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Multiplicity Results for Classes of
Infinite Positone Problems

Funkyung Ko, Fun Kyoung Lee and R. Shivaji

Abstract. We study positive solutions to the singular boundary value problem

flu)
_Apu — Auiﬁ m Q

u=20 on 01,

where Ayu = div (|VulP72Vu), p > 1,A > 0,8 € (0,1) and Q is a bounded domain
in RV, N > 1. Here f: [0,00) — (0,00) is a continuous nondecreasing function such
that lim, .o ué:(z),l = 0. We establish the existence of multiple positive solutions for
certain range of A when f satisfies certain additional assumptions. A simple model
that will satisfy our hypotheses is f(u) = ea+u for a > 1. We also extend our results
to classes of systems when the nonlinearities satisfy a combined sublinear condition

at infinity. We prove our results by the method of sub-supersolutions.
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1. Introduction

We first consider the boundary value problem

)
—APU—AF in Q (1)

u=>0 on 0f),
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where Ayu = div(|Vul[P72Vu) is the p—Laplacian of u, p > 1,8 € (0,1),
is a positive parameter and () is a bounded domain with a smooth boundary
in RN N > 1. We assume that f is a C'(]0, 0o))-function satisfying the following
assumptions:

(H1) f(u) > 0 for all u > 0,
(H2) lim, oo A4 = 0.

We note that lim, .o % = 00, and hence (1) is a singular boundary value

problem which we call here as an infinite positone problem. Our results in this
paper are motivated by the problem:
exp[ ]
_Apu = )\T m Q (2)
u=20 on 0f).

When g = 0 for every a > 0 and A > 0 it is known that there exist a positive
solution and when a > 1 there exists a range of A\ for which there exist at
least three positive solutions [8]. In this paper, we extend this study to the
singular case when 0 < [ < 1. In particular, we establish the existence of a
positive solution for all @ > 0 and for all A > 0 and a multiplicity result for
certain range of A when a > 1. However, our multiplicity result is restricted
two positive solutions. In [1], the author studied this singular problem (2) when
p = 2 by treating it as a limit problem of the class of non-singular problems
defined by —Au, = )\% in 2 and u, = 0 on 0f2. Here we establish the our
results for all p > 1 directly by method of sub- and supersolutions associated
with such singular problems. Also our proofs easily extend to classes of system
where the nonlinearities satisfy a combined sublinear condition at infinity.

By a subsolution of (1) we mean a function ¢ : Q — R such that ¢ €
WP(Q) (N C(Q) and satisfies:

—prg)\% in
>0 in Q
Yv=0 on 0f2

and by a supersolution of (1) we mean a function ¢ : Q — R such that ¢ €
WhP(Q) (N C(Q) and satisfies:

—Ap¢2)\%(§) in €}
¢ >0 in Q2
»=0 on 0N).

Then we have the following lemma:
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Lemma 1.1 (See [2,5,9]). If there exist a subsolution 1 and a supersolu-
tion ¢ of (1) such that 1 < ¢ on Q, then (1) has at least one solution u €
Whr(Q) N C(Q) satisfying v < u < ¢ on Q.

We first establish:

Theorem 1.2. Assume (H1) — (H2). Then (1) has a positive solution for all
A > 0.

We refer to [7] for a more general existence result for (1). However, for
certain classes of f we can get at least two positive solutions for certain range
of A. To state this multiplicity result, for any 0 < a < d we define

Further, let

Throughout this paper, w € WP(Q) (N C(Q) (see [4, Lemma 3.1]) is the unique
solution of .
—Ayw = i in (2 3)
w=0 on Of).
We now assume that f further satisfies:
(H3) f(u) is nondecreasing for all v > 0
(H4) There exist a and b such that 0 < a < £b and % is nondecreasing on
(a,b).
We establish:

Theorem 1.3. Assume (H1) — (H4). Further assume that there exists d such
that

AP INJw]| S
(p—1)P~'RP

a<d< %b and  Q(a,d) > .= C(8,N,Q),

where R is the radius of the largest inscribed ball By in Q). Then (1) has at least

two positive solutions for A\, < A < A*, where

LAt AN
" fd) (p—-1priRe

d’ N( D >p_1 atr1 1
A* = min — vt .
{f(d) Rr \p-1 fa) Jwl|g*

and
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Figure 1: Graph of the function %

] B+p—1 —1 3 _ _
Remark 1.4. Since d < 5b, we have dfz) (pff)p_]}’m < _f‘%d)%(p_fl)z? 1pp—1
AP=IN|w| P! . Btr—1 pp-1pN ofHp—1 1
“p—np-1rp 1 WE obtain @ oD R

and since Q(a,d) >

Therefore, (A, \*) is not empty.

