin θ cosφ, s = r sin θ sinφ and ν = r cos θ while denoting (r, φ, θ) the
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spherical coordinate system, with r = hρ ≥ 0, φ ∈ (−π
2
, π
2
), θ ∈ (0, π). Using

Green’s formula for the smooth functions T and v0 in the domain Ωδ yields∫
Ωδ

f 3v0 dx =

∫
Sδ

(
v0∂NT − T∂Nv

0
)
dsx. (2.39)

Let us observe that dsx = d(n, s)
1
2J(n, s) r2 sin θ dθdφ on Sδ, and according to

formulas (2.3) the derivative ∂NS
along the normal to the patch Sδ satisfies the

relation ∂NS
T = d

1
2 (Nn∂nT +Ns∂sT +Nν∂νT ), where

Nn = J sin θ cosφ, Ns = (1 + nκν) sin θ sinφ, Nν = cos θ(1 + nκs) (2.40)

d = J2 sin2 θ cos2 φ+ (1 + nκν)
2 sin2 θ sin2 φ+ (1 + nκs) cos

2 θ.

We can split the integral (2.39) into several pieces∫
Ωδ

f 3v0 dx = I1 + I2 + I3 + I4 + o(1) (2.41)

with

I1 =

∫ π
2

−π
2

∫ π

0

v0(O)∂NS
Tδ2 sin θ dθdϕ

I2 =

∫ π
2

−π
2

∫ π

0

v0(O)∂NS
Tn
(
κs(O)(1 + sin2 θ cos2 φ+ cos2 θ)

+κν(O)(1 + sin2 θ)
)
δ2 sin θ dθdϕ

I3 =

∫ π
2

−π
2

∫ π

0

(
∂sv

0(O)s∂NS
T + ∂νv

0(O)ν∂NS
T
)
δ2 sin θ dθdϕ

I4 = −
∫ π

2

−π
2

∫ π

0

T∂NS
v0d

1
2J δ2 sin θ dθdϕ .

In view of formulas (2.40), we get the following expansion for ∂NS
T :

∂NS
T = ∂rT + n

[
∂nT

(
κν(O) cos2 θ + κs(O)(sin2 θ sin2 φ)

)
sin θ cosφ

+ ∂sT
(
κν(O) cos2 θ + κs(O)(sin2 θ sin2 φ− 1)

)
sin θ sinφ

+ ∂νT
(
−κν(O) cos2 θ + κs(O)(sin2 θ sin2 φ)

)
cos θ

]
+ o(δ).

The asymptotic expansions of integrands in I1 and I2, already derived, lead to

I1 + I2 = v0(O)δ2
∫ π

2

−π
2

∫ π

0

∂rT sin θ dθdϕ

+ v0(O)δ

∫ π
2

−π
2

∫ π

0

n
[
n∂nT

(
κν(O) cos2 θ + κs(O)(sin2 θ sin2 φ)

)
+ s∂sT

(
κν(O) cos2 θ + κs(O)(sin2 θ sin2 φ− 1)

)
+ ν∂νT

(
−κν(O) cos2 θ + κs(O)(sin2 θ sin2 φ)

) ]
dθdϕ+ o(1).
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After simplification of the expression in brackets we get

I1 + I2 = v0(O)δ2
∫ π

2

−π
2

∫ π

0

∂rT sin θ dθdϕ

+ v0(O)κs(O)δ

∫ π
2

−π
2

∫ π

0

n(2n∂nT + s∂sT + 2ν∂νT ) dθdϕ

+ v0(O)κν(O)δ

∫ π
2

−π
2

∫ π

0

n(2n∂nT + 2s∂sT + ν∂νT ) dθdϕ+ o(1)

= v0(O)δ2
∫ π

2

−π
2

∫ π

0

∂rT sin θ dθdϕ+ o(1).

In the calculation above, we have taken into account the fact that the expres-
sions 2n∂nT + s∂sT + 2ν∂νT and 2n∂nT + 2s∂sT + ν∂νT are odd in either s,
or ν, therefore, the corresponding integrals over the patch Sδ vanish.

For integrals I3 and I4, we have

I3 + I4 = ∂sv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(s∂NS
T − T∂NS

s) sin θ dθdϕ

+ ∂νv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(ν∂NS
T − T∂NS

ν) sin θ dθdϕ+ o(1)

= ∂sv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(s∂rt
1 − t1∂rs)|r=δ sin θ dθdϕ

+ ∂νv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(ν∂rt
1 − t1∂rν)|r=δ sin θ dθdϕ+ o(1).

Gathering all the integrals in (2.41), we obtain∫
Ωδ

f 3v0 dx = v0(O)δ2
∫ π

2

−π
2

∫ π

0

∂rT |r=δ sin θ dθdϕ (2.42)

+ ∂sv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(s∂rt
1 − t1∂rs)|r=δ sin θ dθdϕ (2.43)

+ ∂νv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(ν∂rt
1 − t1∂rν)|r=δ sin θ dθdϕ+ o(1). (2.44)

The first integral in (2.42) is equal to∫ π
2

−π
2

∫ π

0

∂rT |r=δ sin θ dθdϕ =

∫ π
2

−π
2

∫ π

0

∂rt
1|r=δ sin θ dθdϕ+

∫ π
2

−π
2

∫ π

0

∂rt
2|r=δ sin θ dθdϕ,
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and according to (2.7) we get
∫ π

2

−π
2

∫ π

0
∂rt

1|r=δ sin θ dθdϕ = 0. In view of (2.22)
we also obtain ∫ π

2

−π
2

∫ π

0

∂rt
2|r=δ sin θ dθdϕ = −2π

a

δ2
.

