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On Compactness of Minimizing Sequences

Subject to a Linear Differential Constraint

Stefan Krömer

Abstract. For Ω ⊂ RN open, we consider integral functionals of the form

F (u) :=
∫

Ω f(x, u) dx,

defined on the subspace of Lp consisting of those vector fields u which satisfy the
system Au = 0 on Ω in the sense of distributions. Here, A may be any linear dif-
ferential operator of first order with constant coefficients satisfying Murat’s condition
of constant rank. The main results provide sharp conditions for the compactness of
minimizing sequences with respect to the strong topology in Lp. Although our results
hold for bounded domains as well, our main focus is on domains with infinite measure,
especially exterior domains.

Keywords. A-free integral functionals, weak-strong convergence, differential con-
straints
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1. Introduction

We consider integral functionals of the form

F (u) :=

∫

Ω

f(x, u) dx, u ∈ UA, (1.1)

with the class of admissible functions given by the set of A-free functions in Lp,
i.e.,

UA :=
{

u ∈ Lp(Ω; RM) | Au = 0 in Ω
}

, (1.2)

Here, 1 < p < ∞, Ω ⊂ RN is open (and possibly unbounded), A is a linear
first order differential operator as in Section 3, formally mapping u : Ω → RM
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onto Au : Ω → RL, and the equation Au = 0 is understood in the sense of
distributions. Throughout, we assume that

A satisfies the condition of constant rank

introduced by Murat [17], as specified in (3.1) below. Such differential con-
straints arise naturally in a variety of physical models, and in particular, both
curl and divergence are admissible. For further examples, we refer to [4, 7]. As
to f , we assume that

(f:0) f : Ω × RM → R is a Carathéodory function,

i.e., f = f(x, µ) is measurable in x ∈ Ω for every µ and continuous in µ ∈ RM

for a.e. x, as well as the following p-growth and p-Lipschitz conditions:

(f:1) |f(x, µ)| ≤ C(|µ| + |h(x)|)p,

(f:2) |f(x, µ) − f(x, η)| ≤ C(|µ| + |η| + |h(x)|)p−1 |µ− η|,

for a.e. x ∈ Ω and every µ, η ∈ RM , where C > 0 is a constant and h ∈ Lp(Ω).
The main purpose of this paper is the study of the so-called weak-strong

convergence property of F , that is, we ask under which additional conditions
on f and Ω we have that

F (un) → F (u) and un ⇀ u weakly in Lp =⇒ un → u strongly in Lp (1.3)

for any given sequence (un) ⊂ UA. For unconstrained functionals, this question
has been investigated by Visintin [21], and in the case of gradients on bounded
domains, where UA is replaced by U ′ := {u ∈ Lp(Ω; RN×d) | u = ∇v for a v ∈
W 1,p(Ω; Rd)}, it was studied by Evans and Gariepy [5], Zhang [22] and later by
Sychev [19,20]. Results for more general1 A-free vector fields instead of gradients
have not been obtained so far. Sychev’s results provide optimal conditions for
ruling out possible oscillations of un = ∇vn, but neither of the aforementioned
articles attempts a comprehensive study of concentration effects. In fact, while
in [5, 22] at least sufficient conditions for ruling out concentrations are given
(in the case of [5] only partially, since concentrations near the boundary are
not discussed), Sychev uses a slightly different definition for the weak-strong
convergence property, namely

F (un) → F (u) and un ⇀ u weakly in Lp =⇒ un → u strongly in L1

for (un) ⊂ U ′. On a bounded domain, this variant allows one to ignore con-
centrations of un in Lp altogether. An alternative approach, still on bounded
domains but taking concentrations into account, is possible with the meth-
ods developed in [8, 9] for gradients, which were extended to the A-free case

1Note that U ′ = UCurl on a bounded, simply connected domain.
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in [6]. Our main results stated in the next section in particular provide optimal
conditions for ruling out concentrations and similar effects occurring only on
unbounded domains. Their proofs are collected in Section 5.

A second goal of this article and its main technical challenge is the exten-
sion of the decomposition result of [7] to unbounded domains. We employ this
as an essential tool for studying the weak-strong convergence property, but it
also is of independent interest. The decomposition lemma of [7] states that, up
to a subsequence, any A-free, bounded sequence in Lp on a bounded domain
can be decomposed into the sum of two A-free, bounded sequences, the first
p-equiintegrable (“purely oscillating”) and the second converging to zero in mea-
sure (“purely concentrating”). On general domains, we need to split into more
parts, taking into account the additional obstacles for compactness other than
oscillations and concentrations which may occur if the domain has infinite mea-
sure. This is carried out in Section 4, based on some preliminary observations
collected in Section 3. As in [7], we heavily rely on a projection onto A-free
fields defined via the Fourier transform, now on the whole space instead of in
the framework of periodic functions, whose main properties are derived with
the help of suitable Fourier multiplier theorems.

2. Main results

Just as Morrey’s by now classical notion of quasiconvexity is important for
functionals depending on gradients, A-quasiconvexity is relevant in our setting.

Definition 2.1. Let x0 ∈ Ω. Following [7], we say that f(x0, ·) is A-quasiconvex
at ξ ∈ RM if

∫

Q

[

f(x0, ξ + ϕ(y)) − f(x0, ξ)
]

dy ≥ 0 for every ϕ ∈ φA,

Here, Q := (0, 1)N ⊂ RN and

φA :=

{

ϕ ∈ C∞
♯ (RN ; RM)

∣

∣

∣

∣

Aϕ = 0 on RN and

∫

Q

ϕdx = 0

}

,

where C∞
♯ (RN ; RM) denotes the set of all functions f ∈ C∞(RN ; RM) which

are Q-periodic in the sense that f(y) = f(y + z) for every z ∈ ZN and every
y ∈ RN .

Moreover, for p > 1 we say that f(x0, ·) is strongly p-A-quasiconvex at
ξ ∈ RM if

∫

Q

[

f(x0, ξ + ϕ(y)) − f(x0, ξ)
]

dy ≥ g

(
∫

Q

|ϕ| dx,

∫

Q

|ϕ|p dx

)

for every ϕ ∈ φA,
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with a function g : [0,∞)2 → [0,∞] which is increasing in its first variable,
decreasing in the second, and satisfies g(t, T ) > 0 for all t > 0, T ≥ 0. (The
monotonicity of g need not be strict, and g may depend on x0 and ξ.)

Finally, we say that f is (strongly p-) A-quasiconvex, if f(x, ·) is (strongly p-)
A-quasiconvex at every ξ ∈ RM , for a.e. x ∈ Ω.

Remark 2.2. If f(x0, ·) is uniformly strictly A-quasiconvex in a sense analogous
to the one used in [5] for the gradient case, i.e., if

∫

Q

[

f(x0, ξ + ϕ(y)) − f(x0, ξ)
]

dy ≥ c

∫

Q

|ϕ|p dx for every ϕ ∈ φA,

with some constant c > 0, then f(x0, ·) is strongly p-A-quasiconvex at every
ξ ∈ RM with g(t, T ) := ctp, since

∫

Q
|ϕ|p dx ≥

( ∫

Q
|ϕ| dx

)p
by Hölder’s inequal-

ity. Note that in particular, f(x, ξ) := |ξ|p is uniformly strictly A-quasiconvex
even in the unconstrained case A = 0, and thus for any A.

Strong p-A-quasiconvexity can be characterized in the following way.

Proposition 2.3. Let N ≥ 2, let 1 < p <∞, let Ω ⊂ RN be open and suppose
that f satisfies (f:0)–(f:2). Then for a.e. x ∈ Ω and every ξ ∈ RM , f(x, ·) is
strongly p-A-quasiconvex at ξ if and only if

f(x, ·) is A-quasiconvex at ξ and for every sequence (ϕn) ∈ Φosc,
∫

Q

f(x, ξ + ϕn(y)) dy −→
n→∞

f(x, ξ) =⇒ ϕn → 0 locally in measure,
(2.1)

where Φosc denotes the set of “purely oscillating” sequences weakly converging to
zero in Lp, i.e.,

Φosc :=

{

(ϕn) ⊂ ΦA

∣

∣

∣

∣

ϕn ⇀ 0 weakly in Lp(Q; RM) and
ϕn is equiintegrable in Lp(Q; RM)

}

.

Here, “equiintegrable in Lp” is meant in the sense of Definition 2.8 below, and
ϕn → 0 locally in measure iff |K ∩ {|ϕn| ≥ δ}| → 0 as n→ ∞, for every δ > 0
and every compact K ⊂ RN .

Remark 2.4. Strong p-A-quasiconvexity can also be rephrased in terms of
Young measures as follows: f(x, ·) is strongly p-A-quasiconvex at ξ ∈ RM if
and only if

f(x, ·) is A-quasiconvex at ξ and
∫

RM

f(x, ξ + µ) dν(µ) = f(x, ξ) =⇒ ν is a Dirac mass at 0, for

every homogeneous Young measure ν generated by a sequence in Φosc.
(2.2)
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The equivalence of (2.1) and (2.2) essentially is a consequence of the results
concerning Young measures collected in Section 5. In particular, strong p-A-
quasiconvexity is the analogue of strict closed p-quasiconvexity as defined in [20].
Also note that if the sequence generating ν is not required to be equiintegrable
in Lp, this still gives an equivalent definition, cf. Remark 5.6.

Remark 2.5. If in addition to (f:0) and (f:1), f is A-quasiconvex, then the
p-Lipschitz condition (f:2) automatically holds for certain examples of A. In
particular, this is the case for the curl and the divergence (of matrix-valued
fields, applied row by row) since Curl-quasiconvexity and Div-quasiconvexity
both imply rank-1-convexity. For more details see [4].

As observed in [7], A-quasiconvexity is vital to ensure weak lower semicon-
tinuity of F along A-free sequences and, consequently, the existence of mini-
mizers.

Theorem 2.6 (existence of minimizers for general domains). Let N ≥ 2, let
1 < p < ∞, let Ω ⊂ RN be open, and suppose that f is A-quasiconvex and
satisfies (f:0)–(f:2). Moreover, suppose that I := inf{F (v) | v ∈ UA} > −∞ and
that there exists a sequence (un) ⊂ UA, bounded in Lp, such that F (un) → I.
Then there exists a u∗ ∈ UA such that F (u∗) = I.

Remark 2.7. Essentially, Theorem 2.6 is a standard application of the direct
methods in the calculus of variations. In particular, it suffices to show that F
is lower semicontinuous along sequences in UA which weakly converge in Lp.
If Ω ⊂ RN is open and bounded and f ≥ 0, this is due to [7, Theorem 3.7],
and the result easily extends to unbounded domains as F = supk∈N

Fk with
Fk(u) :=

∫

Ωk
f(x, u) dx defined on the bounded sets Ωk := Bk(0) ∩ Ω. This

works even if (f:2) does not hold, and instead of f ≥ 0, it actually suffices to
have that f−(x, un) (the negative part of f) is weakly relatively compact in L1

for a minimizing sequence un which is bounded in Lp. If, on the other hand,
(f:2) holds, then we can use the fact that F is bounded from below to prove weak
lower semicontinuity of F without any additional assumptions on the negative
part of f as shown in Section 5. More details on role of lower bounds in this
context for the gradient case can be found in [13].

In analogy to the case of functionals depending on gradients on bounded
domains [5,19,20], strong A-quasiconvexity turns out to be the right condition
to rule out possible oscillations of minimizing sequences. Of course, oscillations
are not the only obstacle for compactness, and we want to investigate others
as well. We employ the following terms to describe some of them, in Lp and
related spaces.

