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The Riesz Potential Operator

in Optimal Couples

of Rearrangement Invariant Spaces

C. Capone, A. Fiorenza, G. E. Karadzhov and Waqas Nazeer

Abstract. We prove continuity of the Riesz potential operator in optimal couples of
rearrangement invariant function spaces defined in Rn with the Lebesgue measure.
An application is given to the Hardy-Littlewood maximal operator.
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1. Introduction

Let Lloc be the space of all locally integrable functions f on Rn with the
Lebesgue measure. Analogously, let L be the space of all locally integrable
functions g ≥ 0 on (0,∞) with the Lebesgue measure that are in L1 +L∞. The
Riesz potential operator Rs, 0 < s < n, n ≥ 1 is defined formally by

Rsf(x) =

∫

Rn

f(y)|x − y|s−ndy, f ∈ Lloc.

We shall consider rearrangement invariant quasi-Banach spaces E, contin-
uously embedded in L1(Rn) + L∞(Rn), such that the quasi-norm ‖f‖E in E
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is generated by a quasi-norm ρE, defined on L with values in [0,∞], in the
sense that ‖f‖E = ρE(f ∗). In this way equivalent quasi-norms ρE give the same
space E. We suppose that E is nontrivial. Here f ∗ is the decreasing rearrange-
ment of f, given by

f ∗(t) = inf{λ > 0 : µf (λ) ≤ t}, t > 0,

where µf is the distribution function of f, defined by

µf (λ) = |{x ∈ Rn : |f(x)| > λ}|n ,

|·|n denoting the Lebesgue n−measure.
There is an equivalent quasi-norm ρp that satisfies the triangle inequality

ρp
p(g1 + g2) ≤ ρp

p(g1) + ρp
p(g2) for some p ∈ (0, 1) that depends only on the

space E (see [20]). We say that the quasi-norm ρE is K-monotone (cf. [6, p. 84]
and also [5, p. 305]) if

∫ t

0

g∗
1(s) ds ≤

∫ t

0

g∗
2(s) ds implies ρE(g∗

1) ≤ ρE(g∗
2), g1 ∈ L, g2 ∈ L. (1)

Then ρE is monotone, i.e., g1 ≤ g2 implies ρE(g1) ≤ ρE(g2).
We use the notations a1 . a2 or a2 & a1 for nonnegative functions or

functionals to mean that the quotient a1/a2 is bounded; also, a1 ≈ a2 means
that a1 . a2 and a1 & a2. We say that a1 is equivalent to a2 if a1 ≈ a2.

Recall that the relation g∗∗
1 ≤ g∗∗

2 , g1, g2 ∈ L is equivalent to g1 = Cg2,
where C is a positive contraction in the couple (L1, L∞) (see [21, Theorem 3.4,
p. 89]).

We say that the quasi-norm ρE satisfies Minkovski inequality if for the
equivalent quasi-norm ρp,

ρp
p

(

∑

gj

)

.
∑

ρp
p(gj), gj ∈ L. (2)

For example, if E is a rearrangement invariant Banach function space as in
[5], then by the Luxemburg representation theorem ‖f‖E = ρE(f ∗) for some
norm ρE satisfying (1) and (2). More general example is given by the Riesz-
Fischer monotone spaces as in [5, p. 305].

Recall the definition of the lower and upper Boyd indices αE and βE. Let

hE(u) = sup

{

ρE(g∗
u)

ρE(g∗)
: g ∈ L

}

, gu(t) := g

(

t

u

)

be the dilation function generated by ρE. Then

αE := sup
0<t<1

log hE(t)

log t
and βE := inf

1<t<∞

log hE(t)

log t
.
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If ρE is monotone, then the function hE is submultiplicative, increasing,
hE(1) = 1, hE(u)hE( 1

u
) ≥ 1, hence 0 ≤ αE ≤ βE. If ρE is K-monotone, then by

interpolation, (analogously to [5, p. 148]) we see that hE(s) ≤ max(1, s). Hence
in this case we have also βE ≤ 1.

Using the Minkovski inequality for the equivalent quasi-norm ρp and mono-
tonicity of f ∗, we see that

ρE(f ∗) ≈ ρE(f ∗∗) if βE < 1, (3)

where f ∗∗(t) = 1
t

∫ t

0
f ∗(s) ds.

Consider the Gamma spaces Γq(w), 0 < q ≤ ∞, w - positive weight, i.e.,
positive function from L (see also [15] for a class of generalized Gamma spaces),
with a quasi-norm ‖f‖Γq(w) := ρw,q,Γ(f ∗), where

ρw,q,Γ(g) :=

(
∫ ∞

0

[g∗∗(t)w(t)]q
dt

t

)
1

q

.

The condition
(∫ ∞

0
min(1, t−q)wq(t) dt

t

)
1

q < ∞ should be satisfied (otherwise
the space will be trivial). Then this space is continuously embedded in the
sum L1 + L∞. Using this embedding, the completeness of the space can be
established in a standard way. The space E = Γq(w) with ρE = ρw,q,Γ satisfies
the conditions (1), (2).

Consider the classical Lorentz spaces Λq(w), 0 < q ≤ ∞; f ∈ Λq(w) if

‖f‖Λq
w

:= ρw,q(f
∗), ρw,q(g) :=

(
∫ ∞

0

[g∗(t)w(t)]q
dt

t

)
1

q

< ∞.