The two integrals in (2.43) and (2.44) are calculated with the help of (2.12) and
(2.13), and we obtain in a similar way that

∂sv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(s∂rt
1 − t1∂rs)|r=δ sin θ dθdϕ

+ ∂νv
0(O)δ2

∫ π
2

−π
2

∫ π

0

(ν∂rt
1 − t1∂rν)|r=δ sin θ dθdϕ

= ∇s,νv
0(O)m(Ξ)∇s,νv

0(O),

where m(Ξ) is the virtual mass matrix of the cavity ω in the half-space which
depends on the shape of Ξ and is given by

m(Ξ) =

(
m22 m23

m32 m33

)
. (2.45)

Furthermore, ∇s,νv
0(O) = (∂sv

0(O), ∂νv
0(O))T . The previous results show that

(f 3, v0)Ω = ∇v0(O)m(Ξ)∇v0(O) − 2πa, and finally the perturbation term in
the asymptotic ansatz (1.11) of the simple eigenvalue λ0m takes the form

λ′m = (∇s,νv
0
m(O))Tm(Ξ)∇s,νv

0
m(O) + λ0m|v0m(O)|2 mes3(ω). (2.46)

Remark 2.5. The max-min principle (see, e.g., [1]) reads:

λhj = max
Eh
j ⊂H1(Ω(h))

inf
uh∈Eh

j \{0}

∥∇xu
h;L2(Ω(h))∥2

∥uh;L2(Ω(h))∥2
(2.47)

λ0j = max
E0
j ⊂H1(Ω)

inf
v∈E0

j \{0}

∥∇xv;L
2(Ω)∥2

∥v;L2(Ω)∥2
, (2.48)

where Eh
j and E0

j stand for any subspaces of codimension j − 1, i.e.,

dim(H1(Ω(h))⊖ Eh
j ) = j − 1, dim(H1(Ω)⊖ E0

j ) = j − 1.

For the cavity ωh of a general shape, there is no obvious relation between
H1(Ω(h)) and H1(Ω) so that (2.48) and (2.47) do not allow to directly es-
tablish a link between λhj and λ0j . Notice that in case mes3 ω > 0, (2.46) can
be made both, negative or positive. Indeed, assume that the eigenfunction vm
changes sign on the boundary Γ and put the coordinate origin O at a point
where vm vanishes. Then the last term in (2.46) becomes null and λ′m ≤ 0 due
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to the above-mentionned properties of the matrix m(Ξ). On the contrary, if
the point O constitutes an extremum of the function Γ ∋ x 7→ vm(x), then
∇s,νvm(O) = 0 and λ′m > 0 provided vm(O) ̸= 0 and mes3 ω > 0.

In the limiting case of a crack ω, i.e., a domain flattens into a two-dimensio-
nal surface (see Figure 7), one easily observes that H1(Ω) ⊂ H1(Ω(h)) since a
function in H1(Ω(h)) can have a nontrivial jump over ωh but v ∈ H1(Ω) cannot.
As a consequence of (2.48), (2.47), we conclude the general relationship λhj ≤ λ0j .
This formula is in agreement with (2.46) for the correction term in (1.11) because
mes3 ω = 0 for a crack and, therefore,

λ′m = (∇s,νv
0
m(O))Tm(Ξ)∇s,νv

0
m(O) ≤ 0

since the matrix m(Ξ) in the case of a crack is negative or negative definite (see
Example 2.3).

2.4. Multiple eigenvalues. Assume now, that λ0m is an eigenvalue of the
multiplicity κm > 1, i.e.,

λ0m−1 < λ0m = · · · = λ0m+κm−1 < λ0m+κm
. (2.49)

In such a case ansätze (1.11) and (1.12) are valid for p = m, . . . ,m+κm−1, how-
ever, theprincipal terms in the expansions of the eigenfunctions uhm, . . . , uhm+κm−1

of problem (1.3)–(1.4) are predicted in the form of linear combinations

vp0 = ap1v
0
m + · · ·+ apκm

v0m+κm−1 (2.50)

of eigenfunctions of problem (1.8)–(1.9) corresponding to the eigenvalue λ0m,
and subject to the orthogonality and normalization conditions (1.10). The
coefficients of the columns ap = (ap1, . . . , a

p
κm

) in (2.50) are to be determined. If
the columns am, . . . , am+κm−1 are unit vectors and

ap · aq = δp,q, p, q = m, . . . ,m+ κm − 1, (2.51)

then the linear combinations (2.50) with p = m, . . . ,m + κm − 1, are simply a
new orthonormal basis in the eigenspace of the eigenvalue λm.

The construction of boundary layers is performed in the same way as in the
previous section. When solving problem (2.28)–(2.29) for the regular term vp3,
there appear κm compatibility conditions

λp′(vp0, v0m+k)Ω + (fp3, v0m+k)Ω = 0, k = 0, . . . ,κm − 1, (2.52)

which can be written in the form of the linear system of κm algebraic equations

Map = λp′ap (2.53)
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with the matrix M = (Mik)
κm−1
j,k=0 of the size κm × κm,

Mjk=
(
∇s,νv

0
m+k(O)

)T
m(Ξ)∇s,νv

0
m+j(O)+λ0mv

0
m+k(O)v0m+j(O)mes2(ω). (2.54)

Formula (2.54) is derived in exactly the same way as it is for formula (2.46). The
matrix M is symmetric, and its real eigenvalues λm′, . . . , λm+κm−1′ correspond
to eigenvectors am, . . . , am+κm−1, which satisfy conditions (2.51). Actually, just
these attributes of the matrix M with elements (2.54) are included in ansätze
(1.11) and (1.12), (2.50) for eigenvalues λhp and eigenfunctions uhp of problem
(1.3)–(1.4) for p = m, . . . ,m+ κm − 1 in the case (2.49).

3. Justification of asymptotics

3.1. The weighted Poincaré inequality. Let H1(Ω(h))⊥ denote a subspace
of the Sobolev space H1(Ω(h)) which contains functions of zero mean over the
set Ω(h).

Lemma 3.1. The following inequality is valid

∥u;L2(Ω(h))∥ ≤ c∥r−1
h u;L2(Ω(h))∥ ≤ C∥∇xu;L2(Ω(h))∥, (3.1)

where rh = r + h and r(x) = dist(x,O) = |x|, and the constants c and C are
independent of the parameter h ∈ (0, h0] and function u ∈ H1(Ω(h))⊥.

