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Abstract. This paper provides a method for calculating the symmetry groups of the
functional defined by the generalized variational principle of Herglotz in the case of
several independent variables. Examples of calculating variational symmetry groups
are given, including those for the non-conservative nonlinear Klein-Gordon equation,
and for the equations describing the propagation of electromagnetic fields in a con-
ductive medium.
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1. Introduction

The generalized variational principle, proposed by Herglotz [6, 7], defines the
functional whose extrema are sought by a differential equation rather than by
an integral. This variational principle is uniquely useful for the description
of nonconservative processes. It is more general than the classical variational
principle with one independent variable and contains it as a special case. The
paper of Furta et al. [2] shows a close link between the Herglotz variational
principle and control and optimal control theories. It is also related to contact
transformations, see Guenther et al. [5]. Georgieva et al. [4] formulated and
proved a Noether-type theorem which yields conservation laws corresponding
to the symmetries of the functional defined by the Herglotz variational principle.
Georgieva et al. [3] extended the Herglotz principle to a variational principle
with several independent variables which contains as special cases both the
classical variational principle and the Herglotz variational principle. This vari-
ational principle can describe not only all physical processes which the classical
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variational principle can, but also many others for which the classical variational
principle is not applicable. For example, it can give a variational description
of nonconservative processes even when the Lagrangian is not dependent on
time, something which can not be done with the classical variational principle.
In the same paper the authors formulate and prove a theorem of Noether-type
which gives an identity corresponding to each symmetry of the functional de-
fined by this new variational principle. From this identity a first integral is
readily obtained.

In the present paper we formulate and prove a theorem which provides a
method for calculating the symmetry groups of the functional defined by the
generalized variational principle of Herglotz in the case of several independent
variables.

Historically, the question of calculating the symmetries of a given Lagran-
gian functional was answered by W. Killing [8] in 1892 in the context of de-
scribing the motions of a n-dimensional manifold with fundamental form given
by

L =
1

2
gklẋ

kẋl

(see Eisenhart [1] and Logan [11]). In the case of a classical variational func-
tional, some authors refer to the system of partial differential equations for the
unknown symmetry group generators as the generalized Killing equations. For
the derivation of these equations in the case of the classical variational principle
see Logan [11].

Note. The summation convention on repeated indices is used throughout this
paper.

2. The variational principle of Herglotz

The variational principle of Herglotz defines the functional z, whose extrema
are sought, by the differential equation

dz

dt
= L

(

t, x(t),
dx(t)

dt
, z

)

(2.1)

where L is a known function, differentiable in its four arguments, t is the in-
dependent variable, and x(t) ≡ (x1(t), . . . , xn(t)) stands for the argument func-
tions. In order for the equation (2.1) to define a functional z = z[x] of x(t)
equation (2.1) must be solved with the same fixed initial condition z(0) for all
argument functions x(t), and the solution z(t) must be evaluated at the same
fixed final time t = T for all argument functions x(t). L is called the Lagrangian

in analogy with the classical case.
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The equations whose solutions produce the extrema of this functional are

∂L

∂xk

−
d

dt

∂L

∂ẋk

+
∂L

∂z

∂L

∂ẋk

= 0, k = 1, . . . , n, (2.2)

where ẋk denotes dxk

dt
. Herglotz called them the generalized Euler-Lagrange

equations. See Guenther et al. [5] for a derivation of this system. The solutions
of these equations, when written in terms of the dependent variables xk and the
associated momenta pk = dL

dẋk
, determine a family of contact transformations.

See Guenther et al. [5].

Below are a few examples of ordinary differential equations which can be
given a variational description via Herglotz principle. To the right of each
equation is the Herglotz Lagrangian which produces it: (a, k = const.)

• the damped harmonic oscillator ẍ+ aẋ+ kx = 0, L = 1
2

(

ẋ2 − kx2
)

− az,

• the Lienard equation ẍ+ g(t)ẋ+ kx = 0, L = 1
2

(

ẋ2 − kx2
)

− g(t)z,

• the Lane-Emden equation ẍ+ 2
t
ẋ+ xn = 0, L = 1

2
ẋ2 − xn+1

n+1
− 2

t
z, and

• the Liouville equation ẍ+f(x)ẋ2 +g(t)ẋ = 0, L = 1
2
ẋ2−

(

2f(x)ẋ+g(t)
)

z.

These are all special cases of the equation

ẍ+ f(x)ẋ2 + g(t)ẋ+ h(x) = 0

which can be obtained via the Herglotz variational principle, by letting L in the
defining equation (2.1) be

L =
1

2
ẋ2 −

(

2f(x)ẋ+ g(t)
)

z − U(x)

where U(x) is any solution of the ODE

dU(x)

dx
+ 2f(x)U(x) = h(x).

For equations which can be obtained from Herglotz variational principle as
(2.1) one can systematically derive conserved quantities, as shown in Georgieva
et al. [4], by applying the first Noether-type theorem formulated and proven in
the same paper.