This is a quasi-normed space if w(2t) ≈ w(t). If w(t) = t
1

r , 1 ≤ r < ∞, the
usual notation Lr,q is used. Then αE = βE = 1

r
. In some cases the Lorentz space

E = Λq(w), 1 ≤ q < ∞ also satisfies the conditions (1), (2). For example, if
wq(t)

t
is not increasing, then (see [5, p. 218]), the functional ρw,q is a K-monotone

norm. It is easy to check that this space is continuously embedded in Lq + L∞.
We have the equivalence

‖f‖Γq(w) ≈ ‖f‖Λq(w) (4)

in the following cases.
If 1 ≤ q < ∞ then (4) is satisfied if and only if w is such that (see [2])

tq
∫ ∞

t

s−q[w(s)]q
ds

s
.

∫ t

0

[w(s)]q
ds

s
. (5)

If q = ∞ then (4) is valid if and only if (see [9])

1

t

∫ t

0

1

w(s)
ds .

1

w(t)
, where w(t) :=

∫ t

0

v(s) ds for some v.
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For weights satisfying
∫ t

0
w(s) ds

s
. w(t), the condition (5) with q = 1 is

equivalent to
∫ ∞

t

w(s)

s

ds

s
.

w(t)

t
. (6)

Indeed, the condition (6) implies (5) with q = 1 by integration and Fubini’s
theorem . Conversely, (6) follows from (5) with q = 1 if

∫ t

0
w(s) ds

s
. w(t). Note

that (4) is equivalent to βE < 1 (see [5, p. 150]).

The main goal of this paper is to prove continuity of the Riesz potential
operator Rs : E 7→ G in optimal couples of rearrangement invariant function
spaces E and G, where ‖f‖G := ρG(f ∗). It is convenient to introduce the fol-
lowing classes of quasi-norms:

– Nd consists of all quasi-norms ρE that are monotone, rearrangement in-
variant, and such that αE ≥ s

n
, βE ≤ 1;

– Nd,1 consists of all quasi-norms ρE that are monotone, rearrangement
invariant, satisfy Minkovski inequality and αE ≥ s

n
, βE < 1;

– Nd,2 consists of all quasi-norms ρE that are monotone, rearrangement
invariant, satisfy Minkovski inequality and αE > s

n
, βE ≤ 1;

– Nd,3 consists of all quasi-norms ρE that are K-monotone, rearrangement
invariant, satisfy Minkovski inequality, and αE ≥ s

n
;

– Nt consists of all quasi-norms ρG that are monotone and βG ≤ 1 − s
n
;

– Nt,1 consists of all quasi-norms ρG that are monotone, satisfy Minkovski
inequality and βG < 1 − s

n
;

– Nt,2 consists of all quasi-norms ρG that are monotone, satisfy Minkovski
inequality and αG > 0, βG ≤ 1 − s

n
.

Definition 1.1 (admissible couple). We say that the couple ρE ∈ Nd, ρG ∈ Nt

is admissible for the Riesz potential if the following estimate is valid:

ρG((Rsf)∗∗) . ρE(f ∗). (7)

Moreover, ρE (respectively E) is called domain quasi-norm (domain space), and
ρG (respectively G) is called target quasi-norm (target space).

For example, by Theorem 2.2 below (the sufficient part), the couple
E = Λq

(

t
s
n w

)

, G = Λq(v), 1 ≤ q ≤ ∞, is admissible if βE < 1 and v is
related to w by the Muckenhoupt condition [27]:

(
∫ t

0

[v(s)]q
ds

s

)

1

q
(

∫ ∞

t

[w(s)]−r ds

s

)
1

r

. 1,
1

q
+

1

r
= 1.

Definition 1.2 (optimal target quasi-norm). Given the domain quasi-norm
ρE ∈ Nd, the optimal target quasi-norm, denoted by ρG(E), is the strongest
target quasi-norm, i.e.,

ρG(g∗) . ρG(E)(g
∗), g ∈ L,
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for any target quasi-norm ρG ∈ Nt such that the couple ρE, ρG is admissible.

Definition 1.3 (optimal domain quasi-norm). Given the target quasi-norm
ρG ∈ Nt, the optimal domain quasi-norm, denoted by ρE(G), is the weakest
domain quasi-norm, i.e.,

ρE(G)(g
∗) . ρE(g∗), g ∈ L,

for any domain quasi-norm ρE ∈ Nd such that the couple ρE, ρG is admissible.

Definition 1.4 (optimal couple). The admissible couple ρE, ρG is said to be
optimal if ρE = ρE(G) and ρG = ρG(E).

We prove that optimal quasi-norms are uniquely determined up to equiv-
alence, while the corresponding optimal quasi-Banach spaces are unique. We
give a characterization of all admissible couples, optimal target quasi-norms,
optimal domain quasi-norms, and optimal couples. It is convenient to consider
two cases: subcritical and critical.

Definition 1.5 (subcritical case). The subcritical case is defined by the condi-
tion

∫ 1

0

u−p s
n hp

E(u)
du

u
< ∞, or equivalently,

s

n
< αE. (8)

The equivalence in (8) can be established as in [5, p. 147]. For example, if
E = Lr, 1 ≤ r < ∞, then the condition (8) means that s < n

r
.

In the subcritical case and if βE < 1 we prove that the optimal target quasi-
norm satisfies ρG(E)(g

∗) ≈ ρE

(

t−
s
n g∗(t)

)

, g ∈ L. Moreover, the couple ρE, ρG(E)

is optimal.

Definition 1.6 (critical case). The critical case is defined by the condition
s
n

= αE.