Proof. We use the representation u(x) = u∗(x) + b∗, where the constant b∗ is
chosen such that∫

Ω∗

u∗(x) dx = 0, b∗ = −(mes(Ω∗))
−1

∫
Ω∗

u(x) dx. (3.2)

In (3.2), the domain Ω∗ ⊂ Ω satisfies Ω∗ ̸= ∅ and Ω∗∩ωh = ∅ for h ∈ (0, h0]. Let
us construct an extension û∗ of u∗ in the class H1, from the set ΩRh := Ω \BRh

onto Ω, in such a way that the following estimate is valid

∥∇xû∗;L2(Ω)∥≤c∥∇xu∗;L2(ΩRh)∥=c∥∇xu;L2(ΩRh)∥≤c∥∇xu∗;L2(Ω(h))∥. (3.3)

Here BRh is the ball of radius Rh and center O, with R a constant chosen such
that wh ⊂ BRh.

The reason for such procedure is that a direct extension form Ω(h) onto Ω
may not exist in the classH1, for example in the case of a crack (cf. Remark 2.5).
Stretching coordinates x 7→ η = h−1x transforms the set ΣRh = {x ∈ Ω : Rh >
r > Rh

2
} into the three-dimensional half-annulus Υ(h) with fixed radii and

gently sloped ends, due to the smoothness of the boundary ∂Ω. In stretched
coordinates, we write U∗(η) = u∗(x). Then, we proceed to the decomposition

U∗(η) = U⊥(η) + b⊥ (3.4)
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where the constant b⊥ is chosen such that∫
Υ(h)

U⊥(η) dη = 0, b⊥ = (mes(Υ(h))−1

∫
Υ(h)

U∗(η) dη. (3.5)

The extension ought to be made in the stretched variables. Due to the orthog-
onality condition in (3.5), the Poincaré inequality holds true for U⊥ in Υ(h)

∥U⊥;L2(Υ(h))∥ ≤ c∥∇ηU⊥;L2(Υ(h))∥ = c∥∇ηU∗;L2(Υ(h))∥

where the constant c does not depend on h because Υ(h) has gently sloped ends.
Therefore, there exists an extension Û⊥ of U⊥ from Υ(h) onto Υ̂(h) = {η : x ∈
Ω, r < Rh}, such that

∥Û⊥;H
1(Υ̂(h))∥ ≤ c∥U⊥;H

1(Υ(h))∥ ≤ c∥∇ηU⊥;L2(Υ(h))∥,

where c is independent of h ∈ (0, h0] and U⊥.
Choosing Ω∗ = Ω \ BRh, the required extension û∗ is thus defined as follows:

û∗(x) =

{
u∗(x), x ∈ Ω \ BRh

Û⊥(η) + b⊥, x ∈ Ω ∩ BRh.
(3.6)

Now we give estimates for the extension û∗

∥∇xû∗;L2(Ω)∥ = ∥∇xu∗;L2(Ω \ BRh)∥+ ∥∇xÛ⊥;L2(Ω ∩ BRh)∥,

and further, using the previous estimates, we obtain

∥∇xÛ⊥;L2(Ω ∩ BRh)∥ = h
1
2∥∇ηÛ⊥;L2(Υ̂(h))∥

≤ h
1
2∥Û⊥;H

1(Υ̂(h))∥

≤ ch
1
2∥∇ηU⊥;L2(Υ(h))∥

≤ ch
1
2∥∇ηU∗;L2(Υ(h))∥

= c∥∇xu∗;L2(ΣRh)∥.

Gathering the two previous estimates for ∇xû∗ we obtain due to the definition
of ΣRh that

∥∇xû∗;L2(Ω)∥ ≤ c∥∇xu∗;L2(Ω \ BRh/2)∥ ≤ c∥∇xu;L2(Ω(h))∥. (3.7)

The last inequality is true if Ω \ BRh/2 ⊂ Ω(h), which is certainly verified for
an appropriate choice of R and h small enough. The constant c in the previous
inequality is independent of h.

We show, using the Poincaré inequality, that

∥û∗;L2(Ω)∥ ≤ c∥∇xû∗;L2(Ω)∥ ≤ c∥∇xu;L2(Ω(h))∥. (3.8)

Precisely, we use the following auxiliary assertion,
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Lemma 3.2. Let Ω1 ⊂ Ω2 be two smooth domains, with mes3(Ω1) ̸= 0, then
for any w ∈ H1(Ω2) we have

∥w;L2(Ω2)∥ ≤ c (∥∇xw;L2(Ω2)∥+ ∥w;L2(Ω1)∥) , (3.9)

where the constant c depends on Ω1 and Ω2.

Proof. Assume that (3.9) is not true and take a sequence wn such that
∥wn;L2(Ω2)∥ = 1 and the right-hand side of (3.9) tends to zero. From the
boundedness of w and ∇xw in L2(Ω2) we get the boundedness of w in H1(Ω2).
Thus, up to a subsequence, wn converges to some w̄ ∈ H1(Ω2) and since
∥∇xw2;L2(Ω2)∥ → 0 we get ∇xw̄ = 0 and w̄ is constant. Since ∥w2;L2(Ω1)∥ → 0,
this constant is zero and thus w̄ ≡ 0. This implies ∥wn;L2(Ω2)∥ → 0, in con-
tradiction with ∥wn;L2(Ω2)∥ = 1. Thus, (3.9) holds true.

Applying Lemma 3.2 to our situation, we get

∥û∗;L2(Ω)∥ ≤ c(∥∇xû∗;L2(Ω)∥+ ∥û∗;L2(Ω∗)∥)
≤ c(∥∇xû∗;L2(Ω)∥+ ∥∇xû∗;L2(Ω∗)∥)
≤ c∥∇xû∗;L2(Ω)∥,

where we have also used the Poincaré inequality in Ω∗, since û∗ coincides with u∗
and has zero mean value on this set. Then, with (3.7) and the previous inequal-
ity, we obtain the desired estimate (3.8).