The Generalized Variational Principle with Several Independent Variables
is as follows:
Let the functional z = z[u; s] of u = u(t, x) be given by an integro-differential

equation of the form

dz

dt
=

∫

Ω

L(t, x, u, ut, ux, z) d
nx, 0 ≤ t ≤ s (2.3)
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where x ≡ (x1, . . . , xn), dnx ≡ dx1 · · · dxn, u ≡ (u1, . . . , um), ux ≡ (u1
x, . . . , u

m
x ),

ut ≡ (u1
t , . . . , u

m
t ) and ui

x ≡ (ui
x1 , . . . , u

i
xn), i = 1, . . . ,m, and where the func-

tion L is at least twice differentiable with respect to uxi, ut and once differen-

tiable with respect to t, x, z. Let η = (η1(t, x), . . . , ηm(t, x)) have continuous first

derivatives and otherwise be arbitrary except for the boundary conditions:

η(0, x) = η(s, x) = 0

η(t, x) = 0 for x ∈ dΩ, 0 ≤ t ≤ s

where dΩ is the boundary of Ω. Then, the value of the functional z[u; s] is an

extremum for functions u which satisfy the condition

d

dε
z[u+ εη; s]

∣

∣

∣

ε=0
= 0. (2.4)

The function L will be called, just as in the classical case, the Lagrangian

density . The notation ut, ux etc. is used to denote the partial derivatives with
respect to t, x, etc. It should be observed that when a variation εη is applied
to u the equation (2.3), defining the functional z, must be solved with the same
fixed initial condition z(0) at t = 0 and the solution evaluated at the same fixed
final time t = s for all varied argument functions u+ εη.

Theorem 2.1. Every function u ≡ (u1, . . . , um), for which the functional z

defined by the integro-differential equation (2.3) has an extremum, is a solution

of

∂L

∂ui
−

d

dt

∂L

∂ui
t

−
d

dxk

∂L

∂ui
xk

+
∂L

∂ui
t

∫

Ω

∂L

∂z
dx = 0, i = 1, . . . ,m. (2.5)

Because of the obvious correspondence with the classical case, we call these
equations the generalized Euler-Lagrange equations with several independent

variables.
The following theorem provides an identity which corresponds to each sym-

metry of the functional z defined by the integro-differential equation (2.3). We
call it a first Noether-type theorem for the generalized variational principle with
several independent variables because this theorem contains as a special case
the classical first Noether theorem.

Theorem 2.2. Let

v = τ(t)
∂

∂t
+ ξk(t, x, u)

∂

∂xk
+ ηi(t, x, u)

∂

∂ui
, k = 1, . . . , n, i = 1, . . . ,m

be the generator of a given symmetry group of the functional z[u; s] defined

by (2.3). Then the identity

∫

D

(

d

dt

(

E
(

(τui
t+ξ

jui
xj−η

i)
∂L

∂ui
t

−τL
)

)

+
d

dxk

(

E
(

(τui
t+ξ

jui
xj−η

i)
∂L

∂ui
xk

−ξkL
)

)

)

dnx=0
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holds on solutions of the generalized Euler-Lagrange equations (2.5). Here D is

any subdomain of Ω, including Ω itself, whose closure Dcl⊂Ωcl and E = E(t)
is

E = exp

(

−

∫ t

0

∫

D

∂L

∂z
dnx dθ

)

.

Corollary 2.3. Theorem 2.2 reduces to the classical first Noether theorem when

the generalized variational principle with several independent variables reduces

to the classical variational principle.

The proofs of Theorems 2.1, 2.2 and Corollary 2.3 can be found in Georgieva
et al. [3].

Two examples of partial differential equations which can be given a varia-
tional description via the generalized variational principle of Herglotz with sev-
eral independent variables are presented next. They were published in Georgieva
et al. [3]. We restate them here for the convenience of the reader.

The first is the set of equations which describe the propagation of electro-
magnetic fields in a conductive medium.

c2∇2E −
∂2E

∂t2
−
σ

ε

∂E

∂t
= 0 (2.6)

where E = (E1, E2, E3) is the electric field vector, c is the velocity of the electro-
magnetic waves, σ is the electrical conductivity and ε is the dielectric constant
of the medium. Exactly the same equation holds for the magnetic field vector
B = (B1, B2, B3). These equations are direct consequence of the Maxwell’s
equations in conjunction with the medium’s property equations J = σE and
ρ = 0, where J = (J1, J2, J3) is the current density and ρ is the charge density.