In the critical case we use real interpolation similarly to [11], but in a

simpler way [1] and consider domain quasi-norms ρE(g) := ρH

(

(

t
s
n b(t)g∗(t)

)∗∗
µ

)

,

where ρH is K-monotone quasi-norm on (0,∞), satisfying βH < 1, and h∗
µ means

the rearrangement of h with respect to the Haar measure on (0,∞), dµ := dt
t
,

h∗∗
µ (t) := 1

t

∫ t

0
h∗

µ(u) du. In this case the optimal target quasi-norm ρG(E) is

ρG(E)(g) := ρH

(

(cg)∗∗µ
)

. (9)

Here b and c belong to a large class of Muckenhoupt slowly varying weights (see
Theorem 4.1 below).

Recall that w is slowly varying on (1,∞) (in the sense of Karamata), if for
all ε > 0 the function tεw(t) is equivalent to a non-decreasing function, and the
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function t−εw(t) is equivalent to a non-increasing function. By symmetry, we
say that w is slowly varying on (0, 1) if the function t 7→ w

(

1
t

)

is slowly varying
on (1,∞). Finally, w is slowly varying if it is slowly varying on (0, 1) and (1,∞).

For example, if ρH(g) :=
(∫ ∞

0
[g(t)]q dt

)
1

q , 1 < q ≤ ∞, then βH = 1
q

< 1,
and

ρE(g∗) ≈
(

∫ ∞

0

[ (

t
s
n b(t)g∗(t)

)∗
µ
(u)

]q
du

)
1

q

=

(
∫ ∞

0

[

t
s
n b(t)g∗(t)

]q dt

t

)
1

q

.

Hence E = Λq
(

t
s
n b(t)

)

and G(E) = Λq(c).
The problem of the optimal target space for potential type operators de-

fined on Lp is considered in [17] by different methods. The case s = 2 is treated
in [10]. Since f = cRk(∇kf), f ∈ C∞

0 , where ∇k is the kth order gradient (see
for example [13]), the results about the optimal couples for the Riesz poten-
tial imply optimal embeddings for the homogeneous Sobolev space wkE with a
quasi-norm ‖f‖wkE = ‖∇kf‖E, f ∈ C∞

0 . A direct approach to the same prob-
lem for the homogeneous Sobolev space with a norm

∑

|α|=k ‖Dαf‖E is used

in [1] and similar results are proved. The problem of optimal embeddings of
inhomogeneous Sobolev spaces, defined on a bounded domain in Rn , is treated
by somewhat different methods in [13,14,16,18,20,22–26].

In this paper we will use the standard notation for the Hardy operators

Pg(t) =
1

t

∫ t

0

g(u) du, Qg(t) =

∫ ∞

t

g(u)
du

u
.

2. Admissible couples

Here we give a characterization of all admissible couples ρE, ρG. It is convenient
to define the case βE = 1 as limiting and the case βE < 1 as sublimiting.

Theorem 2.1 (general case βE ≤ 1). The couple ρE ∈ Nd, ρG ∈ Nt is admis-

sible if and only if

ρG(Sg) . ρE(g), g ∈ L, (10)

where

S = T + T ′, T g(t) :=

∫ ∞

t

u
s
n g(u)

du

u
, t > 0, 0 < s < n, n ≥ 1, (11)

and T ′g(t) = t
s
n
−1

∫ t

0
g(u) du is the operator adjoint to T .

Proof. First we prove

(Rsf)∗∗ . Sf ∗. (12)
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We are going to use real interpolation for quasi-Banach spaces. First we
recall some basic definitions. Let (A0, A1) be a couple of two quasi-Banach
spaces (see [6, 7]) and let

K(t, f) = K(t, f ; A0, A1) = inf
f=f0+f1

{‖f0‖A0
+ t ‖f1‖A1

}, f ∈ A0 + A1,

be the K-functional of Peetre (see [6]). By definition, the K-interpolation space
AΦ = (A0, A1)Φ has a quasi-norm ‖f‖AΦ

= ‖K(t, f)‖Φ , where Φ is a quasi-
normed function space with a monotone quasi-norm on (0,∞) with the Lebesgue
measure and such that min{1, t} ∈ Φ. Then (see [7])

A0 ∩ A1 →֒ AΦ →֒ A0 + A1.

where by X →֒ Y we mean that X is continuously embedded in Y. If

‖g‖Φ =
(∫ ∞

0
t−θqgq(t) dt

t

)
1

q , 0 < θ < 1, 0 < q ≤ ∞, we write (A0, A1)θ,q in-
stead of (A0, A1)Φ (see [6]).

Using the Hardy-Littlewood inequality
∫

Rn |f(x)g(x)|dx ≤
∫ ∞
0

f ∗(t)g∗(t)dt,
we get the well known mapping property Rs : Λ1

(

t
s
n

)

7→ L∞. and by the
Minkovski inequality for the norm f ∗∗ we get Rs : L1 7→ Λ∞ (

t1−
s
n

)

. Hence
t1−

s
n (Rsf)∗∗(t) . K

(

t1−
s
n , f ; L1, Λ1

(

t
s
n

))

, therefore (see [6, Section 5.7])

(Rsf)∗∗(t) . Sf ∗(t).

It is clear that (7) follows from (12) and (10).
Now we prove that (7) implies (10). To this end we choose the test function

in the form f(x) = g(c|x|n), g ∈ L, so that f ∗(t) = g∗(t) for some positive
constant c (cf. [10]). Then

Rsf(x) =

∫

|y|<|x|
g(c|y|n)|x − y|s−n dy +

∫

|y|>|x|
g(c|y|n)|x − y|s−n dy,

whence

|Rsf(x)| & |x|s−n

∫ c|x|n

0

g(u) du +

∫ ∞

c|x|n
u

s
n
−1g(u) du & (Sg)(c|x|n).

Note that S = n
n−s

QT ′, hence Sg is decreasing, therefore

|Rsf |∗(t) & Sg(t), S = T + T ′. (13)

Thus, if (7) is given, then (13) implies (10).