Next we invoke the one-dimensional Hardy inequality∫ 1

0

|z(r)|2 dr ≤ 4

∫ 1

0

r2|∂rz(r)|2 dr, z ∈ C1
c ([0, 1)), (3.10)

which, after the integration in the angular variables θ and ϕ, leads to

∥r−1û∗;L2(Ω)∥ ≤ ∥∇xû∗;L2(Ω)∥ ≤ c∥∇xu;L2(Ω(h))∥. (3.11)

For the constant b⊥ in decomposition (3.4) we now obtain

|b⊥| =
∣∣∣∣(mes(Υ(h)))−1

∫
Υ(h)

U∗(η) dη

∣∣∣∣ ≤ c∥U∗;L2(Υ(h))∥ ≤ ch−
1
2∥r−1û∗;L2(ΣRh)∥

since ∥U∗;L2(Υ(h))∥ = ∥Û∗;L2(Υ(h))∥ = h−
3
2∥û∗;L2(ΣRh)∥.

Further, the image Σω(h) of the set Ω(h) ∩ BRh under stretching of coor-
dinates, possesses a gently sloped boundary. Hence, applying Lemma 3.2 we
obtain

∥U∗;L2(Σω(h))∥ ≤ c(∥∇ηU∗;L2(Σω(h))∥+ ∥U∗;L2(Υ(h))∥).
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Recall that rh = r + h > h. In this way we have

∥r−1
h u∗;L2(Ω(h) ∩ BRh)∥ ≤ h−1∥u∗;L2(Ω(h) ∩ BRh)∥

= h
1
2∥U∗;L2(Σω(h))∥

≤ ch
1
2 (∥∇ηU∗;L2(Σω(h))∥+ ∥U∗;L2(Υ(h))∥)

≤ ch
1
2 (∥∇ηU∗;L2(Σω(h))∥+ ∥U⊥;L2(Υ(h))∥+ |b⊥|).

Using the Poincaré inequality for U⊥ in Υ(h) and the estimate for b⊥, we get
from the previous inequality

∥r−1
h u∗;L2(Ω(h) ∩ BRh)∥ ≤ c (h∥∇xu∗;L2(Ω(h) ∩ BRh)∥

+ ∥r−1û∗;L2(ΣRh)∥
)
.

(3.12)

We can now, applying (3.11) and (3.12), write

∥r−1
h u∗;L2(Ω(h))∥ = ∥r−1

h u∗;L2(Ω \ BRh)∥+ ∥r−1
h u∗;L2(Ω(h) ∩ BRh)∥

≤ c∥r−1
h û∗;L2(Ω)∥

+ c
(
h∥∇xu∗;L2(Ω(h) ∩ BRh)∥+ ∥r−1û∗;L2(ΣRh)∥

)
≤ c∥∇xu∗;L2(Ω(h))∥.

We give an estimate for the constant b∗=
(
mes(Ω(h))

)−1∫
Ω(h)

(u(x)−u∗(x)) dx =∫
Ω(h)

u∗(x) dx as follows:

|b∗| ≤ c∥u∗;L2(Ω(h))∥ ≤ c∥r−1u∗;L2(Ω(h))∥ ≤ c∥∇xu;L2(Ω(h))∥.

Finally we have

∥r−1
h u;L2(Ω(h))∥ ≤ c(∥r−1

h u∗;L2(Ω(h))∥+ ∥r−1
h b∗;L2(Ω(h))∥)

≤ c∥∇xu;L2(Ω(h))∥,

which proves Lemma 3.1.

In the sequel we write 9u; Ω(h)9 = ∥r−1
h u;L2(Ω(h))∥. In the proof of

Lemma 3.1, an extension û := û∗ + b∗ of the function u ∈ H1(Ω(h))⊥ onto the
domain Ω is constructed such that

9u; Ω(h) 9 +∥∇xû;L2(Ω)∥ ≤ c∥∇xu;L2(Ω(h))∥. (3.13)

Assume that m ≥ 1 and ûhm is the extension described above of the eigenfunc-
tion uhm; then, in view of (1.6) and the integral identity [13], namely

(∇xu
h
m,∇xz)Ω(h) = λhm(u

h
m, z)Ω(h), z ∈ H1(Ω(h))⊥, (3.14)
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which serves for the problem (1.3)–(1.4), the following relation is valid:

∥ûhm;H1(Ω)∥2 ≤ c∥∇xu
h
m;L2(Ω(h))∥2 = cλhm. (3.15)

The max-min principle (see, e.g., [31]), where the test functions can be taken
from the space C∞

c (Ω∗), show that for an arbitrary m there exist positive num-
bers hm and cm, such that

λhm ≤ cm for h ∈ (0, hm]. (3.16)

therefore the norms ∥ûhm;H1(Ω)∥ are uniformly bounded with respect to the
parameter h ∈ (0, hm] for a fixed m, i.e., the pairs {λhm, ûhm} admit the weak
limit {λ0m, ûh0} ∈ R ×H1(Ω) for h→ +0 and the strong limit in R × L2(Ω).

In the integral identity (3.14) we choose a test function z ∈ C∞
c (Ω \ O)

with null mean value. For sufficiently small h, ûhm = uhm on the support of the
function z, thus passing to the limit in (3.14) leads to the inequality

(∇xv̂
0
m,∇xz)Ω = λ̂0m(v̂

0
m, z)Ω. (3.17)

Since C∞
c (Ω \ O) is dense in H1(Ω) (elements of the Sobolev space H1(Ω) have

no traces at a single point), by a density argument, we can assume that in
(3.17), the test function z belongs to H1(Ω)⊥.