Remark 1.5. A simple example satisfying the hypotheses of Theorem 1.2 and
Theorem 1.3 is

au

e atu

—Apu =\ 3 in
u=0 on 0.

Clearly, f(u) := ea+u satisfies hypotheses (H1) — (H3). Choosing a = 1,d = a
and b = %2, we can easily show that % is nondecreasing on (a,b) for a > 1.
Further Q(a, d) = a?;l dlﬂf),l = [1]7*P~Vexp|§ — %] and hence, for any given

Q, we have a < d < &b and Q(1,a) > C(3, N, Q) for a large.

Next we note that the method of sub- and supersolutions discussed in
Lemma 1.1 extends to the system:

—Aju = )\% in €
—Apu = /\% in Q (4)

u=v=0 on 0f.

This follows by using the result in [5]. For the system (4) by a subsolu-
tion we mean a pair of functions (1,?¢) : © — R x R such that (¢,v) €



Infinite Positone Problems 309
(W) N C(Q)) x (WHP(Q) N C(Q)) and satisfy

f@)

—1ﬁp¢ Stk—iﬁ— in
—A < )\% in 2

>0, >0 inQ
=19 =0 on 0f2.

By a supersolution we mean a pair of functions (¢,0) : Q@ — R x R such that
(6, 0) € (WP(Q)NC(Q)) x (WHP(Q)NC(Q)) and satisfy

—Ayp > )\% in
—Apgz_ﬁ > )\% in €

$>0, >0 inQ
p=¢=0 on 0f).

We now assume that f and g are C'([0, 00)) functions satisfying the following
assumptions:

(G1) f and g are nondecreasing and f(0) > 0 and g(0) > 0

(G2) limg_ oo ﬁ%—i@) =0 for all M > 0 (a combined sublinear condition at
infinity).

We establish:

Theorem 1.6. Assume (G1) — (G2). Then (4) has a positive solution for all
A > 0.

—1

. . . B+p B+
Next, under certain combined nonlinear effects of £ ) and £

g(g - we study
the existence of multiple positive solutions to (4). To state the multiplicity
result, for any 0 < a < d we define

aPtr—1 f(d)

Ql(a,d) = g(a) dﬁ+p*1.

We also assume:
(G3) f(u) < g(u) for all u >0

(G4) There exist a and b with 0 < a < b such that a < £b and % is nonde-
creasing on (a, b).

We establish:
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Theorem 1.7. Assume (G1) — (G4). Further assume there exists d such that
a < d < &b and Qi(a,d) > C(B,N,Q), where C(3,N,Q) is as defined in
Theorem 1.3. Then (4) has at least two positive solutions for A, < A < A*,
where

ds+r—1 AL N
U@ o

d° N( p )”‘1 aftr=l
A" = min — -t .
{f(d)Rp p—1 g9(a) Jjw|%r

: G-l gp—1 5
Remark 1.8. Since d < 2b, we have 0= AN o 4N (pyp-ipp-l

and

- f(d) (p—1)p~'Rp f(d) RP \p—1
. AP~IN|w||5P~ . dstr—1  Ap—1N aBtp—1 1
and since Q1 (a, d) > Tt We obtain @ D @) el

Therefore, (A, \*) is not empty.

Remark 1.9. A simple example satisfying the hypotheses of Theorem 1.6 and
Theorem 1.7 is

av

A ea+'u X Q

—Apu =\ 7 in
ul +- M .

—Apju =\ e in

u=0=v on 0,

where ¢ > 0 and M > 1 so that (G3) is satisfied. Clearly, f(u) := ea+u and
g(u) := u? + M satisfy hypotheses (G1) — (G3). Choosing a = 1,d = « and

b = %2, we can easily show that LZ) is nondecreasing on (a,b) for a > 1.
Further Q1(a,d) = “‘;Z)‘ldﬁjll = (1+1M) (é)ﬁﬂo_lexp[%] and hence, for any

given 2 we have a < d < §b and Q:(1,a) > C(3, N, Q) for a large.