One can verify that equation (2.6) is the generalized Euler-Lagrange equa-
tion of the Lagrangian

L = c2
∂Ei

∂xj

∂Ei

∂xj
−
∂Ei

∂t

∂Ei

∂t
+ α(x)z, i, j = 1, 2, 3 (2.7)

where σ
ε

=
∫

Ω
α(x) d3x = const. As a second example consider the equation

∇2u−
1

v2

∂2u

∂t2
+G(uu∗)u = 0 (2.8)

describing the real or complex field u = u(x, t), where u∗ denotes the com-
plex conjugate of u, G is a differentiable function and v is a constant. This
equation is known as the nonlinear Klein-Gordon equation. Its linear version,
with G = const. plays an important role in relativistic field theories. The one-
dimensional version of (2.8) with real u and G(u2)u = sinu is the sine-Gordon
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equation. The field equations of the form (2.8) can be derived from the La-
grangian density

L(u, ut,∇u) = ∇u · ∇u∗ −
1

v2

∂u

∂t

∂u∗

∂t
− F (uu∗)

where dF (ρ)
dρ

= G(ρ) and F (0) = 0. We consider as physically meaningful only

those solutions of (2.8) which are free of singularities and for which

∣

∣

∣

∣

∫

Ω

L(t, x, u, ut, ux) d
nx

∣

∣

∣

∣

<∞

holds over the entire time domain. The processes described with an equation
of the form (2.8) are conservative.

One is also interested in nonconservative processes involving fields. The
simplest modification of (2.8) which makes it suitable to describe nonconserva-
tive processes is to include in it a term proportional to the time-derivative of
the field. Thus, a physically meaningful nonconservative version of (2.8) is

∇2u−
1

v2

∂2u

∂t2
+ k

∂u

∂t
+G(uu∗)u = 0 (2.9)

where k is a constant. With k > 0 the process described by (2.9) is generative,
and with k < 0 it is dissipative. When u is a real field equation (2.9) can be
derived via the present generalized variational principle from the Lagrangian
density

L = ∇u · ∇u−
1

v2

(

∂u

∂t

)2

− F (u2) + α(x)z (2.10)

where dF (ρ)
dρ

= G(ρ), and α = α(x) is a given function of the coordinates x ≡

(x1, . . . , xn) which satisfies the condition
∣

∣

∫

Ω
α(x) dnx

∣

∣ < ∞. Indeed, inserting
the Lagrangian (2.10) into the generalized Euler-Lagrange equations (2.5)

∂L

∂u
−

d

dt

∂L

∂ut

−
d

dxk

∂L

∂uxk

+
∂L

∂ut

∫

Ω

∂L

∂z
dnx

= −2u
∂F

∂(u2)
+

2

v2

∂2u

∂t2
− 2∇2u−

2

v2

∂u

∂t

∫

Ω

α(x) dnx

= 0

we see that the last expression is the same as (2.9) with k = 1
v2

∫

Ω
α(x) dnx =

const.
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3. The symmetries of the variational functional of
Herglotz

The above discussion should have made apparent the need for a method of
finding symmetries of the functional defined by the Herglotz principle with
several indendent variables. In this section we formulate and prove a theorem
which provides such a method.

Consider a one-parameter group of transformations of the independent vari-
ables t, x ≡ (x1, . . . , xn) and the dependent variables u ≡ (u1, . . . , um), i.e.,

t̄ = φ(t, x, u; ε)

x̄k = ϕk(t, x, u; ε), k = 1, . . . , n

ūi = ψi(t, x, u; ε), i = 1, . . . ,m.

(3.1)

To find the transformed functions ūi = ūi(t̄, x̄; ε) of the functions ui = ui(t, x)
we insert the latter into φ and ϕk of (3.1) to get a system of n + 1 equations
with n+ 1 unknowns t, x1, . . . , xn and a parameter ε. We invert this system to
obtain t and x1, . . . , xn as functions of t̄ and x̄1, . . . , x̄n. These we substitute
into the last m equations of (3.1) to get ūi as a function of t̄ and x̄1, . . . , x̄n

and ε, which we denote by ūi = ūi(t̄, x̄; ε).

Definition 3.1. The transformed functional z̄, of a functional z defined by
(2.3), is the solution of the transformed integro-differential equation

dz̄

dt̄
=

∫

Ω̄

L(t̄, x̄, ū(t̄, x̄), ūt̄, ūx̄, z̄) d
nx̄ (3.2)

where Ω̄ is the transformed domain of the domain Ω.

Observation. The most general one-parameter group of transformations of the

independent and the dependent variables admitted by equation (2.3) is

t̄ = φ(t; ε)

x̄k = ϕk(t, x, u; ε), k = 1, . . . , n

ūi = ψi(t, x, u; ε), i = 1, . . . ,m.

(3.3)

The proof of this observation can be found in Georgieva et al. [3].