In view of (3.13)–(3.15), it follows that∣∣∣∣∫
Ω

ûhmdx−
∫
Ω(h)

uhm dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω∩BRh

|ûhm| dx−
∫
Ω(h)∩BRh

|uhm| dx
∣∣∣∣

≤ ch
5
2

(9ûhm; Ω 9 + 9 uhm; Ω(h)9)
≤ ch

5
2

and
∣∣∣∣∫

Ω

|ûhm|2 dx−
∫
Ω(h)

|uhm|2 dx
∣∣∣∣ ≤ ch2.

Since ∥ûhm;L2(Ω)∥ → ∥v̂0m;L2(Ω)∥ and ∥ûhm;L2(Ω)∥ = 1, the previous inequality
provides v̂0m ∈ H1(Ω) and ∥v̂0m;L2(Ω)∥ = 1, i.e., in view of (3.17), λ̂0m is an
eigenvalue and v̂0m is a normalized eigenfunction of problem (1.8)–(1.9).

Proposition 3.3. Entries of sequences (1.5) are related to (1.7) by passing to
the limit

λhm → λ0m as h→ +0. (3.18)

The proof is completed at the end of this section. We only observe that it
has been already shown that λhm → λ0p, thus it suffices to prove that p = m.
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From Lemma 3.1 it follows that the left-hand side of identity (3.14) can be
chosen as the scalar product ⟨uhm, z⟩ in the space H1(Ω(h))⊥. We define the
operator Kh in the space H1(Ω(h))⊥ by the formula

⟨Khu, z⟩ = (u, z)Ω(h), u, z ∈ H1(Ω(h))⊥. (3.19)

It is easy to check that Kh is symmetric, positive and compact, therefore, self-
adjoint. For m ≥ 1 we set µh

m = (λhm)
−1. The positive eigenvalues and the

corresponding eigenfunction of problem (1.3)–(1.4) can be considered in an ab-
stract framework, so we deal with the spectral equation in the Hilbert space
H = H1(Ω(h))⊥:

Khuh = µhuh. (3.20)

The norm, defined by the scalar product ⟨·, ·⟩H = ⟨·, ·⟩ is denoted by ∥ · ∥H .
The following statement [33] is known as lemma on almost eigenvalues and
eigenvectors.

Lemma 3.4. Let µ and U ∈ H be such that ∥KhU−µU∥H = α and ∥U∥H = 1.
Then there exists an eigenvalue µh

m of the operator Kh, which satisfies the in-
equality

|µ− µh
m| ≤ α.

Moreover, for any α• > α the inequality ∥U − U•∥H ≤ 2α
α•

holds where U• is a
linear combination of eigenfunctions of the operator Kh, corresponding to the
eigenvalues from the segment [µ− α•, µ+ α•] and ∥U•∥H = 1.

The asymptotic approximations µ and U of a solution to equation (3.19)
are defined by the number (λ0m + h3λ′m)

−1 and by the function ∥V h
m∥−1

H V h
m, re-

spectively, where m ≥ 1 and λ′m with V h
m are, respectively, the correction given

by (2.46) and the sum of the first four terms in the ansatz (1.12). In the case
of multiple eigenvalue λ0p, we consider the specification provided at the end of
section 2.4.

We estimate the quantity α from Lemma 3.4. Since ∥V h
m∥H ≥ ∥v0m∥H − cmh

and λ0m + h3λ′m ≥ λ0m − cmh
3, for h sufficiently small it follows that

α = ∥KhU − µU∥H
= (λ0m + h3λ′m)

−1∥V h
m∥−1

H ∥(λ0m + h3λ′m)(K
h − µ)V h

m∥H
= (λ0m + h3λ′m)

−1∥V h
m∥−1

H sup
∣∣⟨(λ0m + h3λ′m)(K

h − µ)V h
m, z⟩

∣∣
≤ cm sup

∣∣(λ0m + h3λ′m)(V
h
m, z)Ω(h) − ⟨V h

m, z⟩Ω(h)

∣∣ ,
(3.21)

where the supremum is taken over the set {z ∈ H1(Ω(h))⊥ : ∥z∥H = 1} and,
hence, the L2-norms of the test function z indicated in inequality (3.1), both
standard and weighted, are bounded by a constant N . Besides that, the stan-
dard proof of the trace theorem [13, p. 30] implies

h−
1
2∥z;L2(∂ωh ∩ Γ(h))∥ ≤ c(9z; Ω(h) 9 +∥∇z;L2(Ω(h))∥) ≤ cN . (3.22)
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The expression in the sup in (3.21) can be processed as follows:

I = (λ0m + h3λ′m)(V
h
m, z)Ω(h) − ⟨V h

m, z⟩Ω(h)

= I1 + h3I2 − h6I3 + I4 − I5 − h3I6

:= (∇xv
0
m,∇xz)Ω(h) − λ0m(v

0
m, z)Ω(h)

+ h3
(
(∇xv

3
m,∇xz)Ω(h) − (λ0mv

3
m + λ′mv

0
m, z)Ω(h)

)
− h6λ′m(v

3
m, z)Ω(h) +

(
∇xχ(hw

1
m + h2w2

m),∇xz
)
Ω(h)

− λ0m
(
χ(hw1

m + h2w2
m), z

)
Ω(h)

− h3λ′m
(
χ(hw1

m + h2w2
m), z

)
Ω(h)

.

(3.23)

The estimates of I3 and I6 are straightforward, that is

|I3| ≤ cm∥v3m;L2(Ω)∥N ≤ cmN (3.24)

|I6| ≤ cm

∣∣∣∣∫
Ω(h)

χrh(hw
1
m + h2w2

m)(r
−1
h z) dx

∣∣∣∣
≤ cm 9 z; Ω(h) 9 (∫

Ω(h)

(χrh(hw
1
m + h2w2

m))
2 dx

) 1
2

≤ cmNh
3
2

(∫
Ξ∩BR

h2(1 + ρ)2(hw1
m + h2w2

m)
2 dξ (3.25)

+

∫
Ξ\BR

χ2h2(1 + ρ)2(hρ−2 + h2ρ−1)2 dξ

) 1
2

≤ cmNh
5
2 .