In the sublimiting case βE < 1 we can simplify the condition (10), replac-
ing S by T .
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Theorem 2.2 (Sublimiting case βE < 1). The couple ρE ∈ Nd,1, ρG ∈ Nt is

admissible if and only if

ρG(Tg) . ρE(g), g ∈ M, (14)

where M := {g ∈ L : tmg(t) is increasing for some m > 0}.

Proof. We need to prove sufficiency only. But from (12) it follows that
(Rsf)∗∗. Tf ∗∗, therefore (7) follows from (14) and (3) since βE < 1.

In the case αE > s
n

we have another simplification of (10).

Theorem 2.3 (case αE > s
n
). The couple ρE ∈ Nd, ρG ∈ Nt,2 is admissible if

and only if

ρG(T ′g) . ρE(g), g ∈ M1 := {g ∈ L : g is decreasing}. (15)

Proof. It is enough to check that (15) implies (10). First we prove the estimate
for ρE ∈ Nd:

ρE(t−aQg(t)) . ρE(t−ag(t)), 0 ≤ a < 1, g ∈ M, αE > a, (16)

where Qg(t) =
∫ ∞

t
g(u) du

u
. The proof is standard, we just have to use the

Minkovski inequality for the equivalent quasi-norm ρp and that αE > a is equiv-

alent to
∫ 1

0
u−aphp

E(u) du
u

< ∞. (cf. [5])
On the other hand, it is Tg . T ′ (t−

s
n Tg(t)

)

, hence by (15), ρG(Tg) .

ρE

(

t−
s
n Tg

)

, g ∈ M, therefore if αE > s
n
, then (16) implies ρG(Tg) . ρE(g).

For example, the couple E = Γq(tw), G = Λq
(

t1−
s
n v

)

, 1 ≤ q ≤ ∞, is
admissible if αG > 0 and v is related to w by [27]

(
∫ ∞

t

[v(u)]q
du

u

)
1

q
(

∫ t

0

[w(u)]−r du

u

)

1

r

. 1,
1

q
+

1

r
= 1.

2.1. Optimal quasi-norms. Here we give a characterization of the optimal
domain and optimal target quasi-norms. Let

E →֒ L1 + Λ1
(

t
s
n

)

and G →֒ Λ∞ (

t1−
s
n

)

+ L∞.

We can define an optimal target quasi-norm by using Theorem 2.1.

Definition 2.4 (construction of the optimal target quasi-norm). For a given
domain quasi-norm ρE ∈ Nd we set

ρG(E)(g) := inf{ρE(h) : g ≤ Sh, h ∈ L}. (17)
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Note that αG(E) ≥ αE − s
n
, βG(E) ≤ βE − s

n
. In particular, if αE = βE then

αG(E) = βG(E) = αE − s
n
.

Proposition 2.5. The couple ρE ∈ Nd, ρG(E) ∈ Nt is admissible and the target

quasi-norm is optimal. Also,

G(E) →֒ Λ∞(t1−
s
n ) + L∞. (18)

Proof. Since ρE is a monotone quasi-norm it follows that ρG(E) is also monotone
quasi-norm. The couple is admissible due to ρG(E)(Sh) ≤ ρE(h), h ∈ L and
Theorem 2.1. Suppose that the couple ρE ∈ Nd, ρG ∈ Nt is admissible. Then
by Theorem 2.1, ρG(Sg) . ρE(g), g ∈ L. Therefore if g∗ ≤ Sh, h ∈ L, then
ρG(g∗) ≤ ρG(Sh) . ρE(h), whence ρG(g∗) . ρG(E)(g

∗).
It remains to check (18). Note that (see [6])

‖f‖
Λ∞(t1−

s
n )+L∞

≈ sup
0<t<1

t1−
s
n f ∗(t) + sup

t>1
f ∗.

Let f ∗ ≤ Sh, h ∈ L. Then f ∗ . Sh∗ and

sup
0<t<1

t1−
s
n Sh∗(t) ≤

∫ 1

0

h∗(u) du +

∫ ∞

1

u
s
n
−1h∗(u) du.

Since (see [6]) ‖f‖
L1+Λ1(t

s
n ) ≈

∫ 1

0
f ∗(u) du +

∫ ∞
1

u
s
n
−1f ∗(u) du, we obtain

sup0<t<1 t1−
s
n Sh(t) . ρE(h). Analogously, supt>1 Sh(t) . ρE(h). Therefore,

‖f‖
Λ∞(t1−

s
n )+L∞

. ρE(h). Taking the infimum, we get (18).

In the sublimiting case βE < 1 we can simplify the optimal target quasi-
norm.

Proposition 2.6. Let ρE ∈ Nd,1. Then

ρG(E)(g
∗) ≈ ρ(g∗), ρ(g) := inf{ρE(h) : g ≤ Th, h ∈ M}. (19)

Proof. If g∗ ≤ Th, h ∈ M, then g∗ ≤ Sh, therefore ρ(g∗) ≥ ρG(E)(g
∗). For

the reverse, if g∗ ≤ Sh, h ∈ L, then g∗ . Sh∗ and using T ′h ≤ t
s
n h∗∗, we get

g∗ . Th∗∗. Hence ρ(g∗) . ρE(h∗∗) and because βE < 1, we derive ρ(g∗) . ρE(h).
Taking the infimum, we get ρ(g∗) . ρG(E)(g

∗).

A simplification of the optimal target quasi-norm is possible also in the
subcritical case αE > s

n
.