Definition 3.2. Let Φ, Ω and Ψi be the sets on which t, x and ui(t, x) vary.
A local group of transformations G acting on the independent and the depen-
dent variables is a symmetry group of the functional z defined by the integro-
differential equation (2.3) if whenever D is a sub-domain with closure Dcl ⊂ Ω
and ui = ui(t, x) are functions defined over Φ×D whose graphs lie in Φ×Ω×Ψi

with continuous second partial derivatives, and g ∈ G is such that

ūi = ūi(t̄, x̄) = g ◦ ui(t, x), i = 1, . . . ,m
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are single valued functions defined over Φ̄ × D̄ ⊂ Φ × Ω, then the functional
defined by the transformed integro-differential equation

dz̄

dt̄
=

∫

D̄

L(t̄, x̄, ū(t̄, x̄), ūt̄, ūx̄, z̄) d
nx̄

is equal to the functional defined by the original integro-differential equation

dz

dt
=

∫

D

L(t, x, u(t, x), ut, ux, z) d
nx

for all t. Here D̄ denotes the transformed D under G.

Theorem 3.3. Let

v = τ(t)
∂

∂t
+ ξk(t, x, u)

∂

∂xk
+ ηi(t, x, u)

∂

∂ui
, k = 1, . . . , n, i = 1, . . . ,m (3.4)

be the infinitesimal generator of a one-parameter group (3.3) of symmetries of

the functional z[u; s] defined by (2.3). Then τ , ξk, ηi are solutions to the system

of partial differential equations obtained from the identity

∫ s

0

∫

D

E

(

∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ui
ηi + L

(

∂ξj

∂xj
+
∂ξj

∂ui
ui

xj +
dτ

dt

)

+
∂L

∂ui
t

(

∂ηi

∂t
+
∂ηi

∂uj
u

j
t − ui

t

dτ

dt
− ui

xk

(

∂ξk

∂t
+
∂ξk

∂uj
u

j
t

))

+
∂L

∂ui
xk

(

∂ηi

∂xk
+
∂ηi

∂uj
u

j

xk − ui
xj

(

∂ξj

∂xk
+
∂ξj

∂ul
ul

xk

)))

dnxdt = 0

(3.5)

by equating to zero the coefficients in front of z, derivatives of u, powers of

derivatives of u, and products of those in the integrand. Here D is any subdo-

main of Ω, including Ω itself, whose closure Dcl ⊂ Ωcl and E = E(t) is

E = exp

(

−

∫ t

0

∫

D

∂L

∂z
dnx dθ

)

. (3.6)

Proof. We write the integro-differential equation (2.3) for any subdomain D of
Ω and apply the transformation (3.3) to it, i.e.,

dz̄

dt̄
=

∫

D̄

L
(

t̄, x̄, ū(t̄, x̄), ūt̄, ūx̄, z̄
)

dnx̄, φ(0; ε) ≤ t̄ ≤ φ(s; ε). (3.7)

Here dnx̄ ≡ dx̄1 · · · dx̄n and D̄ = D̄(t̄, ū, ε) denotes the result of transforming
D with (3.3) which, in general, depends on t̄, ū and ε. Now we change the
independent variables t̄ and x̄k in (3.7) (but not the dependent variables) back
to the original independent variables t and xk. The resulting equation is

dz̄

dt
=
dt̄

dt

∫

D

L
(

t̄, x̄, ū(t̄, x̄), ūt̄, ūx̄, z̄
)

det
(∂x̄

∂x

)

dnx, 0 ≤ t ≤ s. (3.8)
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where ∂x̄
∂x

stands for the Jacobian matrix of the transformation of the x-variables.
Differentiating equation (3.8) with respect to ε

d

dt

dz̄

dε
=
dt̄

dt

∫

D

(

dL

dε
det

(∂x̄

∂x

)

+L
d

dε
det

(∂x̄

∂x

)

)

dnx+
d

dε

dt̄

dt

∫

D

L det
(∂x̄

∂x

)

dnx (3.9)

and observing that dt̄
dt

∣

∣

ε=0
= 1, det

(

∂x̄
∂x

)∣

∣

ε=0
= 1, d

dε
dt̄
dt

∣

∣

ε=0
= dτ

dt
produces

dζ

dt
=

∫

D

dL

dε

∣

∣

∣

∣

ε=0

dnx+

∫

D

L
d

dε
det

(∂x̄

∂x

)

∣

∣

∣

∣

ε=0

dnx+
dτ

dt

∫

D

L dnx (3.10)

where, by definition, the variation ζ = ζ(t) of z̄ is ζ(t) ≡ dz̄
dε

∣

∣

ε=0
. Now, we

need to express the first and the second integrands in (3.10) in terms of known
functions. The calculations are lengthy and are given in the Appendix. When
the results

dL

dε

∣

∣

∣

∣

ε=0

=
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ui
ηi +

∂L

∂ui
t

(

dηi

dt
− ui

t

dτ

dt
− ui

xk

dξk

dt

)

+
∂L

∂ui
xk

(

dηi

dxk
− ui

xj

dξj

dxk

)

+
∂L

∂z
ζ

(3.11)

and
d

dε
det

(∂x̄

∂x

)

∣

∣

∣

∣

ε=0

=
dξk

dxk
(3.12)

are inserted into (3.10) we obtain the equation for the variation ζ(t), namely,

dζ(t)

dt
=

∫

D

(

∂L

∂t
τ+

∂L

∂xk
ξk+

∂L

∂ui
ηi+

∂L

∂ui
t

(

dηi

dt
−ui

t

dτ

dt
−ui

xk

dξk

dt

)

+
∂L

∂ui
xk

(

dηi

dxk
−ui

xj

dξj

dxk

)

+L
dξj

dxj

)

dnx+
dτ

dt

∫

D

L dnx+ζ(t)

∫

D

∂L

∂z
dnx.