Here, expressions (2.8) and (2.20) of the boundary layers are taken into account.
The remaining integrals require additional work. In view of relations (1.8)–(1.9)
and (2.27)–(2.30) we have

I1 = (∂nhv0m, z)∂ωh∩Γ(h) (3.26)

I2 = I21 + I22 + I23

:= (∂nhv3m, z)∂ωh∩Γ(h) + (f 3, z)Ω(h)

= (∂nhv3m, z)∂ωh∩Γ(h) +
(
∆xχ(t

1
m + t2m), z

)
Ω(h)

+ λ0m
(
χ(t1m + t2m), z

)
Ω(h)

.

To get the estimate for I21 , we, first of all, need to prove the following inequality:

∥r−
1
2 z;L2(Γ(h))∥+ ∥r−1z;L2(Ω(h))∥ ≤ c∥z;H1(Ω(h))∥. (3.27)

By (3.22) and (3.1), we may write the inequality

∥r−
1
2

h z;L2(Γ(h))∥+ ∥r−1
h z;L2(Ω(h))∥ ≤ c∥z;H1(Ω(h))∥. (3.28)
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Thus, we only need to verify that (3.27) is true in a h-neighbourhood of O.
Using the dilation by h−1, we are left to verify inequality

∥ρ−
1
2Z;L2(∂ΞR)∥+ ∥ρ−1Z;L2(ΞR)∥ ≤ c∥Z;H1(ΞR)∥, (3.29)

in the parameter-independent case, where ΞR := Ξ ∩ BR, BR is the ball of
radius R centered at O = {ρ = 0} and R > 0 is chosen so that ΞR ⊃ ω. Three
situations may then occur:

(i) If O lies outside ΞR, then ρ > c > 0 and (3.29) is trivially satisfied.
(ii) If O is inside ΞR, then ρ > c > 0 on ∂ΞR and thus the first norm on the

left-hand side of (3.29) is bounded by c∥Z;H1(ΞR)∥ due to the standard
trace inequality. The estimation of ∥ρ−1Z;L2(ΞR)∥ in (3.29) derives from
Hardy’s inequality (3.10).

(iii) If O is on ∂ΞR, then we need to rectify the boundary ∂Ξ.
Note that the boundary ∂Ξ is Lipschitz. Without loss of generality, let us
assume that there exists a neighbourhood V of O such that ∂ΞR ∩ V is the
graph of a Lipschitz function ψ. We rectify the boundary ∂ΞR ∩ V using the
transformation

T : (ξ1, ξ2, ξ3) 7→ (ξ̃1, ξ̃2, ξ̃3) = (ξ1, ξ2, ξ3 − ψ(ξ1, ξ2)).

The image of ∂ΞR ∩ V by T is a piece of plane. Let (ρ̃, θ̃, ϕ̃) be the spherical
coordinate system associated with (ξ̃1, ξ̃2, ξ̃3). Using the Lipschitz property of ψ,
one readily checks that there exist constants c1 > 0 and c2 > 0, dependent on ψ,
such that c1ρ < ρ̃ < c2ρ. Using Hardy’s inequality (3.10) and the equivalence
of ρ and ρ̃, we have

∥ρ−1Z;L2(ΞR ∩ V)∥ ≤ c∥ρ̃−1Z̃;L2(T (ΞR ∩ V))∥
≤ c∥Z̃;H1(T (ΞR ∩ V))∥
≤ c∥Z;H1(ΞR ∩ V)∥.

For the trace inequality, we separate the radial and angular variables and use
the two-dimensional trace inequality in the angular variables:

∥ρ−
1
2Z;L2(∂ΞR ∩ V)∥ ≤ c∥ρ̃−

1
2 Z̃;L2(T (∂ΞR ∩ V))∥

= c

∫ R̃

0

∫ 2π

0

ρ̃−1|Z̃|2ρ dθ̃dρ̃

= c

∫ R̃

0

∫ π

0

∫ 2π

0

(
|Z̃|2 + |∂θ̃Z̃|

2 + |∂ϕ̃Z̃|
2
)
dθ̃dϕ̃dρ̃
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for some R̃ > 0. Then we may use Friedrich’s inequality to obtain∫ R̃

0

∫ π

0

∫ 2π

0

(
|Z̃|2 + |∂θ̃Z̃|

2 + |∂ϕ̃Z̃|
2
)
dθ̃dϕ̃dρ̃ ≤ c∥Z̃;H1(T (ΞR ∩ V))∥

≤ c∥Z;H1(ΞR ∩ V)∥.

Therefore, we have proved (3.29) and in view of the previous comments, (3.27)
follows. Using (3.27), we get the estimate for I21

|I21 | ≤ cm∥r
1
2∂nhv3m;L2(∂ωh ∩ Γ(h))∥ ∥r−

1
2 z;L2(∂ωh ∩ Γ(h))∥

≤ cmNh
1
2∥r

1
2∇v3m;H1(Ω(h))∥

≤ cmh
1
2 ,

(3.30)

where we have also used the estimates |∇p
xv

3
m(x)| ≤ cpr

−p, p = 1, 2, . . . , for
the solution of (2.28)–(2.29) which follow from the theory of elliptic boundary
problems in domains with corners or conical points (see, e.g., [23]) and from the
analysis (2.36) of the right-hand side of equation (2.28).

By Remark 2.4 and (2.26), the following estimates are valid for ρ ≥ R0

|w̃1
m(ξ)| = |w1

m(ξ)− t1m(ξ)| ≤ cρ−3 (3.31)

|w̃2
m(ξ)| = |w2

m(ξ)− t2m(ξ)| ≤ cρ−2, (3.32)

which means that

|I5 − h3I23 | ≤ 9z,Ω(h) 9 (∫
Ω(h)

(
rχ(x)(hw̃1

m + h2w̃2
m)
)2
dx

) 1
2

≤ N
(∫

Ξ

h2ρ2χ(hξ)
(
hw̃1

m + h2w̃2
m

)2
h3 dξ

) 1
2

≤ Nh
7
2

(∫ h−1d

R

ρ−4 ρ2 dρ

) 1
2

≤ Nh
7
2 ,

(3.33)

where d is the diameter of the support of χ. We denote

I4 = I41 + I42 := (∇x(hw
1
m + h2w2

m),∇xχz)Ω(h) − ([∆x, χ](hw
1
m + h2w2

m), z)Ω(h)

I22 = I24 + I25 := (χ∆x(t
1
m + t2m), z)Ω(h) + ([∆x, χ](t

1
m + t2m), z)Ω(h) .