Proposition 2.7. Let ρE ∈ Nd,2. Then

ρG(E)(g
∗) ≈ ρ1(g

∗), ρ1(g) := inf{ρE(h) : g ≤ T ′h, h ∈ M1}. (20)
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Proof. If g∗ ≤ T ′h, h ∈ M1, then g∗ ≤ Sh, therefore ρ1(g
∗) ≥ ρG(E)(g

∗).
For the reverse, if g∗ ≤ Sh, h ∈ L, then using Th(t) . T ′ (t−

s
n Th

)

, we get
g∗ . T ′(h∗ + t−

s
n Th). Hence ρ1(g

∗) . ρE(h) + ρE

(

t−
s
n Th

)

. ρE(h) using
αE > s

n
and (16). Taking the infimum, we get ρ1(g

∗) . ρG(E)(g
∗).

We can construct an optimal domain quasi-norm ρE(G) by Theorem 2.1 as
follows.

Definition 2.8 (construction of an optimal domain quasi-norm). For a given
target quasi-norm ρG ∈ Nt, we construct an optimal domain quasi-norm
ρE(G) ∈ Nd by

ρE(G)(g) := sup{ρG(Sh) : h∗∗ ≤ g∗∗, h ∈ L}, g ∈ L.

Note that αE(G) ≥ s
n

+ αG and βE(G) ≤ s
n

+ βG.

Theorem 2.9. Let ρG ∈ Nt. Then ρE(G) ∈ Nd,3, the couple ρE(G), ρG is admis-

sible and the domain quasi-norm ρE(G) is optimal. Also

E(G) →֒ L1 + Λ1
(

t
s
n

)

. (21)

Proof. First we prove a few properties of the functional ρE(G). We suppose
that ρG ∈ Nt. To prove that ρE(G) satisfies the triangle inequality for quasi-
norms, let h∗∗ ≤ (g1 + g2)

∗∗. Then there is ( [5, 21]) a positive contraction C in
the couple (L1, L∞) such that h = C(g1 + g2). If hj := Cgj then hj ∈ L and
h = h1 + h2. Since ρG(Sh) . ρG(Sh1) + ρG(Sh2) . ρE(G)(g1) + ρE(G)(g2), we
have ρE(G)(g1 + g2) . ρE(G)(g1) + ρE(G)(g2). Evidently, the quasi-norm ρE(G) is
rearrangement invariant. It is K-monotone, because if g∗∗

1 ≤ g∗∗
2 and h∗∗ ≤ g∗∗

1 ,
then ρE(G)(g2) ≥ ρG(Sh), whence ρE(G)(g1) ≤ ρE(G)(g2).

Further, the couple ρE(G), ρG is admissible since ρE(G)(g) ≥ ρG(Sg). More-
over, ρE(G) is optimal, since for any admissible couple ρE, ρG we have ρG(Sh) .

ρE(h) = ρE(h∗), where h ∈ L. Therefore,

ρE(G)(g) ≤ sup{ρE(h) : h∗∗ ≤ g∗∗, h ∈ L} . ρE(g)

by K-monotonicity of ρE. To prove the property (21), we notice that

ρE(G)(f
∗) ≥ ρG(Sf ∗) &

∫ 1

0

f ∗(t) dt +

∫ ∞

1

u
s
n
−1f ∗(u) du ≈ ‖f‖

L1+Λ1(t
s
n ).

Remark 2.10. If ρG satisfies Minkovski inequality then ρE(G) also satisfies
Minkovski inequality. Indeed, let g =

∑

gj, g, gj ∈ L. If h∗∗ ≤ g∗∗, then
h = Cg. Define hj := Cgj. Then h =

∑

hj and Sh =
∑

Shj, therefore (for the
equivalent quasi-norms)

ρp
G(Sh) .

∑

ρp
G(Shj) .

∑

ρp

E(G)(gj),

whence ρp

E(G)(g) ≤ ∑

ρp

E(G)(gj).
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In the case αG > 0 we can simplify the formula for the optimal domain
quasi-norm.

Proposition 2.11. Let ρG ∈ Nt,2. Then ρE(G) ∈ Nd,2 ∩ Nd,3 and

ρE(G)(g) ≈ ρG

(

t
s
n g∗∗(t)

)

≈ ρG(Tg∗∗).

Proof. We have ρE(G)(g
∗) ≥ ρG(Sg∗) ≥ ρG(T ′g∗) = ρG

(

t
s
n g∗∗) . On the other

hand, the quasi-norm ρ1(g) := ρG

(

t
s
n g∗∗(t)

)

is in the class Nd,2 ∩ Nd,3 and
the couple ρ1, ρG is admissible since ρG(T ′h) ≤ ρG(T ′h∗) = ρ1(h). Therefore,
ρE(G) . ρ1.

A simplification is possible also in the case βG < 1 − s
n
.

Theorem 2.12. Let ρG ∈ Nt,1. Then ρE(G) ∈ Nd,1 ∩ Nd,3 and ρE(G)(g) ≈
ρ2(g) := ρG(Tg∗∗). Moreover, the couple ρE(G), ρG is optimal.

Also, if αG > 0, then ρE(G)(g) ≈ ρG

(

t
s
n g∗∗(t)

)

.

Proof. We have ρE(G)(g
∗) ≥ ρG(Sg∗) ≥ ρG(Tg∗) ≈ ρ2(g

∗), since the upper Boyd
index for ρ2 is ≤ s

n
+ βG < 1. On the other hand the couple ρ2, ρG is admissible

since for g ∈ M, ρG(Tg) . ρG(Tg∗∗) = ρ2(g). Therefore, ρE(G) . ρ2.
Now we check that the couple ρE(G), ρG is optimal. We need only to prove

that ρG is an optimal target quasi-norm, i.e., ρ(g∗) . ρG(g∗), where ρ = ρG(E(G))

is defined by (19) since βE(G) < 1. We have g∗∗ = Th, h(t) = t−
s
n [g∗∗(t)− g∗(t)]

∈ M, therefore
ρ(g∗) ≤ ρE(G)(h) ≈ ρG(Th∗∗).