(3.13)

Its solution ζ(s), evaluated at t = s, is given by

E(s) ζ(s) − ζ(0)

=

∫ s

0

∫

D

E(t)

(

∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ui
ηi +

∂L

∂ui
t

(

dηi

dt
− ui

t

dτ

dt
− ui

xk

dξk

dt

)

+
∂L

∂ui
xk

(

dηi

dxk
− ui

xj

dξj

dxk

)

+ L

(

dξj

dxj
+
dτ

dt

))

dnxdt

(3.14)

where E(t) is the expression (3.10) and s is the value of t at which the solu-
tion z(t) of equation (2.3) was evaluated in order to obtain the functional z[u; s].
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By definition, ζ(0) = 0. By hypothesis, the transformation group (3.3) leaves
the functional z̄ invariant, so ζ(s) = 0. Thus, (3.14) becomes

∫ s

0

∫

D

E

(

∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ui
ηi +

∂L

∂ui
t

(

dηi

dt
− ui

t

dτ

dt
− ui

xk

dξk

dt

)

+
∂L

∂ui
xk

(

dηi

dxk
− ui

xj

dξj

dxk

)

+ L

(

dξj

dxj
+
dτ

dt

))

dnxdt = 0.

(3.15)

Next we expand the total derivatives of η and ξ in (3.15), obtaining identity
(3.5). It is satisfied if the coefficients in front of z, derivatives of u, powers of
derivatives of u, and products of those in the integrand are zero. To calculate
τ , ξk, and ηi we form the system of partial differential equations obtained by
equating those coefficients to zero. Each solution of this system corresponds to
one symmetry group generator of the form (3.4).

4. Applications

In this section we show how Theorem 3.3 can be used to calculate symme-
tries of the variational functional of Herglotz in the case of several independent
variables. Having obtained such symmetries one can readily apply the first
Noether-type Theorem 2.2 to obtain the corresponding first integrals.

As a first example consider the one-dimensional nonconservative sine-
Gordon equation

∂2u

∂x2
−

1

v2

∂2u

∂t2
+ k

∂u

∂t
+ sinu = 0. (4.1)

This equation can be obtained as the generalized Euler-Lagrange equation (2.5)
for the variational functional z defined by (2.3) with

L =

(

∂u

∂x

)2

−
1

v2

(

∂u

∂t

)2

− 2 cos u+ α(x)z.

Here k and v are constants, v represents the velocity of the wave and α is a
differentiable function such that

∫

Ω
α(x)dx = kv2. In this case identity (3.5)

becomes
∫ s

0

∫

D

E

(

dα

dx
ξz + 2η sin u−

2

v2
ut

(

ηt + ηuut − ut

dτ

dt
− ux

(

ξt + ξuut

)

)

+ 2ux

(

ηx + ηuux − ux

(

ξx + ξuux

))

+
(

u2
x −

1

v2
u2

t − 2 cos u+ α(x)z
)(

ξx+ ξuux+
dτ

dt

)

)

dxdt = 0.

(4.2)

We form the coefficients in front of z, ut, u
2
t , ux, u

2
x, u

3
x, utux, u

2
tux, and zux in

the integrand of (4.2) and equate them to zero. The solution of this system is
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τ = a = const., ξ = b = const. and η = 0. Thus, the infinitesimal generator of
the symmetry group of the functional z is v = a ∂

∂t
+ b ∂

∂x
.

As a second example let us find the variational symmetries, which this
method produces, for the non-conservative two dimensional Klein-Gordon equa-
tion for a real field u(x1, x2, t)

∇2u−
1

v2

∂2u

∂t2
+G(u2)u+ k

∂u

∂t
= 0. (4.3)

It is the generalized Euler-Lagrange equation for the functional z defined by the
integro-differential equation (2.3) with

L =

(

∂u

∂x1

)2

+

(

∂u

∂x2

)2

−
1

v2

(

∂u

∂t

)2

− F (u2) + α(x)z.