Definition 2.8. Let Ω ⊂ RN be an open set and let X be a normed space of
measurable functions mapping Ω into RM such that for every u ∈ X and every
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E ⊂ Ω measurable, the product χEu also belongs to X. Here and throughout
the rest of this article, χE : Ω → {0, 1} denotes the characteristic function of
E, i.e., χE =1 on E and χE =0 elsewhere. Furthermore, let (un) be a sequence
in X. We say that

un does not concentrate in X if supn∈N
supE⊂Ω, |E|≤δ ‖χEun‖X −→

δ→0+
0,

un is RN -tight in X if supn∈N

∥

∥χΩ\BR(0)un

∥

∥

X
−→
R→∞

0,

un is Ω-tight in X if for every ε > 0, there is a compact set
K ⊂ Ω such that supn∈N

∥

∥χΩ\Kun

∥

∥

X
≤ ε,

un does not spread out in X if supn∈N

∥

∥χ{|un|≤δ}un

∥

∥

X
−→
δ→0+

0,

un is equiintegrable in X if un does not concentrate in X
and un is RN -tight X.

Remark 2.9. Equiintegrability implies all four preceding properties, Ω-tight
sequences are RN -tight and RN -tight sequences do not spread out. The converse
of any one of the preceding statements does not hold in general. However, any
RN -tight sequence which does not concentrate is equiintegrable. Some examples
for sequences lacking one or more of these properties are given in Remark 2.10
below.

Next, we list conditions on f to rule out possible concentrations of mini-
mizing sequences or a lack of tightness. They all amount to requiring that

for every sequence (ϕn) ∈ Ψ,
∫

Ω

f(x, ϕn(x)) dx −→
n→∞

∫

Ω

f(x, 0) dx =⇒ ϕn → 0 in Lp,
(2.3)

for certain classes of sequences

Ψ ⊂ Φ :=

{

(ϕn) ⊂ UA

∣

∣

∣

∣

(ϕn) is bounded in Lp and
ϕn → 0 locally in measure

}

with suitable additional properties, each of which is stronger than the conver-
gence to zero locally in measure required so far. In particular, we are interested
in the following subsets of Φ:

Φc := {(ϕn) ∈ Φ |ϕn → 0 in Lp + Lq for every q ∈ (1, p)}

Φci := {(ϕn) ∈ Φc |ϕn is Ω-tight in Lp}

Φcb := {(ϕn) ∈ Φc |χEϕn → 0 in Lp for every closed E ⊂ Ω} ,

Φc∞ :=

{

(ϕn) ∈ Φc

∣

∣

∣

∣

χBϕn is Ω-tight in Lp and χBϕn → 0 in Lp

for every bounded, measurable B ⊂ Ω

}
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Φmov:=

{

(ϕn) ∈ Φ

∣

∣

∣

∣

χBϕn → 0 in Lp for all bounded sets B ⊂ Ω
ϕn does not concentrate in Lp and not spread out in Lp

}

Φspr := {(ϕn) ∈ Φ |ϕn → 0 in Lp + Lr for every r ∈ (p,∞)}

Φext := {(ϕn) ∈ Φ |ϕn → 0 in Lp
loc} .

Here, (Lp + Lq)(Ω; RM) := {u = v + w ∈ L1
loc(Ω; RM) | v ∈ Lp, w ∈ Lq}, which

is a Banach space with respect to the norm

‖u‖Lp+Lq := inf{‖v‖Lp + ‖w‖Lq | v ∈ Lp and w ∈ Lq such that u = v + w}.

Remark 2.10. For a bounded sequence in Lp, un → 0 in Lp + Lq for a q < p
if and only if χ{|un|≤T}un → 0 in Lp for every T > 0. In this sense, Φc consists
of all “purely concentrating” sequences, such as, e.g.,

ϕn(x) := h
N
p
n u(hn(x− xn) + xn), where (xn) ⊂ Ω, hn → +∞.

Here and in the examples below, u is a fixed, A-free function in Lp(RN ; RM).
The subsets Φci, Φcb and Φc∞ of Φc distinguish concentrations in the interior,
at the boundary and at infinity. Moreover, un → 0 in Lp +Lr for a r > p if and
only if χ{|un|≥t}un → 0 in Lp for every t > 0, whence Φspr consists of all “purely
spreading” sequences, e.g.,

ϕn(x) := δ
N
p

n u(δnx) on RN , where δn → 0+.

Examples for sequences in the set Φmov include bulks of mass moving off to
infinity, e.g., ϕn(x) := u(yn +x), with a sequence (yn) ⊂ Ω with |yn| → ∞, and
possibly also certain sequences that do not spread out but still “vanish” in the
sense of [15], e.g., ϕn(n) := χ[0, 1

n
]×[0,n] for A = 0 and Ω = R2.

Remark 2.11. The validity of (2.3) on Φc, Φmov, Φspr and Φext, respectively,
not only depends on f but in general also on Ω. In particular, (2.3) automati-
cally holds for Ψ = Φc∞ ∪ Φmov ∪ Φspr if Ω is bounded, and Φext = Φcb in this
case, consisting of sequences purely concentrating at the boundary of Ω.

Remark 2.12. As opposed to the definition of strong p-A-quasiconvexity, (2.3)
is not a pointwise property in the first variable of f . It remains an open question
whether it is equivalent to a pointwise condition, at least for Ψ = Φci under
additional assumptions on f , in particular continuity in x.

Remark 2.13. It is not difficult to give sufficient conditions for (2.3) on the
classes listed above. For instance, suppose that f satisfies

f(x, µ) ≥ V (µ) − |h(x)|p with an h ∈ Lp and a V satisfying (2.5), (2.4)
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for every µ ∈ RM and a.e. x ∈ Ω, where

V : RM → R is continuous, V (0) = 0, |V (µ)| ≤ C |µ|p + C, and
∫

Ω

V (u) dx ≥ c

∫

Ω

|u|p dx for all u ∈ UA, with a constant c > 0.
(2.5)

Then (2.3) holds for Ψ = Φ (and thus also for all of the subsets of Φ). In
addition, any sequence (un) ⊂ UA such that F (un) is bounded in R is bounded in
Lp. Note that depending on A, (f:3) can be significantly weaker than a coercivity
condition on f given in a purely pointwise form such as f(x, µ) ≥ c |µ|p−|h(x)|p.

Our main results are the following.

Theorem 2.14 (domains with compact boundary). Let N ≥ 2, let 1 < p <∞,
let Ω ⊂ RN be open with compact boundary and let u ∈ UA. Moreover, suppose
that f satisfies (f:0)–(f:2), that f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω,
that inf{F (v) | v ∈ UA} > −∞, and that

(un) ⊂ UA is a sequence s.t. un ⇀ u in Lp(Ω; RM) and lim sup
n→∞

F (un) ≤ F (u).

If f(x, ·) is strongly p-A-quasiconvex at u(x) for a.e. x ∈ Ω and (2.3) holds for
Ψ = Φc, Ψ = Φmov and Ψ = Φspr, then un → u strongly in Lp. More precisely,
we have the following:

(i) If f(x, ·) is strongly p-A-quasiconvex at u(x) for a.e. x ∈ Ω, then un → u
locally in measure.

(ii) If (2.3) holds for Ψ = Φc, then un does not concentrate in Lp.

(iii) If (2.3) holds for Ψ = Φmov, then χ{s−1<|un|<s}un is RN -tight in Lp for
every fixed s ≥ 1.

(iv) If (2.3) holds for Ψ = Φspr, then un does not spread out in Lp.

Using the classes Φci, Φc∞ and Φcb instead of Φc, possible concentrations of
un can be studied in even greater detail:

Corollary 2.15. Under the assumptions of Theorem 2.14, the following is true:

(ii.1) If (2.3) holds for Ψ = Φci, then χKun does not concentrate in Lp, for
every compact K ⊂ Ω.

(ii.2) If (2.3) holds for Ψ = Φc∞, then χΩδn\BRn
un does not concentrate in Lp,

for every pair of sequences Rn → ∞ and δn → 0+.

(ii.3) If (2.3) holds for Ψ = Φcb, then χΩ\Ωδn
un does not concentrate in Lp, for

every sequence δn → 0+.

Here, BR := {x ∈ RN | |x| < R} and Ωδ := {x ∈ Ω | dist (x; ∂Ω) > δ}. In
particular, Φc can be replaced by Φci ∪ Φc∞ ∪ Φcb in Theorem 2.14 (ii).
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If Ω is an exterior domain and f(x, µ) has a limit as |x| → ∞ which is
uniform in µ in a suitable sense, Theorem 2.14 can be partially simplified by
using a more tangible characterization of (2.3) for Ψ = Φc∞ ∪ Φmov ∪ Φspr (all
the cases related to the behavior of f as |x| → ∞):

Proposition 2.16. Let N ≥ 2, let 1 < p < ∞ and let Ω ⊂ RN be the comple-
ment of a compact set. Moreover, suppose that f satisfies (f:0)–(f:2) and that
there exists a function f∞ : RM → R such that

α(x) := sup
µ∈RM

|f∞(µ) − f(x, µ)|

|µ|p + |h(x)|p
−→
|x|→∞

0 for a suitable h ∈ Lp(RN), (2.6)

possibly ignoring a set of measure zero (i.e., χRN\Z(x)α(x) → 0 as |x| → ∞ for
some Z ⊂ RN with |Z| = 0). Then (2.3) holds for Ψ = Φc∞ ∪ Φmov ∪ Φspr if
and only if

∫

RN

f∞(ϕ) dx ≥ g(‖ϕ‖Lp) for every A-free ϕ ∈ Lp(RN ; RM),

with a suitable g : [0,∞) → R continuous such that g > 0 on (0,∞).
(2.7)

If the boundary of Ω is not compact, we can still say the following.

Theorem 2.17 (general domains). Let N ≥ 2, let 1 < p < ∞, let Ω ⊂ RN be
open and let u ∈ UA. Moreover, suppose that f satisfies (f:0)–(f:2), that f(x, ·)
is A-quasiconvex at u(x) for a.e. x ∈ Ω and that inf{F (v) | v ∈ UA} > −∞.
Then any bounded sequence (un) ⊂ UA satisfying un ⇀ u weakly in Lp(Ω; RM)
and lim supn→∞ F (un) ≤ F (u) has following properties.

(i) If f(x, ·) is strongly p-A-quasiconvex at u(x) for a.e. x ∈ Ω, then un → u
locally in measure.

(ii) If (2.3) holds for Ψ = Φci, then χKun does not concentrate in Lp, for
every compact K ⊂ Ω.

(iii) If (2.3) holds for Ψ = Φext, then un is Ω-tight in Lp.

In particular, if f and Ω are such that the assumptions of (i)–(iii) are satisfied,
then un → u strongly in Lp.

By Remark 2.13, this immediately entails the following.

Corollary 2.18. Let N ≥ 2, let 1 < p <∞ and let Ω ⊂ RN be open. Moreover,
suppose that f satisfies (f:0)–(f:2) as well as (f:3) and that f is strongly p-A-
quasiconvex. Then any minimizing sequence (un) ⊂ UA has a subsequence which
strongly converges in Lp.

Remark 2.19. In fact, all results stated above as well as those of Section 4
are also true for N = 1. However, this case requires some minor technical
changes in the proofs which we omit for the sake of brevity. For more details
see Remark 3.3 below.
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Remark 2.20. The sufficient conditions listed in Theorem 2.14 (i)–(iv), Corol-
lary 2.14 (ii.1)–(ii.3) and Theorem 2.17 (i)–(iii), respectively, are also necessary.
For instance, if in the situation of Theorem 2.14, the assumption of (ii) does
not hold, i.e., (2.3) is violated for Ψ = Φc, then there exists a sequence ϕn ∈ Φc

with F (ϕn) → F (0) and ϕn 6→ 0 in Lp (a bounded, A-free, purely concen-
trating sequence). In particular, for any u ∈ UA, un := u + ϕn is a bounded,
A-free sequence in Lp which does concentrate, and limn→∞ [F (un) − F (u)] =
limn→∞ [F (ϕn) − F (0)] = 0 as a consequence of Proposition 5.10, whence un is
admissible for the theorem. Similar arguments also show that the conditions of
Theorem 2.14 (iii), (iv), Corollary 2.14 (ii.1)–(ii.3) and and Theorem 2.17 (ii),
(iii) are sharp. The necessity of strong A-quasiconvexity for the local conver-
gence in measure in part (i) of both theorems is equivalent to the converse of
the second part of Proposition 5.4 discussed in Remark 5.5.