Since h∗ . Qh, we have h∗∗ = Ph∗ . QPh, therefore Th∗∗ . TQ(Ph) .

T (Ph). Also T (Ph) ≈ Th + t
s
n Ph and Ph ≤ h∗∗. Therefore,

ρ(g∗) . ρG(Th) + ρG

(

t
s
n h∗∗) .

Since h(t) ≤ t−
s
n g∗∗(t) we have h∗(t) ≤ t−

s
n g∗∗, thus we have ρG

(

t
s
n h∗∗(t)

)

≤
∫ 1

0
u− s

n hG

(

1
u

)

du ≤ ρG(g∗∗). Therefore ρ(g∗) . ρG(g∗∗) ≈ ρG(g∗).

Now we give some examples.

Example 2.13. Consider the space G = Λ1(v) and let βG < 1− s
n
. This is true

in the particular case when v is slowly varying. Using Theorem 2.12, we can
construct the optimal couple E,G, where

ρE(g) = ρG(Tg∗∗) =

∫ ∞

0

t
s
n w(t)g∗∗(t)

dt

t
,

and w(t) =
∫ t

0
v(u) du

u
, w(∞) = ∞. Hence E = Γ1

(

t
s
n w

)

. Also αE = βE = s
n

if v is slowly varying.
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Example 2.14. If G = C0 consists of all bounded functions such that
f ∗(∞) = 0 and ρG(g) = g∗(0) = g∗∗(0), then αG = βG = 0 and ρE(G)(g) ≈
∫ ∞

0
t

s
n g∗∗ dt

t
, i.e., E = Γ1

(

t
s
n

)

and the couple E,G is optimal.

Example 2.15. Let G = Λ∞(v) with v(∞) = ∞, βG < 1 − s
n

and let

ρE(g) = sup v(t)

∫ ∞

t

u
s
n g∗∗(u)

du

u
.

Then by Theorem 2.12, the couple E,G is optimal and βE < 1. In particular,
this is true if v is slowly varying since then αG = βG = 0 and αE = βE = s

n
< 1.

Example 2.16. Let E = Λ∞ (

t
s
n w(t)

)

, where w is slowly varying. If

1

v(t)
=

∫ ∞

t

1

w(u)

du

u
,

then G = Λ∞(v) is optimal target space. Indeed, βE = s
n

< 1, and ρG(Tg) .

ρE(g), which means that the couple is admissible. In order to prove that ρG is
optimal, take any g ∈ L, and define h from t

s
n w(t)h(t) = sup0<u≤t v(u)g∗(u).

Then h ∈ M , t
s
n w(t)h(t) ≤ ρG(g∗), therefore t

s
n w(t)h∗(t) . ρG(g∗), whence

ρE(h) . ρG(g∗). On the other hand

Th(t) =

∫ ∞

t

sup
0<x≤u

v(x)g∗(x)
1

w(u)

du

u
≥ sup

0<u≤t

v(u)g∗(u)
1

v(t)
≥ g∗(t).

Hence ρG(E)(g
∗) ≤ ρE(h) . ρG(g∗), therefore ρG is optimal.

Example 2.17. Let ρE(g) := ρF (tw(t)g∗∗(t)) , ρG(g) := ρF

(

t1−
s
n w(t)g(t)

)

,
where w is slowly varying and ρF is a monotone quasi-norm with αF = βF = 0.
Then αE = βE = 1, αG = βG = 1 − s

n
, the couple ρE, ρG is admissible since

ρG(T ′g) ≤ ρE(g) and according to Proposition 2.11 the domain quasi-norm is

optimal. For example we can take ρF (g) =
(∫ ∞

0
gq(t) dt

t

)
1

q , 0 < q ≤ ∞. But

this couple is not optimal. If wχ(0,1) ∈ F and f ∗(t) = t
s
n
−1, then f ∈ G

and ρG(E)(f
∗) = inf ρE(h), where infimum is taken with respect to all h ∈ M1

such that 1 ≤
∫ t

0
h(u) du. Hence

∫ ∞
0

h(u) du = ∞. Since we have ρE(h) ≥
ρF (wχ(0,1))

∫ t

0
h(u) du for t > 1, it follows ρE(h) = ∞, therefore f /∈ G(E).

3. Subcritical case

Here we suppose that s
n

< αE.

Theorem 3.1 (sublimiting case). Let βE < 1 and ρE ∈ Nd,3. Then the optimal

target quasi-norm ρG(E) is equivalent to ρ1(g) := ρE

(

t−
s
n g

)

, ρG(E)(g
∗) ≈ ρ1(g

∗).
Moreover, the couple ρE, ρG(E) is optimal.
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Proof. Let g ≤ T ′h, h ∈ M1. Then t−
s
n g(t) ≤ Ph(t) := t−1

∫ t

0
h(u) du, whence

ρ1(g) . ρE(h), since βE < 1. Taking the infimum, we get ρ1(g) . ρG(E)(g).
On the other hand, g∗ . T ′ (t−

s
n g∗(t)

)

, therefore ρG(E)(g
∗) . ρE

(

t−
s
n g∗(t)

)

=
ρ1(g

∗). Finally, the couple ρE, ρG(E) is optimal, since

ρE(G(E))(g
∗) ≥ ρG(E)(Tg∗) ≈ ρE

(

t−
s
n Tg∗) & ρE(g∗).