In this case, the generalized Killing identity (3.5) is

∫ s

0

∫

D

E

(

∂α

∂x1
ξ1z +

∂α

∂x2
ξ2z − 2uF ′η

−
2

v2
ut

(

ηt + ηuut − ut

dτ

dt
− ux1

(

ξ1
t + ξ1

uut

)

− ux2

(

ξ2
t + ξ2

uut

)

)

+ 2ux1

(

ηx1 + ηuux1 − ux1

(

ξ1
x1 + ξ1

uux1

)

− ux2

(

ξ2
x1 + ξ2

uux1

))

+ 2ux2

(

ηx2 + ηuux2 − ux1

(

ξ1
x2 + ξ1

uux2

)

− ux2

(

ξ2
x2 + ξ2

uux2

))

+
(

u2
x1 + u2

x2 −
1

v2
u2

t − F (u2) + α(x)z
)

×
(

ξ1
x1 + ξ1

uux1 + ξ2
x2 + ξ2

uux2 +
dτ

dt

)

)

dx1dx2dt = 0.

We form the coefficients in front of z, zux1 , zux2 , ut, u
2
t , ux1 , ux2 , utux1 , utux2 ,

u2
tux1 , u2

tux2 , u2
x1 , u2

x2 , u3
x1 , u3

x2 , ux1ux2 , u2
x1ux2 , and u2

x2ux1 in the integrand and
equate them to zero. Then consider the system which these equations together
with the equation of the terms not multiplied by z or derivatives of u form.
There are several different cases for the solution of this system depending on
the functions F and α. If F (ρ) = sρ with s = const., we obtain τ = τ 1 = const.,
ξ1 = ax1 − cx2 + c2, ξ2 = ax2 + cx1 + c1, η = −au, where a, c, c1 and c2 are
constants which satisfy the identity

∂α

∂x1
(ax1 − cx2 + c2) +

∂α

∂x2
(ax2 + cx1 + c1) + 2aα(x) = 0. (4.4)

(i) If α = const. then a = 0 and we obtain the variational symmetries τ =
τ 1 = const., ξ1 = −cx2 + c2, ξ2 = cx1 + c1, η = 0 where c, c1 and c2 are
arbitrary constants.
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(ii) If α = b1x1 + b2x2 + b3 with constant b1, b2, b3, b1 6= 0, then from the
system obtained by equating to zero the coefficients in identity (4.4), we
get a = 0, c = 0 and c2 = − c1b2

b1
, thus the symmetries in this case are

τ = τ 1, ξ1 = − c1b2

b1
, ξ2 = c1, η = 0 with τ 1 and c1 being arbitrary

constants.

(iii) If α = (x1)2 + (x2)2 the same procedure as in the previous cases produces
τ = τ 1, ξ1 = −cx2, ξ2 = cx1, η = 0 with τ 1 and c being arbitrary
constants.

(iv) If α = (x1)−2 + (x2)−2 then we get the variational symmetry group of
the nonlinear nonconservative Klein-Gordon equation with infinitesimal
generator (3.4) where τ = τ 1, ξ1 = ax1, ξ2 = ax2, η = −au with τ 1

and a being arbitrary constants.

As a last application let us find variational symmetries of the equation

c2∇2E −
∂2E

∂t2
−
σ

ε

∂E

∂t
= 0 (4.5)

which describes the propagation of electromagnetic fields in a conductive medi-
um. Here E = (E1, E2, E3) is the electric field vector, c is the velocity of the
electromagnetic waves, σ is the electrical conductivity and ε is the dielectric
constant of the medium. As mentioned in the introduction, exactly the same
equation holds for the magnetic field vector B = (B1, B2, B3). These equa-
tions are direct consequence of the Maxwell’s equations in conjunction with the
medium’s property equations J = σE and ρ = 0, where J = (J1, J2, J3) is the
current density and ρ is the charge density. We write the generalized Killing
identity (3.5) for the Lagrangian

L = c2
∂Ei

∂xj

∂Ei

∂xj
−
∂Ei

∂t

∂Ei

∂t
+ α(x)z, i, j = 1, 2, 3

where σ
ε

=
∫

Ω
α(x) d3x = const.

∫ s

0

∫

Ω

e−
σt
ε

(

∂α

∂xk
ξkz

− 2
∂Ei

∂t

(

∂ηi

∂t
+
∂ηi

∂Ej

∂Ej

∂t
−
∂Ei

∂t

dτ

dt
−
∂Ei

∂xk

(

∂ξk

∂t
+
∂ξk

∂Ej

∂Ej

∂t

))

+ 2c2
∂Ei

∂xk

(

∂ηi

∂xk
+
∂ηi

∂Ej

∂Ej

∂xk
−
∂Ei

∂x1

(

∂ξ1

∂xk
+
∂ξ1

∂Ej

∂Ej

∂xk

)

−
∂Ei

∂x2

(

∂ξ2

∂xk
+
∂ξ2

∂Ej

∂Ej

∂xk

)

−
∂Ei

∂x3

(

∂ξ3

∂xk
+
∂ξ3

∂Ej

∂Ej

∂xk

))

+

(

c2
∂Ei

∂xj

∂Ei

∂xj
−
∂Ei

∂t

∂Ei

∂t
+ α(x)z

)