Here [∆x, χ] = 2∇xχ·∇x+(∆xχ) is the commutator of the Laplace operator with
the cut-off function χ. The supports of the coefficients of first order differential
operator [∆x, χ] are contained in the set supp |∇xχ| which is located at the
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distance dχ from the origin. Thus, taking into account relation, Remark 2.4
and (2.26), we find

|I42 − h2I25 | = ([∆x, χ](hw̃
1
m + h2w̃2

m), z)Ω(h)

≤ cm

(∫ d

dχ

(
h2ρ−6 + h4ρ−4

)∣∣∣∣
ρ=h−1r

r dr

) 1
2

∥z;L2(Ω(h))∥

≤ cmh
4N .

(3.34)

Moreover,

I41+h
3I24 = I43 + I44

:=−
(
∆x(hw̃

1
m+h2w̃2

m), χz
)
Ω(h)

+
(
∂nh(hw1

m+h2w2
m), z

)
∂ωh∩Ω(h)

.
(3.35)

Remark 3.5. The presence of corners on the boundary of domain Ξ may result
in the singularities of derivatives of the boundary layers, therefore the inclusions
χ∆xw̃

q
m ∈ L2(Ω(h)) and χ∂nhwq

m ∈ L2(Γ(h)), in general are not valid. However,
the terms in (3.35) may be well defined in the sense of duality obtained by the
extension of scalar products (·, ·)Ω(h) and (·, ·)Γ(h) in the Lebesgue spaces to the
appropriate weighted Kondratiev classes (see [11] and, e.g., [23, Chapter 2]).
Additional weighted factors are local, i.e., the factors are written in fast vari-
ables. That is why the norms of test functions z can be bounded as before by
the constant N .

By definition, the function w̃1
m remains harmonic, and according to (2.15)–

(2.16) and (2.33), w̃2
m verifies the equation

−∆ξw̃
2
m(ξ) = L1(ξ1,∇ξ)w̃

1
m(ξ), ξ ∈ Ξ. (3.36)

Therefore,

∆x(hw̃
1
m + h2w̃2

m) = h2L1w̃2
m + L2(hw̃1

m + h2w̃2
m). (3.37)

In (3.37) the operators Lq are written in the slow variables and the func-
tion w̃q in fast variables (in contrast to (3.36)) where ∆ξ = h2L0(∂n, ∂s, ∂ν)
and L1(ξ1,∇ξ) = hL1(n, ∂n, ∂s, ∂ν). Owing to (3.37), (2.26) and applying Re-
mark 3.5, we have L2(hw̃1

m) = hO(ρ−3), L1(w̃2
m) = h−1O(ρ−3) and L2(h2w̃2

m) =
h2O(ρ−2).
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Thus, it follows that

|I43 | ≤ 9z,Ω(h) 9 (∫
Ω(h)

(
rχ(x)∆x(hw̃

1
m + h2w̃2

m)
)2
dx

) 1
2

≤ N
(∫

Ξ

h2ρ2χ(hξ)2
(
∆x(hw̃

1
m + h2w̃2

m)
)2
h3 dξ

) 1
2

≤ Nh
5
2

(∫
Ξ\BR

ρ2χ(hξ)2
(
hρ−3 + h2ρ−2 + hρ−3

)2
dξ

) 1
2

≤ Nh
7
2

(∫ h−1d

d0

ρ−4 ρ2 dρ

) 1
2

≤ Nh
7
2 .

(3.38)

For the two last terms it suffices to process the difference of integrals from (3.26)
and (3.35): I1 + I44 = − (∂nh(hw1

m + h2w2
m + v0m), z)∂ωh∩Γ(h) . Note that, due to

the very construction of w1
m and w2

m we have ∂nh(hw1
m + h2w2

m + v0m) = O(h2),
see (2.15)–(2.18) for instance. Thus, we get the estimate

|I1 + I44 | ≤ cm∥z;L2(∂ωh ∩ Γ(h))∥h2(mes2(∂ωh))
1
2 ≤ cmh

7
2N , (3.39)

where mes2 denotes the two-dimensional Hausdorff measure. Collecting esti-
mates (3.24)–(3.25), (3.30), (3.33)–(3.34), (3.38)–(3.39) of the terms in (3.23),
we arrive at the following estimate of α in (3.21):

α ≤ cmh
7
2 . (3.40)

We are ready now to verify the theorem on the asymptotics, which implies
the main result of the paper.

Theorem 3.6. For any positive eigenvalue λ0m of multiplicity κm in problem
(1.8)–(1.9), see (2.49), there exist numbers cm > 0 and hm > 0 such that for
h ∈ (0, hm] the eigenvalues λhm, . . . , λhm+κm−1 of problem (1.3)–(1.4) and except
for all other eigenvalues in sequence (1.5) satisfy the following inequalities

|λhq − λ0m − h3λq′| ≤ cmh
7
2 , q = m, . . . ,m+ κm − 1. (3.41)

Moreover, there is a constant Cm and columns ahm, . . . , ahm+κm−1 which define
an unitary matrix of the size κm × κm such that∥∥∥∥∥vq0 + χ(hwq1 + h2wq2) + h3vq3 −

m+κm−1∑
p=m

ahqp u
h
p ;H

1(Ω(h))

∥∥∥∥∥ ≤ Cmh (3.42)
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with q = m, . . . ,m + κm − 1. Here vq0 denotes the linear combination (2.50)
of eigenfunctions in problem (1.8)–(1.9), constructed in the end of Section 2.4,
and wq1, wa2 and vq3 are given functions which are determined for fixed vq0 in
the way described in Section 2, finally λq′ is an eigenvalue of the matrix M with
entries (2.54). In the case of a simple eigenvalue λ0m (i.e., κm = 1), we have
vm0 = v0m the corresponding eigenfunction, and λm′ = λ′m is given by (2.46).