3. Preliminaries

Throughout this article, A denotes a homogeneous linear differential operator
of first order, formally mapping u : Ω → RM onto Au : Ω → RL, defined by

Au :=
N

∑

i=1

Ai∂xi
u,

with given matrix coefficients Ai ∈ RL×M . Its formal adjoint is denoted by A∗,
which maps v : Ω → RL to A∗v : Ω → RM , where

A∗v = −
N

∑

i=1

AT
i ∂xi

v.

In particular,
∫

Ω
(Au) · ϕdx =

∫

Ω
u · (A∗ϕ) dx holds for all u ∈ C1(Ω; RM) and

all ϕ ∈ C1
c (Ω; RL) due to integration by parts. A function u ∈ L1

loc(Ω; RM) is
called A-free if Au = 0 in Ω in the sense of distributions. The symbol of A,
i.e., the linear matrix-valued function

A : RN → RL×M , A(ξ) :=
N

∑

i=1

Aiξi, where ξ = (ξ1, . . . , ξN),

is related to A via the Fourier transform F(Au)(ξ) = A(ξ)(Fu)(ξ). Here,
(Fu)(ξ) :=

∫

RN e
2πix·ξu(x) dx for u ∈ L1(RN) and ξ ∈ RN , and the definition is

extended to u ∈ S ′ as usual [18], where S denotes the Schwartz space of rapidly
decaying functions of class C∞ and S ′ is its dual. In the vector-valued case, F
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operates component-wise. We assume that A (and hence also A∗) satisfies the
condition of constant rank, that is,

the rank of A(ξ) ∈ RL×M is constant as a function of ξ ∈ RN \ {0}. (3.1)

As a consequence, the orthogonal projection P(ξ) ∈ RM×M onto the kernel of
A(ξ) in RM is continuous as a function of ξ ∈ RN \ {0}. We define P(0) to be
the identity matrix. The Fourier multiplier P : SM → (SM)′ associated to P is
given by

Pϕ := F−1(PFϕ), for ϕ ∈ SM , with (PFϕ)(ξ) := P(ξ)[Fϕ(ξ)].

By definition, P is a projection onto the kernel of A. Moreover, by the classical
Hörmander-Mikhlin multiplier theorem, it extends to a continuous operator
P : Lp(RN ; RM) → Lp(RN ; RM) projecting Lp(RN ; RM) onto the kernel of A.
We also need this property in a broader class of weighted spaces of the form

Lp
w(Ω; RM) :=

{

u : Ω → RM measurable
∣

∣

∣
‖u‖L

p
w(Ω;RM ) <∞

}

,

where ‖u‖p

L
p
w(Ω;RM )

:=
∫

Ω
|u(x)|pw(x) dx, and the weight w : Ω → (0,∞) is a

measurable function. Due to a result of [14], P extends to a continuous projec-
tion operator on Lp

w(Ω; RM) for various classes of weights. We only reproduce
a special case which suffices for our purposes:

Lemma 3.1. Let 1 < p < ∞, let w(x) := min{1, |x|β} with a constant
−N < β < N(p − 1), and let m : RN → R be a bounded function which is
0-homogeneous and of class CN on RN \ {0}. Then the associated Fourier mul-
tiplier T given by T (u) := F−1(mFu) is a bounded linear operator mapping
Lp

w(RN) into itself.

Proof. Since m(x) = m(x/ |x|), we have that
∣

∣Dkm(x)
∣

∣ ≤ C1 |x|
−k for every

x ∈ RN \ {0} and every k = 0, . . . , N , with a constant C1 > 0 only depending
on m and N . As a consequence, for every s ∈ (1, 2] such that sk 6= N for
k = 0, . . . , N ,

Rsk−N

∫

R<|x|<2R

∣

∣Dkm(x)
∣

∣

s
dx ≤ C2 for every R > 0 and every k = 0, . . . , N,

with a constant C2 only depending on N , s and C1. This means that m ∈
M(s,N) in the notation of [14], and with this property established, [14, Theo-
rem 2] yields the assertion.

In particular, this applies to the space Lp which corresponds to the case
w ≡ 1 (β = 0). Besides weighted spaces, we also employ Orlitz-type spaces
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that allow for functions whose growth near singularities and decay at infinity
(in an unbounded domain) is governed by different exponents. For us, spaces
of the form Lp + Lq and Lp ∩ Lq suffice, where the associated norms are given
by

‖u‖Lp+Lq := inf {‖v‖Lp + ‖w‖Lq | v ∈ Lp, w ∈ Lq, u = v + w}

‖u‖Lp∩Lq := ‖u‖Lp + ‖u‖Lq .

Note that if p ≥ q and u ∈ Lp + Lq, then χ{|u|≤1} ∈ Lp and χ{|u|≥1} ∈ Lq

(the larger exponent p determines decay and the smaller exponent q determines
growth), and we have continuous embeddings Lp, Lq ⊂ Lp + Lq ⊂ Lp̃ + Lq̃ if
p̃ ≥ p ≥ q ≥ q̃. Lemma 3.1 can be extended to Lp + Lq as follows.

Lemma 3.2. Let 1 < q < p < ∞ and let m : RN → R be a bounded function
which is 0-homogeneous and of class CN on RN \ {0}. Then the associated
Fourier multiplier T given by T (u) := F−1[m(Fu)] is a bounded linear operator
mapping Lq(RN ; R) + Lp(RN ; R) into itself.

Proof. For every ε > 0, there exists v ∈ Lq and w ∈ Lp with v + w = u such
that ‖v‖Lq + ‖w‖Lp ≤ ‖u‖Lq+Lp + ε. Lemma 3.1 with β = 0 thus implies that

‖Tu‖Lq+Lp ≤ ‖Tv‖Lq + ‖Tw‖Lp ≤ C (‖v‖Lq + ‖w‖Lp) ≤ C
(

‖u‖Lq+Lp + ε
)

for arbitrary ε with a constant C independent of u and ε.

In the following, norms involving certain inverse derivatives will play a role,
which we express by means of the operator (−∆)−

1
2 , defined by

(−∆)−
1
2u := F−1 |2πξ|−1 Fu, (3.2)

for any u ∈ S ′ such that the “pointwise” product of |2πξ|−1 with (Fu)(ξ) is well

defined in S ′. If u ∈ L1, a more explicit definition of (−∆)−
1
2 can be given in

terms of the corresponding Riesz potential, namely,

((−∆)−
1
2u)(x) =

1

σ

∫

RN

|x− y|1−N u(y) dy, (3.3)

with a normalizing constant σ = σ(N) > 0, cf. [18, p. 117].

Remark 3.3. To be precise, (3.3) only holds if N ≥ 2, which is the reason
for this assumption in our main results as well as in any other statement of
this note directly or indirectly exploiting (3.3) in form of Lemma 3.5 below. Of
course, this is just a minor technical issue. The case N = 1 could easily be
treated separately, for instance using the antiderivative instead of (−∆)−

1
2 .
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Extending [7, Lemma 2.14], which in turn is largely based on ideas of [17],
the properties of the projection P in Lp + Lq and in Lp

w can be summarized as
follows.

Lemma 3.4. Let 1 < q ≤ p < ∞ and suppose that (3.1) holds. Then we have
the following.

(i) P : (Lq+Lp)(RN ; RM) → (Lq+Lp)(RN ; RM) is a linear, bounded operator.

(ii) Pv = v for every A-free v ∈ (Lq + Lp)(RN ; RM), and A ◦ P = 0.

(iii) Let un be a bounded sequence in (Lq + Lp)(RN ; RM). If un does not con-
centrate in Lq + Lp, neither does Pun. Similarly, if un is RN -tight in
Lq + Lp then so is Pun, and if un does not spread out in Lq + Lp, then
neither does Pun.

(iv) c‖(−∆)−
1
2Au‖Lq+Lp ≤ ‖(I − P)u‖Lq+Lp ≤ C‖(−∆)−

1
2Au‖Lq+Lp for every

u ∈ (Lq + Lp)(RN ; RM), with constants c, C > 0 independent of u.

Moreover, all of the above stays true if Lq + Lp is replaced with Lp
w, where w

may be any positive weight function such that Lemma 3.1 holds.

Proof. We essentially proceed as in [7]. As a consequence of (3.1), the projec-
tion P(ξ) is a 0-homogeneous function of ξ of class C∞ on RN \ {0}, whence
Lemma 3.2 yields (i). The definition of P implies (ii): In view of (i), since
C∞

c is dense in Lq + Lp and the set of A-free functions is a closed subspace of
Lq +Lp, it suffices to show that Pv = v for every A-free v ∈ C∞

c and APv = 0
for every v ∈ C∞

c . Abbreviating v̂(ξ) := F(v)(ξ), this is the case if and only if
P(ξ)v̂(ξ) = v̂(ξ) for every ξ 6= 0 provided A(ξ)v̂(ξ) = 0, and A(ξ)P(ξ)v̂(ξ) = 0
for every ξ 6= 0. Both properties are clear since by definition, P(ξ) is a projection
onto the kernel of A(ξ).

For the proof of (iii) consider a bounded sequence un in Lq +Lp. If un does
not concentrate in Lq + Lp, we have that supn∈N

∥

∥χ{|un|≤h}un − un

∥

∥

Lq+Lp → 0
as h→ ∞, and since P is continuous in Lq + Lp, we also get that

sup
n∈N

∥

∥P(χ{|un|≤h}un) − Pun

∥

∥

Lq+Lp −→
h→∞

0. (3.4)

On the other hand, for fixed h, χ{|un|≤h}un is bounded in L∞ and thus also in
Ls for any s > p. By continuity of P in Ls, this implies that P(χ{|un|≤h}un)
is bounded in Ls. By Hölder’s inequality we infer that P(χ{|un|≤h}un) does not
concentrate in Lq since s > q, which also means that P(χ{|un|≤h}un) does not
concentrate in Lq +Lp for fixed h, since p ≥ q. Together with (3.4), this implies
that Pun does not concentrate in Lq +Lp. If un does not spread out in Lq +Lp,
an analogous argument gives that

sup
n∈N

∥

∥P(χ{|un|≥h}un) − Pun

∥

∥

Lq+Lp −→
h→0+

0
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and that P(χ{|un|≥h}un) does not spread out in Lq +Lp for fixed h > 0 (since it
is bounded in Ls with 1 < s < q), which implies that Pun does not spread out
in Lq + Lp. Last but not least, if un is RN -tight in Lq + Lp, we get that

sup
n∈N

∥

∥P(χBh(0)un) − Pun

∥

∥

Lq+Lp −→
h→∞

0

and that P(χBh(0)un) is RN -tight in Lq + Lp for fixed h (since it is bounded

in Lq
w̃ with w̃(x) := min{1, |x|β̃}, for any 0 < β̃ < N(q − 1)), whence Pun is

RN -tight in Lq + Lp.
To get (iv), first observe that

(I − P)(ξ)Fu(ξ) = Q(ξ)A(ξ)Fu(ξ) = 2πQ

(

ξ

|ξ|

)

F((−∆)−
1
2Au)(ξ), (3.5)

where Q : RN \ {0} → RL×L is defined by

Q(ξ)A(ξ)η := η for any η ∈ (ker A(ξ))⊥ ⊂ RM

Q(ξ)µ := 0 for any µ ∈ (range A(ξ))⊥ ⊂ RL.