×

(

∂ξk

∂xk
+
∂ξk

∂Ej

∂Ej

∂xk
+
dτ

dt

))

dx1dx2dx3dt= 0.
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As usual we form the system of partial differential equations for the unknowns
τ , ξi and ηi, i = 1, 2, 3, by equating to zero the coefficients in the Killing’s
identity. The solution is: τ is an arbitrary constant, η1 = aE2 − bE3 + p1, η2 =
kE3 − aE1 + p2, η3 = bE1 − kE2 + p3 where a, b, k, p1, p2, p3 are arbitrary
constants, ξ1 = qx2 − sx3 + r1, ξ2 = px3 − qx1 + r2, ξ3 = sx1 − px2 + r3 where
q, s, p, r1, r2, r3 are arbitrary constants restricted by the condition ξi ∂α

∂xi = 0. If,
for example, α is a constant, α = σ

εV
, where V is the volume of Ω then this

condition is satisfied.

5. Appendix

5.1. Derivation of the relation (3.11). We differentiate the transformed
Lagrangian density L

(

t̄, x̄, ū, ūt̄, ūx̄, z̄
)

in equation (3.8) with respect to ε and
set ε = 0

dL

dε

∣

∣

∣

∣

ε=0

=

(

∂L

∂t̄

dφ

dε
+
∂L

∂x̄k

dϕk

dε
+
∂L

∂ūi

dψi

dε
+
∂L

∂ūi
t̄

d

dε

∂ūi

∂t̄
+
∂L

∂ūi
x̄k

d

dε

∂ūi

∂x̄k
+
∂L

∂z̄

dz̄

dε

)∣

∣

∣

∣

ε=0

which, when written with ζ and the infinitesimal generators of the group, be-
comes

dL

dε

∣

∣

∣

∣

ε=0

=
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ui
ηi +

∂L

∂ui
t

d

dε

(

∂ūi

∂t̄

)∣

∣

∣

∣

ε=0

+
∂L

∂ui
xk

d

dε

(

∂ūi

∂x̄k

)∣

∣

∣

∣

ε=0

+
∂L

∂z
ζ.

(5.1)

To calculate d
dε

(

∂ūi

∂t̄

)∣

∣

ε=0
differentiate the equation ūi(t̄, x̄; ε) = ψi(t, x, u; ε) ≡

ūi(t, x, u; ε) with respect to t

∂ūi

∂t̄

dt̄

dt
+
∂ūi

∂x̄k

(

∂x̄k

∂t
+
∂x̄k

∂uj
u

j
t

)

=
∂ūi

∂t
+
∂ūi

∂uj
u

j
t . (5.2)

Set ε = 0 and take into account the identities:

∂ūi

∂t

∣

∣

∣

∣

ε=0

= 0,
∂ūi

∂uj

∣

∣

∣

∣

ε=0

= δi
j,

∂t̄

∂t

∣

∣

∣

∣

ε=0

= 1,
∂x̄k

∂t

∣

∣

∣

∣

ε=0

= 0,
∂x̄k

∂uj

∣

∣

∣

∣

ε=0

= 0.

Substitute these in (5.2) and solve the resulting equation for ūi
t̄

∣

∣

ε=0
to find

ūi
t̄

∣

∣

ε=0
= ui

t. (5.3)

Differentiate the equation ūi(t̄, x̄; ε) = ψi(t, x, u; ε) ≡ ūi(t, x, u; ε) with respect
to xk

∂ūi

∂x̄l

(

∂x̄l

∂xk
+
∂x̄l

∂uj
u

j

xk

)

=
∂ūi

∂xk
+
∂ūi

∂uj
u

j

xk . (5.4)



266 B. Georgieva

Set ε = 0 and substitute the identities:

∂ūi

∂xk

∣

∣

∣

∣

ε=0

= 0,
∂ūi

∂uj

∣

∣

∣

∣

ε=0

= δi
j,

∂x̄l

∂xk

∣

∣

∣

∣

ε=0

= δl
k,

∂x̄l

∂uj

∣

∣

∣

∣

ε=0

= 0

in (5.4). Then solve the resulting equation for ūi
x̄k

∣

∣

ε=0
to obtain

ūi
x̄k

∣

∣

ε=0
= ui

xk . (5.5)

Differentiate (5.2) with respect to ε to get

ūi
t̄

d

dε

dt̄

dt
+
dt̄

dt

dūi
t̄

dε
+ ūi

x̄k

(

d

dε

∂x̄k

∂t
+

d

dε

(

∂x̄k

∂uj

)

u
j
t

)

+

(

∂x̄k

∂t
+
∂x̄k

∂uj
u

j
t

)

dūi
x̄k

dε

=
d

dε

(

∂ūi

∂t
+
∂ūi

∂uj
u

j
t

)

.