We will prove Theorems 1.2 and 1.3 in the Section 2 and the Theorem 1.6
and 1.7 in Section 3.

2. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. We construct a positive supersolution ¢; of (1).

Let f*(u) = maxo<y<y f(2). Then f*(u) is nondecreasing and u];:(f,)l — 0
as u — 00, since uﬁz)_l — 0 as u — 00. So there exists M) > 1 such that
ST (M[[w]|o) 1
(Myl[wlloe) 771 = N |57
Let ¢1 = Myw, where w is defined in (3). We have
MY *(My]|w]| o “(M M
w

(Myw)? =7 (Myw)? = " (Myw)? = ¢f 7
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showing that ¢ is a positive supersolution of (1).

Now we construct a positive subsolution ;. Let A; be the first eigenvalue
of —A, with Dirichlet boundary condition and e > 0 be a corresponding eigen-
function. Hence e and A\ satisfy:

—Aye =M\’ inQ
e=0 on Of).

Since % — 00 as u — 0, there exists a sufficiently small my such that

f(mye)

( E forall M\ > 0.
mye

A (mae)P < A

Let 11 = mye. We have —A,h; = Aj(mye)P™t < Afngfﬁ =\ zﬁwl) Thus 9 is
subsolution of (1), and if m, is chosen sufficiently small, then 2/11 < ¢1. Hence,

Theorem 1.2 is proven. O

Proof of Theorem 1.3. Here we construct a second positive supersolution o))

of (1) with [|¢u]|e = a when A < “7E=dor. Let ¢ = apti—, where w is
defined in (3). Since A < “ij(z)_l W,
A S 1] e { (O R A G i) MNA ()
—App2 = Wl aPuP g1 2 AT 2 A 5 AT
[Jwl]eo w a”w” |lwl|5e ¥y ¢y ¢y

Next we construct a second positive subsolution 3 of (1) when

B+p—1 p—1 3 p—1
¢ AN N LN (b vt
f(d) (p—1)p'Rr fld) Bp \p—1
Let a* € (0,a] be such that f(a*) = ming<,<, f(x) and define h € C([0,00))
such that
)
=2 lr
f(u)
DY > a,

so that h is nondecreasing on (0, a] and h(u) < % for all u > 0 (See Figure 2).
Consider the following nonsingular problem:

—A,u= Mr(u) in Q .
{ u=20 on 0. ()
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I
|
I
ar a b

Figure 2: Graph of the function h(u) below %};)

Let R be the radius of the largest inscribed ball By of (). For 0 < ¢ < R, and
9, ;0 > 1, define p(r) : [0, R] — [0,1] by

1, 0<r<e
p(r) = R—ryn\’
— — < R.
1 (1 (R_e)), e<r<R
Then
0, 0<r<e
/ 5—1
p(r) = op R —r\» R —r\»-1
— — < R.
R—e(l (R—e)) (R—e) , e<rsk

Let v(r) = dp(r). Here note that |v'(r)| < % since | p/(r) |< 2.
Define ¢ as the radially symmetric solution of

{ —Ap(x) = Ah(v(|z])) in B(0, R)
=0 on 9B(0, R).

Then v satisfies

¥'(0) =0, ¥(R) =0,
where G(t) = [t[P~%t for all ¢ € R. Integrating once, for 0 < r < R, we get

—G('(r)) = TJ\;\_l /07” sV h(v(s)) ds. (6)

{ — (NG () = AN h(o(r)

Since G is monotone, G~! is also continuous and monotone. Hence, we have

() = G (rNAl /0 " V1)) ds) | (1)
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We claim that

(r) >ov(r), YVO<r<R (8)

and
[¥]loe <0, (9)
when dﬁfz)_l (pff);l_ffm <A< d(z)g)(ppl)p 1pp=1. If our claim is true, ¢ is a

positive subsolution of the nonsingular problem (5) since —A,y = Ah(v) <
Ah(1). In order to show (8), since ¥(R) = v(R) = 0, it is enough to show that

P(r) <J'(r), VO<r<R. (10)

Note that for 0 < r < ¢, clearly ¢'(r) <0 ='(r). Now for r > ¢, from (6)