Note that Q is homogeneous of degree −1 as a function of ξ since A is homo-
geneous of degree 1, which justifies the second equality in (3.5). Moreover, as a
consequence of (3.1), both range A(ξ) and (range A(ξ))⊥ have constant dimen-
sion and vary smoothly with ξ ∈ RN \{0}, and A(ξ) : (ker A(ξ))⊥ → range A(ξ)
is invertible with inverse smoothly depending on ξ, whence Q is of class C∞.
In particular, Q

(

ξ

|ξ|

)

gives rise to a Fourier multiplier in Lq +Lp by Lemma 3.2,

whence (3.5) implies the second inequality in (iv). The first inequality follows
in the same way, since A

(

ξ

|ξ|

)

Q
(

ξ

|ξ|

)

A
(

ξ

|ξ|

)

= A
(

ξ

|ξ|

)

and A
(

ξ

|ξ|

)

also gives rise to
a continuous Fourier multiplier in Lq + Lp.

Finally, note that all of the arguments above also work for Lp
w instead of

Lq + Lp if we use Lemma 3.1 instead of Lemma 3.2 and suitably adapt the
auxiliary spaces employed in the proof of (iii) and (iv).

We will use Lemma 3.4 (iv) to handle domains other than the whole space,
and for this purpose, the following compactness result is also crucial.

Lemma 3.5. Let vn be a bounded sequence in Lp(RN) with some 1 < p < ∞.
Moreover, suppose that there is a fixed compact set K ⊂ RN containing the
support of vn for every n and that

∫

RN vn dx = 0 for every n. Then wn :=

(−∆)−
1
2vn is bounded in Lp(RN), and it has a subsequence which converges

strongly in Lp(RN).

Lemma 3.5 is probably known, but since I was unable to find a suitable
reference, a proof is given below.
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Proof. Let Br denote a ball with radius r centered at 0, containing K. Observe
that for fixed R > 0, (3.3) yields

∫

BR

∣

∣(−∆)−
1
2vn(x)

∣

∣

p
dx = ‖κ ∗ vn‖

p

Lp(BR) ≤ ‖κ‖p

L1(BR+r) ‖vn‖
p

Lp(Br) , (3.6)

where * denotes the convolution and κ(z) := σ−1 |z|1−N . Moreover, for every
R ≥ 2r, there is a constant C = C(N, r) > 0 such that

sup
y∈Br

∣

∣

∣
|x− y|1−N − |x|1−N

∣

∣

∣
≤ C |x|−N for every x with |x| > R. (3.7)

Since
∫

Br
vn dx = 0, (3.7) implies that

∫

RN\BR

∣

∣(−∆)−
1
2 vn

∣

∣

p
dx =

∫

RN\BR

∣

∣

∣

∣

∫

Br

(|x− y|1−N− |x|1−N)vn(y) dy

∣

∣

∣

∣

p

dx

≤ ‖vn‖
p

Lp

∫

RN\BR

Cp |x|−pN dx

(3.8)

for R ≥ 2r. Note that |x|−Np is integrable on RN \ B2r for every p > 1. In

particular, (−∆)−
1
2 vn is bounded in Lp(RN) by (3.6) and (3.8) combined. In

addition, (3.8) implies that

∫

RN\BR

∣

∣(−∆)−
1
2vn

∣

∣

p
dx −→

R→∞
0 uniformly in n. (3.9)

Moreover, as in (3.6) we get

∫

BR

∣

∣(−∆)−
1
2vn(x) − (−∆)−

1
2vn(x+ h)

∣

∣

p
dx

≤ ‖(κ(·) − κ(· + h))‖p

L1(BR+r) ‖vn‖
p

Lp(Br) −→
|h|→0

0 uniformly in n,

(3.10)

for any fixed R > 0, since κ is integrable on bounded sets and the shift is
continuous in L1. Together, (3.9) and (3.10) imply that {(−∆)−

1
2vn | n ∈ N}

is contained in a compact subset of Lp(RN), by a standard criterion for relative
compactness in Lp (e.g., [2]).

4. Decomposition of A-free sequences

We now derive a decomposition lemma in the tradition of [1, 7, 8, 11] and [12],
here for a sequence of A-free fields on the whole space. This result and suitable
extensions to other unbounded domains will be our main tool for obtaining
compactness of minimizing sequences.
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Lemma 4.1. Let 1 < p <∞ and let A be a linear differential operator of first
order satisfying (3.1). Moreover, suppose that un is a bounded, A-free sequence
in Lp(RN ; RM) with un ⇀ u weakly in Lp. Then there exist a subsequence uk(n)

of un and five bounded, A-free sequences w0
n, . . . , w

4
n in Lp(RN ; RM) such that

uk(n) = u+ w0
n + w1

n + w2
n + w3

n + w4
n for every n ∈ N

and the following properties hold:

(a) w0
n ⇀ 0 weakly in Lp, and w0

n is equiintegrable in Lp.

(b) w1
n is RN -tight in Lp, and w1

n → 0 in Lp + Lq for every q ∈ (1, p).

(c) χBw
2
n → 0 in Lp for any bounded, measurable set B ⊂ RN and

w2
n → 0 in Lp + Lq for every q ∈ (1, p).

(d) χBw
3
n → 0 in Lp for any bounded, measurable set B ⊂ RN ,

w3
n does not spread out in Lp and w3

n does not concentrate in Lp.

(e) w4
n → 0 in Lr + Lp for every r ∈ (p,∞).

Remark 4.2. Using (a)–(e) to check Vitali’s criteria for compactness in Lp, it
is not difficult to see that if uk(n) = u+ w̃0

n + . . .+ w̃4
n is another decomposition

with the same properties, then wj
n − w̃j

n → 0 strongly in Lp. In this sense, the
component sequences are uniquely determined.

For the proof of Lemma 4.1, we first need an auxiliary result which repre-
sents a decomposition lemma in Lp, summarizing Chacon’s biting lemma and
suitable variants for unbounded domains. It is based on four different kinds of
truncations of Lp-functions.

Lemma 4.3. Let Ω ⊂ RN be open and let 1 ≤ p < ∞. Then every bounded
sequence (vn) ⊂ Lp(Ω; RM) has a subsequence (vk(n)) such that

χ{|vk(n)|≤n}vk(n) does not concentrate in Lp(Ω; RM),

χ{|vk(n)|≥
1
n
}vk(n) does not spread out in Lp(Ω; RM),

χBn(0)vk(n) is RN -tight in Lp(Ω; RM) and

χKn
vk(n) is Ω-tight in Lp(Ω; RM),

(4.1)

where Kn :=
{

x ∈ Ω
∣

∣ |x| ≤ n and dist (x; ∂Ω) ≥ 1
n

}

.

Proof. This is essentially well known. For instance, the first three lines of (4.1)
immediately follow from [12, Lemma 3.3 – Lemma 3.5], and the fourth line can
be obtained analogously to the third. We omit the details.

Proof of Lemma 4.1. W.l.o.g. we may assume that u = 0 (otherwise, since u
is A-free, we can decompose ũn := un − u instead). For j = 0, . . . , 4, let
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wj
n := PW j

n ∈ Lp(RN ; RM) with

W 0
n := χBn(0)χ{|uk(n)|≤n}uk(n)

W 1
n := χBn(0)

(

1 − χ{|uk(n)|≤n}

)

uk(n)

W 2
n :=

(

1 − χBn(0)

)(

1 − χ{|uk(n)|≤n}

)

uk(n)

W 3
n := χ{|uk(n)|≥

1
n
}

(

1 − χBn(0)

)

χ{|uk(n)|≤n}uk(n)

W 4
n :=

(

1 − χ{|uk(n)|≥
1
n
}

)(

1 − χBn(0)

)

χ{|uk(n)|≤n}uk(n),

where the subsequence uk(n) is chosen according to Lemma 4.3 with vn := un.
By definition, uk(n) = Puk(n) = w0

n + . . . + w4
n, each wj

n is A-free, and the
sequences wj

n are bounded in Lp by continuity of P in Lp. Moreover, due to
the choice of uk(n) and the definition of W j

n, the sequences W j
n (in place of wj

n)
have the properties (a)–(e) listed in the assertion. The projected sequences wj

n

inherit these: RN -tightness, absence of concentration, absence of spreading and
equiintegrability in Lp all survive the application of P due to Lemma 3.4 (iii).
Convergence in Lp + Lq or in Lr + Lp with 1 < q < p and p < r < ∞ is also
preserved, as a consequence of Lemma 3.4 (i), as is weak convergence to zero in
Lp. Finally, note that for a bounded sequence vn in Lp(RN ; RM), χBvn → 0 in
Lp for every bounded, open B ⊂ Ω if and only if vn → 0 in Lp

w with the weight

w(x) := min{1, |x|−
1
2} (or any other bounded weight which is locally bounded

away from zero and converges to zero as |x| → ∞). Hence, the continuity of P
in Lp

w also yields that χBw
2,3
n → 0 in Lp just as W 2,3

n .

As it turns out, Lemma 4.1 can be extended to any domain but only with
a somewhat coarser decomposition.

Lemma 4.4. Let N ≥ 2, let 1 < p < ∞, let Ω ⊂ RN be open and let A be
a linear differential operator of first order satisfying (3.1). Moreover, suppose
that un is a bounded, A-free sequence in Lp(Ω; RM) with un ⇀ u weakly in
Lp. Then there exist a subsequence uk(n) of un and bounded, A-free sequences
(vn), (wn) ⊂ Lp(RN ; RM) and (zn) ⊂ Lp(Ω; RM) such that

uk(n) = u+ vn + wn + zn in Ω for every n ∈ N

and the following properties hold:

(a) vn ⇀ 0 weakly in Lp(RN ; RM) and vn is equiintegrable in Lp(RN ; RM).

(b) wn → 0 in (Lp + Lq)(RN ; RM) for every 1 ≤ q < p, and
wn is Ω-tight in Lp(Ω; RM).

(c) zn → 0 in Lp
loc

(Ω; RM).

Proof. Observe that Au = 0 in Ω. We choose a sequence of cut-off functions
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(γj) ⊂ C1(RN ; [0, 1]) such that

{γj > 0} ⊂
{

x ∈ Ω
∣

∣

∣
|x| < j and dist (x; ∂Ω) > 1

j

}

and

{0 < γj < 1} ⊂
{

x ∈ Ω
∣

∣

∣
|x| > j − 1 or dist (x; ∂Ω) < 2

j

} (4.2)

For every fixed j, we have A(γj(un −u)) =
∑N

i=1Ai (∂xi
γj) (un −u) ⇀ 0 weakly

in Lp(RN), as n → ∞. Since suppA(γj(un − u)) ⊂ supp∇γj ⊂ {0 < γj < 1},
whose closure is a compact set, and since

∫

RN A(γj(un − u)) dx = 0 due to
integration by parts, Lemma 3.5 is applicable to A(γj(un − u)) and it yields
that up to a subsequence,

∥

∥(−∆)−
1
2A(γj(un − u))

∥

∥

Lp(RN ;RL)
−→
n→∞

0 (4.3)

for fixed j. As a consequence of (4.3), we can select a subsequence k(n) of n
(fast enough) such that

∥

∥(−∆)−
1
2A(γn(um − u))

∥

∥

Lp(RN ;RL)
≤

1

n
for every m ≥ k(n). (4.4)

Moreover, by Lemma 4.3 we can pass to another subsequence of k(n) (not
relabeled) such that

γn(uk(n) − u) is Ω-tight in Lp(Ω; RM). (4.5)

Now define ũn := P(γn(un − u)), which is a bounded sequence in Lp(RN ; RM)
satisfying Aũn = 0 on RN , and decompose ũn = w̃0

n + . . . + w̃4
n according to

Lemma 4.1 (again passing to a subsequence if necessary). We claim that the
decomposition un = u+ vn + wn + zn with

vn := w̃0
n

wn := w̃1
n

zn := (I − P)[γn(un − u)] + (1 − γn)(un − u) + w̃2
n + w̃3

n + w̃4
n,

then has the asserted properties. First note that vn and wn are bounded
sequences in Lp and A-free on Ω by definition, whence the same holds for
zn = un −u− vn −wn. Since vn satisfies (a) by construction, it remains to show
that (b) and (c) hold.