(5.6)

Set ε = 0 in (5.6) and substitute (5.3) and (5.5) in it. Then take into account
the identities

d

dε

∂ūi

∂t

∣

∣

∣

∣

ε=0

=
∂ηi

∂t
,

d

dε

∂ūi

∂uj

∣

∣

∣

∣

ε=0

=
∂ηi

∂uj
,

d

dε

∂t̄

∂t

∣

∣

∣

∣

ε=0

=
∂τ

∂t
,

∂t̄

∂t

∣

∣

∣

∣

ε=0

= 1,

d

dε

∂x̄k

∂t

∣

∣

∣

∣

ε=0

=
∂ξk

∂t
,

d

dε

∂x̄k

∂uj

∣

∣

∣

∣

ε=0

=
∂ξk

∂uj
,

∂x̄k

∂t

∣

∣

∣

∣

ε=0

= 0,
∂x̄k

∂uj

∣

∣

∣

∣

ε=0

= 0.

Consequently, equation (5.6) becomes

∂ηi

∂t
+
∂ηi

∂uj
u

j
t = ui

t

∂τ

∂t
+

d

dε
ūi

t̄

∣

∣

∣

∣

ε=0

+ ui
xk

(

∂ξk

∂t
+
∂ξk

∂uj
u

j
t

)

(5.7)

from which we obtain

d

dε
ūi

t̄

∣

∣

∣

∣

ε=0

=
dηi

dt
− ui

t

dτ

dt
− ui

xk

dξk

dt
. (5.8)

We must now calculate d
dε

(

∂ūi

∂x̄k

)
∣

∣

ε=0
which appears in (5.1). For this purpose

differentiate (5.4) with respect to ε

d

dε

∂ūi

∂xk
+
d

dε

∂ūi

∂uj
u

j

xk =
d

dε
ūi

x̄l

(

∂x̄l

∂xk
+
∂x̄l

∂uj
u

j

xk

)

+ ūi
x̄l

(

d

dε

∂x̄l

∂xk
+u

j

xk

d

dε

∂x̄l

∂uj

)

. (5.9)

Set ε = 0 in (5.9), substitute (5.3) and (5.5) into (5.9) and observe that

d

dε

∂ūi

∂xk

∣

∣

∣

∣

ε=0

=
∂ηi

∂xk
,

d

dε

∂ūi

∂uj

∣

∣

∣

∣

ε=0

=
∂ηi

∂uj
,

∂x̄l

∂xk

∣

∣

∣

∣

ε=0

= δl
k,

∂x̄l

∂uj

∣

∣

∣

∣

ε=0

= 0,
d

dε

∂x̄l

∂xk

∣

∣

∣

∣

ε=0

=
∂ξl

∂xk
,

d

dε

∂x̄l

∂uj

∣

∣

∣

∣

ε=0

=
∂ξl

∂uj
.
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Then (5.9) becomes

∂ηi

∂xk
+
∂ηi

∂uj
u

j

xk =
d

dε
ūi

x̄l

∣

∣

∣

∣

ε=0

δl
k + ui

xl

(

∂ξl

∂xk
+
∂ξl

∂uj
u

j

xk

)

, (5.10)

from which we get
d

dε
ūi

x̄k

∣

∣

∣

∣

ε=0

=
dηi

dxk
− ui

xl

dξl

dxk
. (5.11)

Substituting (5.8) and (5.11) into (5.1) produces the relation (3.11)

dL

dε

∣

∣

∣

∣

ε=0

=
∂L

∂t
τ +

∂L

∂xk
ξk +

∂L

∂ui
ηi +

∂L

∂ui
t

(

dηi

dt
− ui

t

dτ

dt
− ui

xk

dξk

dt

)

+
∂L

∂ui
xk

(

dηi

dxk
− ui

xl

dξl

dxk

)

+
∂L

∂z
ζ.

5.2. Derivation of the relation (3.12). We use the formula for the derivative
of a determinant, according to which

d

dε
det

(∂x̄

∂x

)

= Ak
j d

dε

(

∂x̄k

∂xj

)

(5.12)

where Ak
j is the cofactor of the determinant’s entry ∂x̄k

∂xj . Next,

d

dε

(

∂x̄k

∂xj

)

=
∂

∂xj

dx̄k

dε
=

∂2x̄k

∂xj ∂ε
+

∂2x̄k

∂ui ∂ε

∂ui

∂xj

because x̄k = x̄k(t, x, u(t, x); ε). Hence (5.12) becomes

d

dε
det

(∂x̄

∂x

)

= Ak
j

(

∂2x̄k

∂xj ∂ε
+

∂2x̄k

∂ui ∂ε

∂ui

∂xj

)

.

Setting ε = 0 in the above expression and observing that Ak
j
∣

∣

ε=0
= δk

j is a
cofactor of the identity matrix, we get the relation (3.12)

d

dε
det

(∂x̄

∂x

)

∣

∣

∣

∣

ε=0

=

(

∂ξk

∂xj
+
∂ξk

∂ui

∂ui

∂xj

)

δk
j =

dξk

dxj
δk

j =
dξk

dxk
.
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