~G('(r)) = TNAI /0 ' sV h(v(s)) ds

> RN—l/ " h(v(s)) ds
0
A eV
= vl 57
A f@) €N
T RN-1 @8 N

So, we have —¢/(r) > G™! <R]Q\,1 %%) . Thus, (10) will hold for all e > r > R,

if G—1 (RN 1%%) >R ou £d, which is same as

A f(d)eY o op N\
> = .
RN-1 a8 N _G(R—ed R—ed

Thus, if A > dif(g)l N:}V]ZRI(J)‘;)Z , inequality (10) will hold for all e < r < R.
Note that

" dBs+r—1 NRN_l(éu)p_l dtr=1  Ar-1N
n =

@ S R—a @ -

and is achieved at € = + + . Hence, if A > dﬁ;z; (pff);JYRp, then in the
NR

definition of the function p we can choose € = v - and values for §(> 1)

and p(> 1) so that A > dﬁtz)le\,A(] 1(6)’2)101 " and hence (10) will hold for all
e<r<R.
In order to obtain (9), integrating (7) from ¢ to R, we have

/tR o (r)dr = /tR G (ﬂjl (/0 N Uh(u(s)) ds)) dr
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for 0 <t < R. Hence

_ p—1(ARP f(d) =
p <N dﬁ) '

1

P p—1
from which we have ||1)]|o < ’%1 <%%§D>p " Since A < %% <]%> b1

we obtain ||1]|s < b. Thus v satisfies

—Ap < AW(Y)  in B(0, R)
{ =0 on 0B(0, R)

and d < ||¢]|« < b.

Now, let z(x) = ¥(z), if z € Bg and z(z) = 0, if z € Q — Bg. Then
z € WP(Q)NC(Q) and 2z = 0 on 99, which is subsolution of the nonsigular
problem (5) in Q. However, z is not strictly positive in €. To obtain a strictly
positive subsolution of (5) in {2 we iterate this subsolution z once in a suitable
manner. By the properties of h, there exists o) > 0 such that A\h(2) + 0\G(2)
is increasing for all z > 0. Define 15 to be the solution of

—Ayihy + 03G(1hy) = h(z) in Q
Py =0 on 0f2

with h(z) = Ah(2) 4+ 0xG(z). Then since the operator —A, + G satisfies the
weak comparison principle (see [3]), we can have z < ¥ (see [6]). Further we
get o(x) > 0 for all = € Q since h(0) > 0. Hence by the monotonicity of h we
have

—Dyts +03G() = h(z) < h(¥z) = () + 0rG (1),
which implies that 1 is a subsolution of the nonsingular problem (5) such that
e > 0in Q. Since h(u) < % for all u > 0, we have —A by < Ah(1hy) < )\%23) ,
showing that 15 is a positive subsolution of our singular problem (1). Therefore,
for

di*8 APIN d® N Pt aPtr-1 1
1 < A < min = ( P ) bp_la B+p—1
f(d) (p—1)P~tRp f(d)Rr \p—1 fla) Jjw|5?




Infinite Positone Problems 315

we obtain a positive subsolution 1)y and a positive supersolution ¢, be such that
Uy £ o

From the proof of Theorem 1.2 we note that we have a sufficiently small
positive subsolution v, such that ¢; < ¢9 and a sufficiently large positive super-
solution ¢ such that ¥, < ¢;. Hence, there exist a positive solution u; of (1)
such that ¥y < u; < ¢ and a positive solution uy of (1) such that vy < us < ¢;.
Since 1y £ ¢2, we have u; # uy. Therefore, there exist at least two positive
solutions of (1) for A € (A, A*) and Theorem 1.3 is proven. O

3. Proof of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6. We construct a positive supersolution (¢1,p1) of (4).
If both f and g are bounded, let (¢, ¢1) = (AMyw, \Myw) and choose M,
so large that M}~ > L max{|| f||oc, [|¢]loc }- Then for My > 1 we have

_ y\p—lasp—1 ||f||oo (AMAU))_ f(¢_1)
—App1 = A M; wﬁ wﬁ ZA(AM;(LU) )\(blﬁ

and

o AMyw)  g(¢)
CAydy = N 11\l o gAMw)
b0 wh wh (AMyw)? 87

showing that (¢, ¢1) is a positive supersolution of (4). Suppose that g(x) — oo
as ¥ — oo, let (¢1,¢y) = <M,\w AT 1g(M,\||w||oo)ﬁ+P 1w) . Then by (G2), we
can choose M) large so that