(c): Since γn(uk(n)−u) is supported in Ω and Ω-tight in Lp(Ω; RM), it is RN -
tight in Lp(RN ; RM). Hence, ũn is RN -tight in Lp(RN ; RM) by Lemma 3.4 (iii).
Consequently, Rn := w̃2

n + w̃3
n + w̃4

n = ũn − w̃0
n − w̃1

n is RN -tight in Lp(RN ; RM),
and by the properties of w̃j

n, j = 2, 3, 4, we also have Rn → 0 in Lp(B; RM) for
every open, bounded B ⊂ RN . Combined, this implies that

Rn → 0 in Lp(RN ; RM). (4.6)
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Moreover, by Lemma 3.4 (iv), (4.4) yields that

(I − P)[γn(uk(n) − u)] → 0 strongly in Lp(RN ,RM). (4.7)

As a consequence of (4.6), (4.7) and the second line of (4.2), we now get that
zn → 0 in Lp(K; RM) for any compact K ⊂ Ω.

(b): Combined, (4.7) and (4.5) imply that ũn = P [γn(uk(n) − u)] is Ω-tight
in Lp(Ω; RM). Hence, wn = w̃1

n = ũn − w̃0
n − Rn is Ω-tight in Lp(Ω; RM) as

well, where we also used that w̃0
n and Rn are Ω-tight in Lp(Ω; RM), the former

since it is equintegrable in Lp and the latter because of (4.6). In addition, we
clearly have wn = w̃1

n → 0 in (Lp +Lq)(RN ; RM) for any q ∈ (1, p) by definition
of w̃1

n.

The result of Lemma 4.4 could be improved if the domain admits a continu-
ous extension operator for A-free vector fields in Lp from Ω to RN . However, to
my knowledge, extension of A-free fields has not yet been investigated even on
bounded domains except in a few special cases such as gradient fields (e.g. [2])
and divergence-free fields [10]. In any case, for domains with compact boundary,
the ideas already used in Lemma 4.4 suffice to obtain a refined decomposition
without relying on general extension results. In comparison to Lemma 4.1, the
decomposition now has an additional component w5

n which carries concentra-
tions at the boundary.

Lemma 4.5. Let N ≥ 2, let 1 < p < ∞, let Ω ⊂ RN be open with compact
boundary and let A be a linear differential operator of first order satisfying
(3.1). Moreover, suppose that un is a bounded, A-free sequence in Lp(RN ; RM)
with un ⇀ u weakly in Lp. Then there exist a subsequence uk(n) of un and six
bounded, A-free sequences w0

n, . . . , w
5
n in Lp(Ω; RM) such that

uk(n) = u+ w0
n + w1

n + w2
n + w3

n + w4
n + w5

n for every n ∈ N

and the following properties hold:

(a) w0
n ⇀ 0 weakly in Lp, and w0

n is equiintegrable in Lp.

(b) w1
n is Ω-tight in Lp and w1

n → 0 in Lp + Lq for every q ∈ (1, p).

(c) χBw
2
n → 0 in Lp for any bounded, measurable set B ⊂ RN and

w2
n → 0 in Lp + Lq for every q ∈ (1, p).

(d) χBw
3
n → 0 in Lp for any bounded, measurable set B ⊂ RN ,

w3
n does not spread out in Lp and w3

n does not concentrate in Lp.

(e) w4
n → 0 in Lr + Lp for every r ∈ (p,∞).

(f) χEw
5
n → 0 in Lp for any closed set E ⊂ Ω.

Moreover, the component sequences w0
n, . . . , w

4
n ∈ Lp(Ω; RM) can be extended to

bounded, A-free sequences in Lp(RN ; RM) satisfying (a)–(e) even on RN .
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Proof. Using Lemma 3.5 as in the proof of Lemma 4.4, we can find a sequence
of cut-off functions γn ∈ C1(RN ; [0, 1]) and an associated subsequence k(n) of
n such that

{γn > 0} ⊂
{

x ∈ Ω
∣

∣ dist (x; ∂Ω) ≥ 1
n

}

and

{0 < γn < 1} ⊂
{

x ∈ Ω
∣

∣ dist (x; ∂Ω) ≤ 2
n

} (4.8)

and

∥

∥(−∆)−
1
2A(γn(uk(n) − u))

∥

∥

Lp(RN ;RL)
≤

1

n
−→
n→∞

0. (4.9)

Once again employing Lemma 4.3 to extract another subsequence of k(n) (if
necessary; not relabeled), we may also assume that

χKγn(uk(n) − u) is Ω-tight in Lp(Ω; RM), (4.10)

where K is a fixed compact set containing ∂Ω in its interior. (Thus (4.10)
essentially means that γn(uk(n) − u) does not develop concentrations “at the
boundary” of Ω.) Decomposing P [γn(uk(n)−u)] =: ũn = w̃0

n+ · · ·+w̃4
n according

to Lemma 4.1, we define

wj
n := w̃j

n for j = 0, 1, 2, 3, 4,

w5
n := (I − P)[γn(uk(n) − u)] + (1 − γn)(uk(n) − u).

By construction, uk(n) = u + w0
n + · · · + w5

n, w0
n, . . . , w

5
n are bounded, A-free

sequences in Lp(RN ; RM), and the properties (a), (c), (d) and (e) are satisfied.
It remains to show (b) and (f).

(f): By Lemma 3.4 (iv), (4.9) yields that

(I − P)[γn(uk(n) − u)] → 0 strongly in Lp(RN ,RM). (4.11)

Moreover, if E is a closed subset of Ω, the compact set ∂Ω has positive distance
to E, whence χE(1 − γn)(uk(n) − u) = 0 for every n large enough by (4.8).
Together with (4.11), this implies that χEw

5
n → 0 in Lp.

(b): By construction, w1
n is RN -tight and satisfies w1

n → 0 in Lp + Lq for
any q < p. Hence, it suffices to show that

χKw
1
n = χK

[

ũn − w̃0
n − w̃2

n − w̃3
n − w̃4

n

]

is Ω-tight in Lp(Ω; RM)

with a compact set K ⊂ RN containing ∂Ω in its interior. Combined, (4.11) and
(4.10) imply that χK ũn = χKP [γn(uk(n)−u)] is Ω-tight in Lp(Ω; RM). Moreover,
for j ∈ {0, 3, 4}, w̃j

n does not concentrate in Lp whence χKw̃
j
n is Ω-tight in Lp.

Finally, χKw̃
2
n → 0 in Lp and thus also is Ω-tight in Lp.
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5. Proof of the main results

The proofs are grouped into four subsections. The first subsumes various results
for Young measures which are needed later. The second contains the proofs
of Theorem 2.14 and Corollary 2.15 while the third is dedicated to showing
Theorem 2.6 and Theorem 2.17. In the final subsection, we discuss some of the
assumptions of the aforementioned theorems by proving Proposition 2.3 and
Proposition 2.16.

5.1. Auxiliary results. Possible oscillations of minimizing sequences will be
discussed with Young measures as the main tool.

Theorem 5.1 (fundamental theorem for Young measures [3,16]). Let Ω ⊂ RN

be measurable and let un : Ω → RM be a sequence of measurable functions.
Then there exists a subsequence (uk(n)) and a family ν = (νx)x∈Ω of nonnegative
Radon measures on RM , weak∗-measurable2 in x, such that the following holds:

(i) νx(R
M) ≤ 1 for a.e. x ∈ Ω.

(ii) If limh→∞ supn∈N

∣

∣{|uk(n)| ≥ h} ∩ Ω ∩BR(0)
∣

∣ = 0 for every R > 0, then
νx(R

M) = 1 for a.e. x ∈ Ω.

(iii) For every Carathéodory function f : Ω × RM → R such that f(·, uk(n)) is
equiintegrable3 in L1(Ω), we have that

∫

Ω

f(x, uk(n)(x)) dx −→
n→∞

∫

Ω

∫

RM

f(x, µ) dνx(µ)dx.

As a consequence of (iii), ν is uniquely determined by (uk(n)) and it is called
the Young measure generated by uk(n). Moreover, if νx = νa for a.e. x ∈ Ω with
a fixed a ∈ Ω, then it is called a homogeneous Young measure. Another useful
consequence of (iii) is the following.

Corollary 5.2. Let 1 ≤ p <∞ and let (un) ⊂ Lp(Ω; RM) be a bounded sequence
which generates a Young measure ν = (νx). Then un ⇀ u weakly in Lp with
u(x) = 〈νx, id〉 :=

∫

RM µ dνx(µ) for a.e. x ∈ Ω, and un → u locally in measure
if and only if νx = δu(x) for a.e. x ∈ Ω. Here, δµ denotes the Dirac mass at the
point µ ∈ RM .

Young measures generated by A-free sequences on bounded domains have
been characterized in [7]. Here, we only employ a version of an approximation
result of [7] used to “localize” the Young measure, adapted to the whole space
instead of bounded domains.

2i.e., x 7→
∫

RM f(µ)dνx(µ) is measurable for every f ∈ C0(R
M )

3Note that equiintegrablility in L1 in the sense of Definition 2.8 is equivalent to weak
relative compactness in L1 by the de la Vallé-Poussin criterion.
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Proposition 5.3 (cf. [7, Proposition 3.8]4). Let 1 ≤ p <∞ and let ν = (νx) be a
Young measure generated by a bounded sequence (un) ⊂ Lp(RN ; RM) which does

not concentrate in Lp and satisfies ‖(−∆)−
1
2Aun‖Lp → 0. Then for a.e. a ∈ RN ,

there exists a sequence (wn) ⊂ Lp
♯ (R

N ; RM) with the following properties:

(wn) is bounded in Lp(Q; RM) and does not concentrate in Lp;

(wn) generates the homogeneous Young measure νa;

Awn = 0 in RN and
∫

Q
wn dx = 〈νa, id〉 =

∫

RM µ dνx(µ) for all n.

Proof. Let B ⊂ RN be an open ball containing a. For p′ := p

p−1
, we have

‖Aun‖W−1,p(B;RM )

= sup

{
∫

RN

un ·A
∗η dx

∣

∣

∣

∣

η ∈ C∞
c (B; RL) with ‖η‖W 1,p′ ≤ 1

}

≤ sup

{
∫

RN

un ·A
∗η dx

∣

∣

∣

∣

η ∈ C∞
c (RN ; RL) with ‖∇η‖Lp′ ≤ 1

}

≤ C sup

{
∫

RN

un ·A
∗η dx

∣

∣

∣

∣

η ∈ C∞
c (RN ; RL) with ‖(−∆)

1
2η‖Lp′ ≤ 1

}

≤ C sup

{
∫

RN

un ·A
∗(−∆)−

1
2ψ dx

∣

∣

∣

∣

ψ ∈ Lp′(RN ; RL) with ‖ψ‖Lp′ ≤ 1

}

,

since ξ

|ξ|
gives rise to a continuous Fourier multiplier on Lp′and thus ‖(−∆)

1
2η‖Lp′

≤ C ‖∇η‖Lp′ . Thus,

‖Aun‖W−1,p(B;RM ) = C
∥

∥(−∆)−
1
2Aun

∥

∥

Lp(RN ;RM )
−→
n→∞

0.