Example 3.2. Let E = Λq (tαw1)
⋂

Λr
(

tβw2

)

, s
n

< α ≤ β < 1, 0 < q, r ≤ ∞,
where w1, w2 are slowly varying. Then G(E) = Λq

(

tα−
s
n w1

)
⋂

Λr
(

tβ−
s
n w2

)

and
this couple is optimal. In particular, we can take E = Lp, 1 < p < n

s
. Then

G(E) = Lq,p, 1
q

= 1
p
− s

n
. This is a classical result, see [17]. Now we know that

the domain space Lp is also optimal.

In the limiting case βE = 1 we do not know how to simplify the formula (20)
for the optimal target quasi-norm. In the next example we provide a construc-
tion of an optimal target quasi-norm.

Example 3.3. Let E = Λ∞(tw), w is slowly varying and 1
v(t)

=
∫ t

0
1

w(u)
du
u

.

Then βE = 1. If G = Λ∞(

t1−
s
n v

)

then αG > 0 and the couple E,G is admissible
since ρG(T ′g) . ρE(g), g ∈ M1. Moreover, the target space is optimal. Indeed,
choose h so that tw(t)h(t) = supu>t u

1− s
n v(u)g∗(u). Then tw(t)h(t) ≤ ρG(g∗),

hence tw(t)h∗(t) . ρG(g∗) and ρE(h) . ρG(g∗). On the other hand,

T ′h(t) ≥ t
s
n
−1

∫ t

0

1

w(u)

du

u
sup
u>t

u1− s
n v(u)g∗(u) ≥ g∗(t).

Therefore ρG(E)(g
∗) . ρG(g∗).

4. Critical case

Here we are going to use real interpolation for quasi-normed spaces, similarly
to [11,12].

First we construct the needed couples of Muckenhoupt weights. Let the
function b satisfy the following properties:

It is non-decreasing, slowly varying on (0,∞), b(t2) ≈ b(t), (22)

for some ε > 0 the function (1 + ln t)−1−εb(t) is increasing for t > 1. (23)

Let

c(t) =
b(t)

1 + | ln t| . (24)

Then
∫ ∞

t

1

b(u)

du

u
.

1

c(t)
, t > 0. (25)
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Indeed, if 0 < t < 1 we can write:

∫ ∞

t

1

b(u)

du

u
=

∫ 1

t

1

b(u)

du

u
+

∫ ∞

1

(1 + ln u)−1−ε

b(u)(1 + ln u)−1−ε

du

u
.

Using monotonicity properties (22), (23) and c(t) . 1 for 0 < t < 1, we get (25).
The case t > 1 is analogous, but simpler.

We denote by Lr
∗(v), 1 ≤ r ≤ ∞, v - positive weight, the weighted Lebesgue

space on (0,∞) with the Haar measure dµ = dt
t

and norm

‖g‖Lr
∗
(v) :=

(
∫ ∞

0

|g(t)v(t)|r dt

t

)
1

r

.

We write Lr
∗ when v = 1. Let L∞

v be the weighted Lebesgue space on (0,∞)
with the Lebesgue measure and a norm ‖g‖L∞

v
:= sup |g(t)v(t)|.

Theorem 4.1. Let ρH be a K-monotone quasi-norm on L and let H be the

corresponding quasi-Banach space with βH < 1. Let b, c be given by (22), (24).
Let ρE be defined by

ρE(g) := ρF

(

t
s
n b(t)g∗(t)

)

, (26)

F := (L1
∗, L

∞
∗ )

H( 1

t )
, (27)

and H
(

1
t

)

has a quasi-norm ‖g‖
H( 1

t )
:= ρH

(

g(t)
t

)

. Then the optimal target

quasi-norm is given by ρG(E)(g) := ρF (gc).

Proof. The operator T , defined by (11) is bounded in the following couple of
spaces:

T : L1
∗
(

t
s
n b(t)

)

7→ L∞
b and T : L∞

∗
(

t
s
n b(t)

)

7→ L∞
c ,

where b, c are given by (22), (24). Define F by (27). It is well known [6] that

ρF (g) = ρH(g∗∗
µ ) ≈ ρH(g∗

µ), (28)

where g∗∗
µ (t) = 1

t

∫ t

0
g∗

µ(s) ds. The equivalence in (28) is true because βH < 1.
By interpolation, T : E1 7→ G1, where

E1 :=
(

L1
∗
(

t
s
n b(t)

)

, L∞
∗

(

t
s
n b(t)

))

H( 1

t )
, G1 := (L∞

b , L∞
c )

H( 1

t )
.

Denote the quasi-norm in E1 by ρ1 and let ρE(g) = ρ1(g
∗). We have

ρE(g) = ρF

(

t
s
n b(t)g∗(t)

)

= ρH

(

(

t
s
n b(t)g∗(t)

)∗∗
µ

)

≈ ρH

(

(

t
s
n b(t)g∗(t)

)∗
µ

)

.

Hence ρE is a K-monotone quasi-norm with both Boyd indices equal to s
n

< 1
(here we are using the fact that b is slowly varying).
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Now we characterize the space G1. Since (see [6])

K (t, g; L∞
b , L∞

c ) = tK
(

1
t
, g; L∞

c , L∞
b

)

= t sup
s

|g(s)|min
(

c(s), b(s)
t

)

,

we get the formula

ρG1
(g) = ρH(hg), hg(u) := sup

s

|g(s)|min
(

c(s), b(s)
t

)

. (29)

Also, since L∞
b →֒ L∞

c it follows hg(u) ≈ sup |g(s)|c(s) if 0 < u < 1. Let

Hg(t) := hg(1 + | ln t|), 0 < t < ∞.