Proof. Given eigenvectors am, . . . , am+κm−1 of the matrix M, we construct lin-
ear combinations (2.50) and the associated appropriate terms in asymptotic
ansatz (1.12). As a result, approximation solutions

{
(λ0q + h3λq′)−1, U q

}
for

q = m, . . . ,m+ κm − 1 are obtained for the abstract spectral problem (3.19).
Let λq′ be an eigenvalue of the matrix M of multiplicity κq, i.e.,

λq−1′ < λq′ = · · · = λq+κq−1′ < λq+κq ′. (3.43)

We choose the factor c∗ in the value α∗ = c∗h
3 in Lemma 3.4 so small that the

segment [
(λ0m + h3λq′)−1 − c∗h

3, (λ0m + h3λq′)−1 + c∗h
3
]

(3.44)

does not contain the approximation eigenvalues (λ0m+h3λp′)−1 when p ̸∈ {q, q+
κq−1} . Then Lemma 3.4 and (3.40) delivers the eigenvalues µh

i(q), . . . , µ
h
i(q+κq−1)

of the operator Kh such that∣∣µh
i(p) − (λ0m + h3λp′)−1

∣∣ ≤ α ≤ cmh
7
2 , p = q, . . . , q + κq − 1 . (3.45)

We here emphasize that, at the time being, we cannot infer that these eigen-
values are different. At the same moment, the second part of Lemma 3.4 gives
the normed columns bhp = (bhpkmq

, . . . , bhpkmq+Nmq−1) verifying the inequalities∥∥∥∥∥Up −
kmq+Nmq−1∑

k=kmq

bhpk u
h
k;H

1(Ω(h))

∥∥∥∥∥ ≤ c
α

α∗
≤ ch

1
2 . (3.46)

Here {µh
kmq

, . . . , µh
kmq+Nmq−1} implies the list of all eigenvalues of the operatorKh

in segment (3.44). Note that the numbers kmq and Nmq can depend on the
parameter h but this fact is not reflected in the notation. Since

∥hχw1;H1(Ω(h))∥ ≤ ch
3
2

∥h2χw2;H1(Ω(h))∥ ≤ ch
5
2

∥h2v2;H1(Ω(h))∥ ≤ ch3,

(3.47)

the normalization condition (1.10) for the eigenfunctions of problem (1.8)–(1.9)
and similar conditions for eigenvectors of the matrix M ensure that∣∣(Up, U t)L2(Ω(h)) − δp,t

∣∣ ≤ ch
3
2 , p, t = q, . . . , q + κq + 1. (3.48)
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In a similar way, inequalities (3.46) and the orthogonality and normalization
conditions (1.6) for eigenfunctions uhk of problem (1.3)–(1.4) lead to the relation∣∣∣∣∣(Up, U t)L2(Ω(h)) −

kmq+Nmq−1∑
k=kmq

bhpk b
ht
k

∣∣∣∣∣ ≤ ch
1
2 . (3.49)

Formulas (3.48) and (3.49) are true simultaneously if and only if

Nmq ≥ κq , (3.50)

otherwise we arrive at a contradiction where at least one of the coefficients bhpk
has to be close to zero and to one simultaneously. To actually prove that the
equality occurs in (3.50), we first of all, notice that, for a sufficiently small
h > 0, the relations of type (3.50) are valid for all eigenvalues λ01, . . . , λ0m of
problem (1.8)–(1.9) and all eigenvalues λq′ of the associated matrices M.

We have verified above Proposition 3.3 that each eigenvalue λhp and the cor-
responding eigenfunction uhp of singularly perturbed problem (1.3)–(1.4) con-
verge to an eigenvalue and an eigenfunction of the limit problem (1.8)–(1.9), re-
spectively. This observation ensures that the number of entries of the eigenvalue
sequence (1.5), which live on the interval (0, λ0m), does not exceed m+ κm − 1
for a small h > 0. Summing up the inequalities (3.50) over all λ01, . . . , λ0m and
λq′, we conclude that the equalities Nmq = κq are necessary. Moreover, we now
are able to confirm that the eigenvalues µh

i(q), . . . , µ
h
i(q+κq−1) can be chosen dif-

ferent one from another. Indeed, take α∗ = C∗h
7
2 in Lemma 3.4 and fix C∗ so

large that the inequality (3.46) with the new bound c
C∗

still guarantees that the
segment

Λq(h) =
[
(λ0m + h3λq′)−1 − C∗h

7
2 , (λ0m + h3λq′)−1 + C∗h

7
2

]
(3.51)

contains exactly κq eigenvalues of the operator Kh. It suffices to mention two
facts. First, for a small h > 0, the intervals Λq(h) and Λp(h) with λq′ ̸= λp′ do
not intersect. Second, any eigenvalue µh

k = (λhk)
−1 in the interval (3.51) meets

the inequality (3.41).

Remark 3.7. Estimates (3.47) show that the bound in (3.42) is larger than
the norms of the functions wq1, wq2 and vq3 included into the approximation
solution and, therefore, estimate (3.42) remains valid for the function vq0 alone,
without three correcting terms. This is the usual situation in the asymptotic
analysis of singular spectral problems: One needs to construct additional asymp-
totic terms of eigenfunctions in order to prove that the correcting term in the
asymptotics of an eigenvalue is found properly. In theory, one can employ the
general procedure [20] and construct higher order asymptotic terms of eigen-
values and eigenfunctions. We keep the boundary layer and regular corrections
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in the estimate (3.42) because they form a so-called asymptotic conglomerate
which is replicated in the asymptotic series (see [20, 22]; actually the notion of
asymptotic conglomerates was introduced in [22]).
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