£ (AT g (M 0]oc) 7757 ) |
(w7 = MwlZ7

Then we have

My

_Ap¢1

(Myw)?

whB
L g O] 75
<)\ﬁ+p lg M)\ |w||oo),6+p 1w>

(Myw)?
f(1)

=\ .
1"
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We also have

_ p—1 p—1 1
—App1 = AT g(My[|w]| o) 7T —

w
g(Mx[wll)

AT (M [[]] o) FFo T 0
g(]\/[,\w)

=A

showing that (¢, ¢1) is a supersolution of (4). (If g is bounded and f(z) — oo
as * — oo, then lim, (%};(x)) = 0 for all M > 0 and we can prove that
(¢1,01) = ()\ﬁﬂ’ lf(MAHwHOO)ﬁer Tw Mkw) is a supersolution of (4)).

Now, we construct a positive subsolution (¢1,1);) of (4). Let e and \; be as
f(o)

in the proof of Theorem 1.2. Since lim,_,qo = o0 = lim,_, g( ) , there exist

sufficiently small my and m/, such that

f(0)

(mae)?

Al(m,\e)p_l <\

and A (mhe)P !t < A

Let (¢1,%1) = (mae,mhe). Since f and g are nondecreasing, we have

JO)  fmhe) S
me)? = M) ~ 7

—Aphy = M (mpe)P ! <A

and

_ (e 9(0) glmye) _ g(¥n)
Apz/q A1 (mie) <>\(mA€> <)\(m e =\ %ﬂ

Thus (¢1,7,) is a positive subsolution of (4), and if my and m/, are sufficiently
small then (¢, 1) < (¢1, ¢1). Hence Theorem 1.6 is proven. O

Proof of Theorem 1.7. We construct a second positive supersolution (¢g, @)
of (4) when A < €000 s Let (¢,62) = (= api) - Since ) <

g(a)

||w||ﬁl+P I a6+(p - and g(z) > f(x) for all x > 0, we have

R R
Qo ai— 2

p¢2
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and

' 1 g(a) g (aqu”ﬁm) . 9(92)
fulfe™ w? = A(aL)ﬁ ) A( M) Car

a
llwlloo l[wl]loo

__prdé =

Hence, (¢, ¢») is a positive supersolution of (4) with ||¢2|/c = @ and ||¢s]| = a

B+p—1 1
< ¢ _—
when A < @) T
Btp—1 -1 8 =l
Now, when df+(2) (pf‘f)p_ﬂVRp <A< %% (ﬁ) bP~!, we construct a

second positive subsolution (19, 19) of (4). Let h, p,v, 1, z and consequently 1o
be as defined in the proof of Theorem 1.3. We note that ¥ > 0 in €2 and for
this range of \ it satisfies

f(w;) in
(G
d@ =0 on Of).

__pr@b2 f; A

Now choosing 15 = 1), we have

fts) _\ f()

—Appy <A =
g vy vy

and

f(%) < )\QWQ)

P’ 0’
since f(u) < g(u) for all u > 0. Hence, (1,1)5) is a positive subsolution of

_ p— p—1
(4), when dﬁfz) - (pf‘l)pl,]}pr <A< %% (ﬁ) b=, Therefore, we obtain a

positive supersolution (¢, ¢») and a positive subsolution (13, ,) such that for

ol AN < A < min {—dﬁ ﬁ( P ypipe-! 1 aﬁﬂ?—l}
f(d) (p—1)p-'Rp p—1 w3 gla) 7

f(d) re
(le;LEZ) jé 0¢27¢%)‘

From the proof of Theorem 1.6 we note that we have a sufficiently small
positive subsolution (¢/1, ;) such that (¢1,11) < (¢, ¢2) and a sufficiently large
positive supersolution (¢1, ¢1) such that (19, 19) < (¢1, ¢1). Hence, there exist

a positive solution (uy, ;) of (4) such that (¢1,91) < (uy, 1) < (QZSQ,QEQ) and a

positive solution (ug, @e) of (4) such that (i9,v2) < (ug,u2) < (¢1,¢1). Since

__Z&pzﬁé f; A

(12,19) % (b2, da), we have (ug, 1) # (ug, U2). Therefore, there exist at least
two positive solutions of (4) for A € (A, \*) and Theorem 1.7 is proven. O
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