Then (Hg)
∗
µ(t) ≤ hg

(

t
2

)

, hence, by (28) and (29), ρF (Hg) . ρG1
(g). Note that

Hg & gc, hence, if we define the quasi-norm ρG(g) := ρF (gc), we get the relation

ρG(Tg) . ρG1
(Tg) . ρE(g), g ∈ M.

Since βE < 1 Theorem 2.2 shows that the couple ρE, ρG is admissible.
Now we want to prove that ρG is an optimal target quasi-norm. It is suffi-

cient to see that ρG(g) ≈ ρG(E)(g), g ∈ L, g decreasing, where ρG(E) is defined
by (17). And since the quasi-norm ρG(E) is optimal, we need only to prove that
ρG(E)(g) . ρG(g), g ∈ L, g decreasing . To this end first for any such g we con-
struct a decreasing h such that g . Th and ρE(h) . ρG(g). Let t

s
n b(t)h1(t) =

g1(t), where g1(t) = g
(

t2

e2

)

c(t2) for 0 < t < 1 and g1(t) = g
(

√
t√
e

)

c(
√

t) if t > 1.

Note that h1 ≈ h∗
1. Then ρE(h1) ≈ ρF

(

t
s
n b(t)h∗

1(t)
)

≈ ρF (gc) = ρG(g). On the
other hand, for 0 < t < 1,

Th1(t) ≥
∫

√
te

t

g

(

u2

e2

)

c(u2)

b(u)

du

u
≥ g(t)A(t) & g(t),

since

A(t) =

∫

√
te

t

c(u2)

b(u)

du

u
≈

∫

√
te

t

1

1 + | ln u|
du

u
& 1.

Similarly, for t > 1 we obtain

Th1(t) &

∫ et2

t

g

(√
u√
e

)

1

1 + ln u

du

u
& g(t).

Therefore we can find h ≈ h1 such that ρE(h) ≈ ρG(g) and Th ≥ g. This means
that ρG(E) . ρG.

The above result suggests the following construction. Let

ρE(g) = ρF

(

t
s
n b(t)g∗(t)

)

, ρG(g) = ρF (cg),
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where ρF is a monotone quasi-norm satisfying ρF (g(t2)) . ρF (g(t)) with αF =
βF = 0 and b, c are slowly varying weights such that c(t2) ≈ c(t) and

∫ ∞

0

m(t)
c(u)

b(u)

du

u
& 1, m =

{

χ(t,
√

te) if t < 1

χ(t,et2) if t > 1.
(30)

Then if ρF (cQg) . ρF (bg) the couple ρE, ρG is admissible and the same argu-
ment as above shows that the target quasi-norm is optimal.

Example 4.2. Let G = Λq(c), 1 ≤ q ≤ ∞, E = Λq
(

t
s
n b(t)

)

, where b, c are
slowly varying on (0,∞), satisfying (30), c(t2) ≈ c(t) and

(
∫ t

0

cq(s)
ds

s

)

1

q
(

∫ ∞

t

[b(s)]−r ds

s

)
1

r

. 1,
1

q
+

1

r
= 1.

Then the couple E,G is admissible and G is an optimal target space. In partic-
ular, if b(t) = 1, 0 < t < 1 and b(t) = (1 + ln t)2, t > 1, then c(t) = (1− ln t)−1,
0 < t < 1 and c(t) = 1 + ln t, t > 1. Therefore E = Λ

n
s

(

t
s
n b(t)

)

, G(E) = Λ
n
s (c),

the result that corresponds to the optimal embedding proved in [17] in the
critical case.

5. An application to the maximal operator

The Hardy-Littlewood maximal operator M (see, e.g., [5, p. 117]) is defined by

Mf(x) = sup
B∋x

1

|B|

∫

B

|f(y)|dy, f ∈ Lloc

where the supremum extends over all balls B containing x ∈ Rn. The methods
from the previous sections can be applied to the problem of optimal couples of
rearrangement invariant spaces for M . More precisely, we consider optimality
in the following classes:

– Nd consists of all quasi-norms ρE that are monotone, rearrangement in-
variant, and such that 0 ≤ αE ≤ βE ≤ 1;

– Nd,1 consists of all quasi-norms ρE ∈ Nd such that βE < 1;

– Nt consists of all quasi-norms ρG that are monotone and 0 ≤ αG ≤ βG ≤ 1.

We say that the couple ρE ∈ Nd, ρG ∈ Nt is admissible for M if ρG((Mf)∗) .

ρE(f ∗) Since (Mf)∗ ≈ f ∗∗ (see, e.g., [5, Theorem 3.8 p. 122]), admissibility is
equivalent to ρG(g∗∗) . ρE(g), g ∈ L. Using the same arguments as in Section 3,
we can prove the following results. Let

∫ a

0
g(t)dt . ρE(g), g ∈ L, 0 < a < ∞.

Given the domain quasi-norm ρE ∈ Nd, the optimal target quasi-norm ρG(E)

satisfies (cf. Proposition 2.5)

ρG(E)(g) := inf{ρE(h) : g ≤ h∗∗, h ∈ L}.
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Evidently, E →֒ G(E). If ρG ∈ Nt is given, then the optimal domain quasi-
norm ρE(G) satisfies ρE(G)(g) = ρG(g∗∗) and E(G) →֒ G. Moreover, if ρE ∈ Nd,1

then G(E) = E and the couple (E,E) is optimal in the class Nd,1. In the limiting
case βE = 1 we have the following example, that corresponds to Example 3.3.
If E = Λ∞(tw), w is slowly varying and 1

v(t)
=

∫ t

0
1

w(u)
du
u

, then G(E) = Λ∞(tv)

and G(E) ) E.
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