Hence, [7, Proposition 3.8] can be applied to un restricted to B (which generates
ν restricted to B), yielding the assertion.

As an immediate consequence, we have the following.

Proposition 5.4. Let Ω ⊂ RN be open, let 1 ≤ p < ∞ and let ν = (νx) be a
Young measure generated a bounded sequence (vn) ⊂ Lp(RN ; RM) ∩ kerA such
that (vn) is equiintegrable in Lp and vn ⇀ 0 weakly in Lp, and suppose that f
satisfies (f:0) and (f:1). Then, for a.e. a ∈ Ω such that f(a, ·) is A-quasiconvex
at ξ ∈ RM , we have

∫

RM

f(a, ξ + µ) dνa(µ) ≥ f(a, ξ) (5.1)

4Beware that the notion of equiintegrability used in [7] is equivalent to what we term “does
not concentrate” and hence coincides with our definition only on domains with finite measure.



On Compactness of Minimizing Sequences 291

Moreover, for a.e. a ∈ Ω such that f(a, ·) is strongly p-A-quasiconvex at ξ,

equality in (5.1) implies that νa = δ0, (5.2)

where δ0 denotes the Dirac mass concentrated at the point 0 ∈ RM . In particular,
given u ∈ Lp(Ω; RM) such that f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω,
we have that

lim inf
n→∞

∫

Ω

f(x, u(x) + vn(x)) dx ≥

∫

Ω

f(x, u(x)) dx (5.3)

and if f(x, ·) is strongly p-A-quasiconvex at u(x) for a.e. x ∈ Ω, then

equality in (5.3) implies that vn → 0 in Lp. (5.4)

Proof. The first assertion (5.1) is a simple consequence of Proposition 5.3, The-
orem 5.1 and the definition of A-quasiconvexity. Here, note that we may assume
that the sequence wn of Proposition 5.3 actually belongs to C∞

♯ (RN ; RM), be-
cause if not, we can replace it with a mollified sequence w̃n (mollified as usual
by convolution with a smooth kernel with small support) such that w̃n−wn → 0
strongly in Lp

♯ , whence w̃n inherits all properties of wn. To show (5.2), we again
employ Proposition 5.3 to choose a sequence wn of smooth functions which is
equiintegrable in Lp

per and generates νa. If (5.1) holds with equality, Theo-
rem 5.1 and the strong p-A-quasiconvexity of f imply that g(tn, T ) → 0 with
tn :=

∫

Q
|wn| dx and T := supn

∫

Q
|wn|

p dx (recall that g is decreasing in its

second variable). This is possible only if tn → 0, whence wn → 0 in L1
♯ and

νa = δ0 due to Corollary 5.2. Finally, (5.1) and (5.2) imply (5.3) and (5.4),
respectively, by Theorem 5.1. As to (5.4), we first get that vn → 0 locally in
measure, which in turn implies that vn → 0 in Lp by Vitali’s theorem, since vn

is equiintegrable in Lp.

Remark 5.5. In fact, the converse of Proposition 5.4 is also true. More pre-
cisely, if f satisfies (f:0) and (f:1) then the following holds for a.e. a ∈ Ω and
every ξ ∈ RM : If (5.1) is valid for every homogeneous Young measure νa gener-
ated by an A-free, bounded sequence (wn) ∈ Lp

♯ (R
N ; RM) such that 〈νa, id〉 = 0,

then f is A-quasiconvex at ξ, and if (5.1) and (5.2) hold for every such νa, then f
is strongly p-A-quasiconvex at ξ. Corresponding converse statements of (5.3)
and (5.4) also hold, at least if f is bounded from below by a constant: If (5.3)
is satisfied for every (vn) ⊂ Lp(Ω; RM) which is A-free, equiintegrable in Lp and
satisfies vn ⇀ 0 weakly in Lp, then f(x, ·) is A-quasiconvex at u(x) for a.e. x,
and if (5.3) and (5.4) hold for every such (vn), then f(x, ·) is strongly p-A-
quasiconvex at u(x) for a.e. x. The proof is omitted. It is not entirely trivial
as it involves a problem of measurable selection on the level of the associated
Young measures (cf. the concluding remark in [20]).
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Remark 5.6. Given Ω⊂RN open, any Young measure generated by a bounded,
A-free sequence (un) ⊂ Lp(Ω; RM) is also generated by a bounded, A-free se-
quence (ũn) ⊂ Lp(Ω; RM) which is equiintegrable in Lp. For instance, one may
take ũn := u+ vn with u and vn defined in Lemma 4.4.

Below, (f:2) is used exclusively in form of the following simple observation.

Proposition 5.7. Let 1 ≤ p < ∞, let Ω ⊂ RN be open and suppose that f
satisfies (f:0) and (f:2). Then the map u 7→ f(·, u), Lp(Ω; RM) → L1(Ω), is
uniformly continuous on bounded subsets of Lp(Ω; RM).

Proof. By (f:2) and Hölder’s inequality, we have
∫

Ω

|f(x, u) − f(x, v)| dx ≤ C
(

‖u‖p−1
Lp + ‖v‖p−1

Lp + ‖h‖p−1
Lp

)

‖u− v‖Lp

for any u, v ∈ Lp(Ω; RM).

5.2. Domains with compact boundary. As we shall see, the proof of Theo-
rem 2.14 heavily relies on the corresponding decomposition lemma of Section 4,
Lemma 4.5. In a sense made precise below, it exploits that the component se-
quences do not interact with each other in f , essentially due to Proposition 5.7.

Proposition 5.8. Let 1 < p <∞, let Ω ⊂ RN be open with compact boundary
and suppose that f satisfies (f:0)–(f:2). Moreover, let un be an A-free, bounded
sequence which weakly converges to a function u in Lp(Ω; RM), and let un = u+
w0

n + · · ·+w5
n be a decomposition as in Lemma 4.5. Then for any j ∈ {1, . . . , 5},

we have

f(·, un) − f(·, un − wj
n) −

[

f(·, wj
n) − f(·, 0)

]

−→
n→∞

0 in L1(Ω). (5.5)

In particular,

f(·, un) − f(·, u+ w0
n) −

5
∑

j=1

[

f(·, wj
n) − f(·, 0)

]

−→
n→∞

0 in L1(Ω). (5.6)

This kind of result is fairly standard in the context of bounded domains,
where only two component sequences appear in the decomposition lemma be-
sides the weak limit (i.e., oscillations and concentrations); in particular, it is
implicitely used in [8]. For a sequence of gradients on an unbounded domain,
a corresponding result was obtained in [12]. In our present context, it would
still be possible to give a proof relying on the abstract framework developed
in [12], which provides a way to handle the numerous different properties of
the component sequences wj

n in a more systematic way. However, the case of
functionals is somewhat simpler than that of operators mapping into a Banach
space which allows a reasonably-sized self-contained proof “by hand”, although
our proof of (5.5) below only discusses the case j = 5 in full detail, the other
cases being more or less analogous.
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Proof of Proposition 5.8. For δ > 0 let Ωδ := {x ∈ Ω | dist (x; ∂Ω) > δ}. We
first show (5.5) for j = 5. Fix ε > 0 and define E = E(δ) := Ω \Ωδ, and choose
δ = δ(ε) ∈ (0, 1) small enough such that

sup
n∈N

∥

∥χE(δ)(un − w5
n)

∥

∥

Lp ≤
∥

∥χE(δ)u
∥

∥

Lp +
4

∑

i=0

sup
n∈N

∥

∥χE(δ)w
i
n

∥

∥

Lp < ε. (5.7)

Note that such a choice of δ is possible because the constant sequence u, as well
as χΩ\Ω1w

1
n, . . . , χΩ\Ω1w

4
n, are Ω-tight in Lp, the latter as a consequence of their

properties (a)–(e) listed in Lemma 4.5. In addition, we have

χΩ\E(δ)w
5
n = χΩδ

w5
n −→

n→∞
0 in Lp for any fixed δ ∈ (0, 1), (5.8)

by definition of w5
n. Together with the uniform continuity of v 7→ f(·, v),

Lp → L1, on bounded subsets of Lp as derived in Proposition 5.7, (5.7) and
(5.8) imply that

lim sup
n→∞

∫

Ω

∣

∣f(x, un) − f(x, un − w5
n) −

[

f(x,w5
n) − f(x, 0)

]∣

∣dx

≤ lim sup
ε→0

sup
n∈N

∫

E

∣

∣f(x, (un − w5
n) + w5

n) − f(x,w5
n)

∣

∣ dx

+ lim sup
ε→0

sup
n∈N

∫

E

∣

∣f(x, 0) − f(x, un − w5
n)

∣

∣dx

+ lim sup
ε→0

lim sup
n→∞

∫

Ω\E

∣

∣f(x, un) − f(x, un − w5
n)

∣

∣dx

+ lim sup
ε→0

lim sup
n→∞

∫

Ω\E

∣

∣f(x,w5
n) − f(x, 0)

∣

∣ dx

= 0,

(5.9)

with E = E(δ(ε)). This concludes the proof of (5.5) for j = 5. Essentially, we
exploited that w5

n → 0 in Lp(Ω \ E; RM) while at the same time the remaining
components u and w0

n, . . . , w
4
n are uniformly close to zero in Lp(E; RM) by their

properties obtained in Lemma 4.5.
The same kind of argument also yields (5.5) for j = 1, . . . , 4, employing

different choices for E which now also depend on n, adapted to the properties
of the component sequence wj

n which is separated from the rest. More precisely,
we use

En = En(δ) := Ωδ ∩
{ ∣

∣w3
n

∣

∣ < δ
}

∩
{ ∣

∣w2
n

∣

∣ < 1
}

\B 1
δ
(0) if j = 4,

En = En(δ) := Ωδ ∩
{ ∣

∣w3
n

∣

∣ > δ
}

∩
{ ∣

∣w2
n

∣

∣ < 1
}

\B 1
δ
(0) if j = 3,

En = En(δ) := Ωδ ∩
{

∣

∣w2
n

∣

∣ > 1
δ

}

\B 1
δ
(0) if j = 2,

En = En(δ) := Ωδ ∩
{ ∣

∣w1
n

∣

∣ > 1
δ

}

∩B 1
δ
(0) if j = 1,
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where in each case δ = δ(ε, j) is chosen small enough such that

sup
n∈N

∥

∥χEn
(un − wj

n)
∥

∥

Lp < ε and
∥

∥χΩ\En
wj

n

∥

∥

Lp −→
n→∞

0 for fixed δ.

As before, it is not difficult to see that the choice is possible due to the properties
(a)–(e) of wj

n obtained in Lemma 4.5, and these also yield that χΩ\En
wj

n → 0 in
Lp in each case; we omit the (lengthy) details. Repeating (5.9) in each case then
gives (5.5) for j = 1, . . . , 4. Finally, note that (5.6) can be obtained by applying

(5.5) successively to the sequences ũ
(j)
n := u+w0

n+
∑5

i=j w
i
n, for j = 1, . . . , 5.

Remark 5.9. In the preceding proof, we exploited that u 7→ f(·, u), Lp → L1,
is uniformly continuous on bounded subsets of Lp, and not just on bounded
subsets on UA (as a closed subspace of Lp). In view of the fact that we are only
interested in F defined on UA, one may wonder if it is possible to get away with
an assumption significantly weaker that (f:2), whose only purpose is the proof
of uniform continuity on bounded subsets of Lp. If Ω = RN , we can apply the
projector P of Section 4 to any sequences in the proof without having to face
the problem of A-free extension. In this case, it is possible to work under the
assumption that FE(u) :=

∫

E
f(x, u) dx is uniformly continuous on bounded

subsets of UA for any E ⊂ RN measurable, with a modulus of continuity which
is also uniform in E. There is still no obvious way to do the proof just using
uniform continuity of F on bounded subsets of UA, though.

If f is A-quasiconvex and F is bounded from below, the assertion of Propo-
sition 5.8 can be enhanced. As a byproduct, we get weak lower semicontinuity
of F on UA.

Proposition 5.10. Let 1 < p <∞, let Ω ⊂ RN be open with compact boundary,
let un be an A-free, bounded sequence which weakly converges to a function u in
Lp(Ω; RM), and let un = u+w0

n + · · ·+w5
n be a decomposition as in Lemma 4.5.

Moreover, suppose that f satisfies (f:0)–(f:2), that f(x, ·) is A-quasiconvex at
u(x) for a.e. x ∈ Ω and that inf{F (v) | v ∈ UA} > −∞. Then

lim inf
n→∞

[

F (u+ w0
n) − F (u)

]

≥ 0,

lim inf
n→∞

[

F (wj
n) − F (0)

]

≥ 0 for j = 1, . . . , 5,
(5.10)

and

lim inf
n→∞

F (un) ≥ F (u). (5.11)

If, in addition, lim supn→∞ F (un) ≤ F (u), then we even have that

F (u+ w0
n) −→

n→∞
F (u) and F (wj

n) −→
n→∞

F (0) for j = 1, . . . , 5. (5.12)
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Proof. The first inequality in (5.10) is an immediate consequence of Proposi-
tion 5.4, since w0

n is equiintegrable and f(·, u(x)) is A-quasiconvex at u(x), for
a.e. x ∈ Ω. To check the remaining inequalities, fix an ε > 0 and choose u∗ε ∈ UA

such that inf{F (v) | v ∈ UA} + ε ≥ F (u∗ε). In particular,

lim inf
n→∞

[

F (u∗ε + wj
n) − F (u∗ε)

]

≥ −ε. (5.13)

Moreover, by applying Proposition 5.8 to the sequences ũn = ũn(ε, j) := u∗ε +wj
n

(which is also an admissible decomposition of ũn) for fixed ε and j, we get that

[

F (u∗ε + wj
n) − F (u∗ε)

]

−
[

F (wj
n) − F (0)

]

−→
n→∞

0 for j = 1, . . . , 5.

Using this to replace F (u∗ε + wj
n) ≥ F (u∗ε) in (5.13), we infer that lim infn→∞

[

F (wj
n) − F (0)

]

≥ −ε for j = 1, . . . , 5. Since this is true for any ε > 0, this
concludes the proof of (5.10). As to the remaining assertions, first note that by
(5.6) in Proposition 5.8,

lim inf
n→∞

[

F (un) − F (u)
]

≥ lim inf
n→∞

[

F (u+ w0
n) − F (u)

]

+
5

∑

j=1

lim inf
n→∞

[

F (wj
n) − F (0)

]

,
(5.14)

whence lim infn→∞ F (un)≥F (u) due to (5.10). Finally, assume that lim supn→∞

F (un)≤F (u). Proposition 5.8 then allows us to replace (5.14) by

0 ≥ lim sup
n→∞

[

F (u+ w0
n) − F (u)

]

+
5

∑

j=1

lim inf
n→∞

[

F (wj
n) − F (0)

]

, (5.15)

where each of the six summands is nonnegative due to (5.10). Hence

0 ≥ lim sup
n→∞

[

F (u+ w0
n) − F (u)

]

≥ lim inf
n→∞

[

F (u+ w0
n) − F (u)

]

≥ 0,

which implies the first part of (5.12). The other parts can be obtained analo-
gously, with suitable variants of (5.15).

Proof of Theorem 2.14. From any given subsequence of un (not relabeled, spec-
ified later), we can extract another subsequence uk(n) such that uk(n) = u +
w0

n + · · · + w5
n according to Lemma 4.5. Since lim supn→∞ F (un) ≤ F (u) by

assumption, Proposition 5.10 yields that

F (u+ w0
n) → F (u) and F (wj

n) → F (0) for j = 1, . . . , 5. (5.16)

With (5.16) as a starting point, we are now ready to prove (i)–(iv). Throughout,
we argue by contradiction.
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(i) Suppose that un does not converge to u locally in measure. Hence it has
a subsequence (not relabeled) such that

lim inf
n→∞

|Ω′ ∩ {|un − u| > δ}| ≥ ε (5.17)

for an ε > 0, a δ > 0 and a bounded, open set Ω′ ⊂ Ω. The properties of
wj

n obtained in the decomposition lemma entail that for j = 1, . . . , 5, wj
n → 0

locally in measure. In particular, we can replace un by u + w0
n in (5.17). But

by (5.16) for w0
n and Proposition 5.4, w0

n → 0 in Lp and thus also locally in
measure, contradicting (5.17).

(ii) Suppose that un does concentrate in Lp. Then

lim inf
n→∞

∥

∥χEn
un

∥

∥

Lp > 0 (5.18)

for suitable measurable sets En ⊂ Ω with |En| → 0, at least up to a subse-
quence of (un) (not relabeled). Recall that by the properties of the component
sequences in Lemma 4.5, w3

n and w4
n do not concentrate in Lp, while (w1

n),
(w2

n) and (w5
n) are elements of Φc. Hence, by assumption, (5.16) for j = 1, 2, 5

implies that w1
n, w2

n and w5
n converge to zero strongly in Lp. In particular,

uk(n) = u+w0
n + · · ·+w5

n does not concentrate in Lp, which contradicts (5.18).

(iii) Suppose that χ{s−1<|un|<s}un is not RN -tight in Lp for an s > 1. Then,

lim inf
n→∞

∥

∥χ{s−1<|un|<s}\BRn
un

∥

∥

Lp > 0 (5.19)

for a suitable sequence of balls BRn
centered at zero with radius Rn → ∞,

at least up to a subsequence of (un) (not relabeled). By the properties of the
component sequences in Lemma 4.5, wj

n for j 6= 3 cannot contribute to (5.19),
and neither can u. Moreover, (w3

n) ∈ Φmov, whence by assumption, (5.16) for
j = 3 implies that w3

n → 0 in Lp. Consequently, (5.19) cannot hold along the
subsequence uk(n).

(iv) Suppose that un does spread out in Lp. Then

lim inf
n→∞

∥

∥χ{|un|<δn}un

∥

∥

Lp > 0. (5.20)

for a suitable sequence δn → 0+, at least up to a subsequence of (un) (not
relabeled). By the properties of wj

n in Lemma 4.5, wj
n for j 6= 4 does not spread

out in Lp, and of course the constant sequence u does not spread out in Lp.
In addition, by assumption, (5.16) for j = 4 implies that w4

n → 0, whence w4
n

does not spread out in Lp. As a consequence, uk(n) does not spread out in Lp,
contradicting (5.20). Here, note that if an and bn are bounded sequences that
do not spread out in Lp, then an + bn does not spread out in Lp:
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For every 0 < δ < 1,

∫

{|an+bn|<δ2}

|an+bn|
p dx

≤

∫

{|an|<δ}∩{|bn|<δ}

|an+bn|
p dx+

∣

∣{|an| ≥ δ}∪{|bn| ≥ δ}
∣

∣δ2p

≤ 2p

∫

{|an|<δ}

|an|
p dx+ 2p

∫

{|bn|<δ}

|bn|
p dx+

(

‖an‖
p

Lp +‖bn‖
p

Lp

)

δp,

and the terms in the last line all converge to zero as δ → 0+, uniformly in n.

Last but not least, observe that if the conclusions of (i)–(iv) all hold, then
un is equiintegrable in Lp and un → u locally in measure. By Vitali’s theorem,
this entails that un → u strongly in Lp.

Proof of Corollary 2.15. Essentially, (ii.1)–(ii.3) can be obtained by arguing as
in (ii) in the proof of Theorem 2.14. We omit the details.

5.3. General domains. In complete analogy to Proposition 5.8 and Proposi-
tion 5.10, using Lemma 4.4 instead of Lemma 4.5, we have the following.

Proposition 5.11. Let 1 < p < ∞, let Ω ⊂ RN be open and suppose that
f satisfies (f:0)–(f:2). Moreover, let un be an A-free, bounded sequence which
weakly converges to a function u in Lp(Ω; RM), and let un = u + vn + wn + zn

be a decomposition as in Lemma 4.4. Then for qn = wn as well as for qn = zn,
we have that

f(·, un)−f(·, un − qn) −
[

f(·, qn) − f(·, 0)
]

−→
n→∞

0 in L1(Ω).

In particular,

f(·, un) − f(·, u+ vn)−
[

f(·, wn) − f(·, 0)
]

−
[

f(·, zn) − f(·, 0)
]

−→
n→∞

0 in L1(Ω).

Proposition 5.12. Let 1 < p < ∞, let Ω ⊂ RN be open, let un be an A-free,
bounded sequence which weakly converges to a function u in Lp(Ω; RM), and let
un = u+ vn +wn + zn be a decomposition as in Lemma 4.4. Moreover, suppose
that f satisfies (f:0)–(f:2), that f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω
and that inf{F (v) | v ∈ UA} > −∞. Then we have that

lim inf
n→∞

[

F (u+ vn) − F (u)
]

≥ 0

lim inf
n→∞

[

F (wn) − F (0)
]

≥ 0

lim inf
n→∞

[

F (zn) − F (0)
]

≥ 0,

(5.21)
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and

lim inf
n→∞

F (un) ≥ F (u). (5.22)

If, in addition, lim supn→∞ F (un) ≤ F (u), then we even have that

F (u+ vn) −→
n→∞

F (u), F (wn) −→
n→∞

F (0) and F (zn) −→
n→∞

F (0). (5.23)

Proof of Theorem 2.6. As already observed in Remark 2.7, it suffices to show
that F is lower semicontinuous along sequences in UA which weakly converge
in Lp, and this is due to Proposition 5.12.

Proof of Theorem 2.17. The proof is analogous to the one of Theorem 2.14,
substituting Lemma 4.4 for Lemma 4.5 and and Proposition 5.12 for Proposi-
tion 5.10.

5.4. Proof of Proposition 2.3 and Proposition 2.16. To prove the char-
acterization of strong p-A-quasiconvexity of Proposition 2.3, we need a decom-
position lemma for A-free sequences of periodic functions on RN .

Lemma 5.13 (cf. [7, Lemma 2.15]). Let Q := (0, 1)N , let 1 < p < ∞, let
(un) ⊂ Lp(Q; RM) be a bounded sequence with

∫

Q
un dx = 0, and suppose that

Aun = 0 on RN . Here, functions in Lp(Q; RM) are identified with their Q-
periodic extension to RN . Then there exists a subsequence uk(n) of un and a
bounded sequence (vn) ⊂ Lp(Q; RM) such that

Avn = 0 on RN ,

∫

Q

vn dx = 0, (vn) is equiintegrable in Lp

and uk(n) − vn → 0 locally in measure.

Proof. To be precise, [7, Lemma 2.15] is stated for functions un defined on a
bounded domain Ω ⊂ RN instead of periodic functions on RN , but the con-
struction in the proof actually yields a sequence vn ∈ Lp(Q̃; RM), bounded and
equiintegrable in Lp with χΩ(un − vn) → 0 locally in measure, which is defined
on a given open cube Q̃ ∈ RN containing Ω. In addition, vn is A-free on RN

if extended Q̃-periodically. Since any open cube Q̃ containing Ω is admissible
in [7], we may use Q̃ := Ω := Q in our context. (In fact, some of the steps in
the proof could be simplified as well, as in our case there is no need to extend
from Ω to Q̃-periodic functions.)

Proposition 5.14. Let Q := (0, 1)N , let 1 < p < ∞, and suppose that f :
RM → R is a continuous function which satisfies (f:1) and (f:2) where h(x) is
replaced by a constant. If uk(n) and vn denote the sequences of Lemma 5.13,
then we have

f(uk(n)) − f(vn) −
[

f(uk(n) − vn) − f(0)
]

−→
n→∞

0 in L1(Q).
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Proof. This is analogous to the proof of Proposition 5.8.

Proof of Proposition 2.3. We want to show that f(x, ·) is strongly p-A-quasi-
convex at ξ ∈ RM if and only if (2.1) holds. To shorten notation, we set
f̃(µ) := f(x, ξ + µ) for µ ∈ RM , with fixed x ∈ Ω and ξ ∈ RM . It now suffices
to study strong p-A-quasiconvexity of f̃ at 0.

“only if”: Obviously, strong p-A-quasiconvexity at 0 implies A-quasi-
convexity at 0. Now suppose that

∫

Q

[

f̃(ϕn(y)) − f̃(0)
]

dy → 0 for a sequence

(ϕn) ∈ Φosc, i.e., (ϕn) ∈ C∞
♯ (Q; RM) is A-free as well as bounded and equiin-

tegrable in Lp(Q; RM) with weak limit zero. By the definition of strong p-A-

quasiconvexity at 0, we infer that

g
(

∫

Q

|ϕn| dx, T̄
)

→ 0 with T̄ := sup
n∈N

∫

Q

|ϕn|
p dx.

Since g(t, T̄ ) is increasing in t and nonzero whenever t > 0, this is possible only
if

∫

Q
|ϕn| dx→ 0, which in turn implies that ϕn → 0 locally in measure.

“if”: For t, T ≥ 0 define

g(t, T ) := inf

{
∫

Q

[

f̃(ϕ(y)) − f̃(0)
]

dy

∣

∣

∣

∣

ϕ ∈ φA,

∫

Q

|ϕ| dx ≥ t,

∫

Q

|ϕ|p dx ≤ T

}

,

with the convention that g(t, T ) = +∞ if no admissible ϕ exists. Here, recall
that φA := {ϕ ∈ C∞

♯ (RN ; RM) | Aϕ = 0 on RN and
∫

Q
ϕdx = 0}. Note that g

depends on x and ξ, just like f̃ . By construction, the inequality required in
the definition of strong p-A-quasiconvexity at 0 is satisfied. Moreover, g is
increasing in t and decreasing in T , and since f̃ is A-quasiconvex at 0, we have
g ≥ 0. It remains to show that g(t, T ) > 0 for all t > 0, T ≥ 0. Assume by
contradiction that there is a t0 > 0 and a T0 ≥ 0 such that g(t0, T0) = 0. In
particular, T0 > 0 as g(t0, 0) = +∞, and there is a sequence (ϕ̃n) ⊂ φA such
that

∫

Q
|ϕ̃n| dx ≥ t0,

∫

Q
|ϕ̃n|

p dx ≤ T0 and

∫

Q

[

f̃(ϕ̃n(y)) − f̃(0)
]

dy −→
n→∞

0. (5.24)

For y ∈ RN define ϕ̂n(y) := ϕ̃n(ny), which inherits all the properties of ϕ̃n

stated above. In particular, (5.24) turns into

∫

Q

[

f̃(ϕ̂n(y)) − f̃(0)
]

dy −→
n→∞

0. (5.25)

In addition, ϕ̂n ⇀ 0 weakly in Lp(Q; RM), as
∫

Q
ϕ̃n dx = 0. By Lemma 5.13

applied to un := ϕ̂n, we get an A-free sequence ϕn which is bounded and
equiintegrable in Lp(Q; RM) and which still satisfies

∫

Q
ϕn dx = 0 and ϕn ⇀ 0
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weakly in Lp. Moreover, limn→∞

∫

Q
|ϕn| dx = limn→∞

∫

Q

∣

∣ϕ̂k(n)

∣

∣ dx = t0 > 0
since ϕ̂k(n) −ϕn → 0 locally in measure and thus in L1 as ϕ̂k(n) −ϕn is bounded
in Lp and p > 1. Hence (ϕn) ∈ Φosc and ϕn does not converge to zero locally in
measure. Due to Proposition 5.14, (5.25) gives

∫

Q

[

f̃(ϕn) − f̃(0)
]

dx+

∫

Q

[

f̃(ϕ̂n − ϕn) − f̃(0)
]

dx −→
n→∞

0, (5.26)

Since f is A-quasiconvex at 0, both terms on the left hand side of (5.26) are
nonnegative for every n, whence (5.26) implies that

∫

Q

[

f̃(ϕn) − f̃(0)
]

dx → 0,
as n→ ∞, contradicting (2.1).

Proof of Proposition 2.16. We want to show that (2.7) is equivalent to (2.3)
with Ψ = Φc∞ ∪ Φmov ∪ Φspr. First assume that Ω = RN . Due to (2.6),

χRN\BR
|f∞(u) − f(·, u)| −→

R→∞
0 in L1(RN), uniformly in u ∈ U , (5.27)

where U may be any subset of UA which is bounded in Lp. In the following, let

Φ∞ :=

{

(ϕn) ∈ UA

∣

∣

∣

∣

ϕn is bounded in Lp and satisfies χBϕn → 0 in Lp

for every bounded, open set B ⊂ RN

}

Note that Φc∞∪Φmov∪Φspr ⊂ Φ∞. Since f∞ satisfies the same growth conditions
as f (i.e., (f:1), with h(x) replaced by 0 = lim inf |x|→∞ h(x)), we have that
f∞(0) = 0, and (5.27) implies that

f(·, ϕn) − f(·, 0) − f∞(ϕn) −→
n→∞

0 in L1(RN), for every (ϕn) ∈ Φ∞. (5.28)

As a consequence of (5.28), f can be replaced by f∞ in (2.3) for any Ψ ⊂ Φ∞,
whence (2.7) implies (2.3) for Ψ = Φc∞ ∪ Φmov ∪ Φspr. It remains to show that
the converse is also true. First suppose that there exists a t0 > 0 such that
{u ∈ UA | ‖u‖Lp = t0} = ∅. In this case, {u ∈ UA | ‖u‖Lp = t} = ∅ for all t > 0
since UA is invariant under multiplication with scalars. Hence UA = {0} and
there is nothing to show. Otherwise, for t ∈ [0,∞) define

g(t) := inf

{
∫

RN

f∞(ϕ) dx

∣

∣

∣

∣

ϕ ∈ Lp(RN ; RM), Aϕ = 0, ‖u‖Lp = t

}

.

Since f∞ also inherits the p-Lipschitz property (f:2) (with lim inf |x|→∞ h(x) = 0
instead of h), F∞(u) :=

∫

RN f∞(u) dx is uniformly continuous on bounded sub-
sets of Lp by Proposition 5.7, which implies that g is continuous. It remains
to show that g > 0 on (0,∞). Suppose by contradiction that g(t0) = 0 for a
t0 > 0. Then there exists a sequence (ηn) ⊂ UA with ‖ηn‖Lp = t0 such that
∫

RN f∞(ηn) dx→ 0. Since ηn is bounded in Lp, there exists a subsequence k(n)
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of n and a sequence of points (xn) ⊂ RN such that χBn(xn)ηk(n) → 0 in Lp. For
x ∈ RN let ϕn(x) := ηk(n)(x−xn). By construction, (ϕn) ∈ Φ∞, ‖ϕn‖Lp = t0 > 0
and

∫

RN f∞(ϕn) dx→ 0. By (5.28), the latter entails that

∫

RN

f(x, ϕn) dx→

∫

RN

f(x, 0) dx. (5.29)

This already contradicts (2.3) for Ψ = Φ∞. To get the contradiction also with
the smaller set Ψ = Φc∞ ∪ Φmov ∪ Φspr, decompose ϕn =

∑4
j=0 ϕ

j
n according

to Lemma 4.1 (or a suitable subsequence, not relabeled; note that ϕn weakly
converges to zero). We have that ϕ0

n + ϕ1
n → 0 in Lp, since ϕ0

n + ϕ1
n = ϕn −

∑4
j=2 ϕ

j
n is RN -tight and converges to zero in Lp

loc. Since ‖ϕn‖Lp = t0 > 0, this

means that at least one of the three sequences ϕj
n, j = 2, 3, 4, does not converge

to zero strongly in Lp. Moreover, Proposition 5.8 and (5.29) imply that

∫

RN

f(x, ϕj
n) dx→

∫

RN

f(x, 0) dx for j = 2, 3, 4. (5.30)

As (ϕ2
n) ∈ Φc∞, (ϕ3

n) ∈ Φmov and (ϕ4
n) ∈ Φspr, this contradicts (2.3) for Ψ =

Φc∞ ∪ Φmov ∪ Φspr.
The general case where Ω ⊂ RN is the complement of some compact set is

essentially analogous. The only additional difficulty occurs while showing that
(2.7) implies (2.3) for Ψ = Φ∞, because (2.7) just applies to functions defined on
the whole space while the sequences in Φc∞∪Φmov∪Φspr and Φ∞ now are defined
only on Ω. However, any sequence (ϕn) ∈ Φ∞ converges to zero strongly in Lp

on any bounded set, in particular on any bounded vicinity of ∂Ω. Using smooth
cut-off functions as in the proof of Lemma 4.5 to extend before projecting back
onto A-free fields allows us to replace ϕn with an A-free sequence ϕ̃n such that
ϕn − ϕ̃n → 0 in Lp(Ω; RM) and ϕ̃n → 0 in Lp(RN \ Ω; RM).

6. Concluding remarks

Remark 6.1. While the main results of this paper and the decomposition
lemmas of Section 4 are stated for the space Lp, the method presented here can
actually handle more general spaces without significant additional difficulties.
In fact, the results of Section 3 are already stated in a form more general than
needed if we only study Lp. In particular, it is easy to adapt the decompositions
lemmas and the main results to Lp +Lq and Lp ∩Lq, respectively, with 1 < q <
p < ∞. This generalization is particularly useful for functionals on domains
with infinite measure whose integrand does not have the same behavior near
zero and near infinity, which is actually quite natural (e.g., f(x, µ) ≈ |µ|2 as
|µ| → 0 and f(x, µ) ≈ |µ|p as µ→ ∞). In addition, the results can be extended
to weighted Lebesgue spaces, as long as the suitable results for the continuity of
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Fourier multipliers in these spaces are still available. Beware though that even
if one is interested in one specific space only, Fourier multiplier results are still
needed for a suitable family of related spaces to use the arguments employed in
the proof of Lemma 3.4 (iii) and Lemma 4.1.

Remark 6.2. If Ω = RN , all of the results of this paper involving a given
bounded, A-free sequence (un) ⊂ Lp(RN ; RM) stay true if instead of Aun = 0,

we only require the weaker condition ‖(−∆)−
1
2Aun‖Lp → 0. To see this, simply

replace un with the A-free sequence ũn := Pun, where P is the projection on
A-free fields defined in Section 3. Since un − ũn = (I − P)un → 0 strongly
in Lp by Lemma 3.4 (iv), the uniform continuity of F on bounded sets shown
in Proposition 5.7 implies that F (un) − F (ũn) → 0, which means that any
assumption on F (un) used in our results will not be affected. Unfortunately, it
is not clear if this also works on domains with unbounded boundary if

‖Aun‖L−1,p := sup

{
∫

Ω

unA
∗ϕdx

∣

∣

∣

∣

ϕ ∈ C∞
c (Ω; RL) with

∫

Ω

|∇ϕ|
p

p−1 dx ≤ 1

}

is used to replace ‖(−∆)−
1
2Aun‖Lp .
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